Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 7(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37923361

RESUMO

Eukaryotic genomes show an intricate three-dimensional (3D) organization within the nucleus that regulates multiple biological processes including gene expression. Contrary to animals, understanding of 3D genome organization in plants remains at a nascent stage. Here, we investigate the evolution of 3D chromatin architecture in legumes. By using cutting-edge PacBio, Illumina, and Hi-C contact reads, we report a gap-free, chromosome-scale reference genome assembly of Vigna mungo, an important minor legume cultivated in Southeast Asia. We spatially resolved V. mungo chromosomes into euchromatic, transcriptionally active A compartment and heterochromatic, transcriptionally-dormant B compartment. We report the presence of TAD-like-regions throughout the diagonal of the HiC matrix that resembled transcriptional quiescent centers based on their genomic and epigenomic features. We observed high syntenic breakpoints but also high coverage of syntenic sequences and conserved blocks in boundary regions than in the TAD-like region domains. Our findings present unprecedented evolutionary insights into spatial 3D genome organization and epigenetic patterns and their interaction within the V. mungo genome. This will aid future genomics and epigenomics research and breeding programs of V. mungo.


Assuntos
Herpestidae , Vigna , Animais , Epigenômica , Vigna/genética , Herpestidae/genética , Genoma , Epigênese Genética/genética
2.
Rev Bras Parasitol Vet ; 32(4): e011923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38055438

RESUMO

In vitro excystation of cysts of microscopically identified Chilomastix mesnili and Retortamonas sp. isolated from Japanese macaques and Retortamonas sp. isolated from small Indian mongooses could be induced using an established protocol for Giardia intestinalis and subsequently by culturing with H2S-rich Robinson's medium supplemented with Desulfovibrio desulfuricans. Excystation usually began 2 h after incubation in Robinson's medium. DNA was isolated from excysted flagellates after 4 h of incubation or from cultured excysted flagellates. Phylogenetic analysis based on their 18S rRNA genes revealed that two isolates of C. mesnili from Japanese macaques belonged to the same cluster as a C. mesnili isolate from humans, whereas a mammalian Retortamonas sp. isolate from a small Indian mongoose belonged to the same cluster as that of an amphibian Retortamonas spp. isolate from a 'poison arrow frog' [sequence identity to AF439347 (94.9%)]. These results suggest that the sequence homology of the 18S rRNA gene of the two C. mesnili isolates from Japanese macaques was similar to that of humans, in addition to the morphological similarity, and Retortamonas sp. infection of the amphibian type in the small Indian mongoose highlighted the possibility of the effect of host feeding habitats.


Assuntos
Herpestidae , Parasitos , Retortamonadídeos , Humanos , Animais , Filogenia , Retortamonadídeos/genética , Herpestidae/genética , Macaca fuscata/genética , RNA Ribossômico 18S/genética
3.
J Zoo Wildl Med ; 54(2): 394-400, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37428705

RESUMO

Trypanosoma cruzi is a protozoan parasite primarily transmitted by triatomine insects (Hemiptera: subfamily Reduviidae) and is the cause of Chagas disease (CD). This report describes three cases of CD in a mob of five slender-tailed meerkats (Suricata suricatta) living in an outdoor exhibit at one zoological institution in Texas. The index case was a 9.5-yr-old female that presented with ataxia, lethargy, and pleural effusion. This case was diagnosed with CD postmortem via cytology, T. cruzi PCR of whole blood and lung fluid, and histology. Blood was opportunistically collected from the remaining four meerkats 28 d after the death of the index case and tested by PCR and serology. The second case was a clinically normal 7.5-yr-old male that tested PCR and antibody positive and the third case was a clinically normal 9-yr-old female that tested PCR positive. The second animal presented depressed, with pneumonia, and with continuous shivering 53 d after blood collection, and clinically improved after treatment with antibiotics and supportive care. Fifteen days later, the animal was found minimally responsive and died shortly thereafter. Histologic examination revealed Trypanosoma sp. amastigotes in the myocardium and the tissue was positive for T. cruzi DNA. The third meerkat, which received two separate courses of benznidazole over a span of almost 2 yr, was monitored routinely by PCR and serology and appeared clinically normal until found dead on exhibit 93 d after completion of the second treatment. Myocardium was positive for T. cruzi DNA. To the authors' knowledge, this case series is the first to document Chagas disease in meerkats and features associated cytologic and histologic findings.


Assuntos
Doença de Chagas , Herpestidae , Trypanosoma cruzi , Masculino , Feminino , Animais , Doença de Chagas/diagnóstico , Doença de Chagas/tratamento farmacológico , Doença de Chagas/veterinária , Miocárdio , Herpestidae/genética , Pulmão , DNA , Trypanosoma cruzi/genética
4.
Res Vet Sci ; 161: 86-95, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37327693

RESUMO

Circular replication-associated protein (Rep)-encoding single stranded (CRESS) DNA viruses include Circoviruses which have been found in several animal species and in human specimens. Circoviruses are associated with severe disease in pigs and birds and with respiratory and gastrointestinal disorders and systemic disease in dogs. In cats there are only a few anecdotical studies reporting CRESS DNA viruses. In this study, a total of 530 samples (361 sera, 131 stools, and 38 respiratory swabs) from cats, were screened for the presence of CRESS DNA viruses. Overall, 48 (9.0%) of 530 samples tested positive using a pan-Rep PCR. A total of 30 Rep sequences were obtained. Ten sequences of fecal origin were tightly related to each other (82.4-100% nt identity) and more distantly related to mongoose circoviruses (68.3 to 77.2% nt identity). At genome level these circoviruses displayed the highest nt identity (74.3-78.7%) to mongoose circoviruses thus representing a novel circovirus species. Circoviruses from different animal hosts (n = 12) and from humans (n = 8) were also identified. However, six Rep sequences were obtained from serum samples, including canine circoviruses, a human cyclovirus and human and fish-associated CRESS DNA viruses. The presence of these viruses in the sera would imply, to various extent, virus replication in the animal host, able to sustain viremia. Overall, these findings indicate a wide genetic diversity of CRESS DNA viruses in cats and warrant further investigations.


Assuntos
Brassicaceae , Circovirus , Herpestidae , Animais , Gatos , Cães , Humanos , Suínos , Circovirus/genética , Brassicaceae/genética , Herpestidae/genética , Filogenia , Genoma Viral , Vírus de DNA/genética , Variação Genética
5.
Evolution ; 75(12): 3071-3086, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34647327

RESUMO

The evolution of cooperative behavior is a major area of research among evolutionary biologists and behavioral ecologists, yet there are few estimates of its heritability or its evolutionary potential, and long-term studies of identifiable individuals are required to disentangle genetic and nongenetic components of cooperative behavior. Here, we use long-term data on over 1800 individually recognizable wild meerkats (Suricata suricatta) collected over 30 years and a multigenerational genetic pedigree to partition phenotypic variation in three cooperative behaviors (babysitting, pup feeding, and sentinel behavior) into individual, additive genetic, and other sources, and to assess their repeatability and heritability. In addition to strong effects of sex, age, and dominance status, we found significant repeatability in individual contributions to all three types of cooperative behavior both within and across breeding seasons. Like most other studies of the heritability of social behavior, we found that the heritability of cooperative behavior was low. However, our analysis suggests that a substantial component of the repeatable individual differences in cooperative behavior that we observed was a consequence of additive genetic variation. Our results consequently indicate that cooperative behavior can respond to selection, and suggest scope for further exploration of the genetic basis of social behavior.


Assuntos
Comportamento Cooperativo , Herpestidae , Animais , Cruzamento , Herpestidae/genética , Humanos , Comportamento Social
6.
Mol Biol Rep ; 48(10): 7029-7034, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34431036

RESUMO

BACKGROUND: The small Indian mongoose (Urva auropunctata) is one of the world's worst invasive alien species and eradication programs are ongoing worldwide. The development of individual and sex identification markers will improve their management. METHODS AND RESULTS: We searched for novel mongoose microsatellite markers using genome-wide screening and identified 115,265 tetra-nucleotide repeat loci. Of 96 loci tested, 17 were genotyped in 28 mongooses from the Okinawa population. The genetic diversity analysis showed that the average expected and observed heterozygosity and number of alleles were 0.55, 0.56, and 2.94, respectively. Of 17 loci, one deviated from Hardy-Weinberg equilibrium and six loci pairs were likely linked to each other. However, we succeed in identifying all individuals using all of the microsatellite loci. The novel sex identification markers worked successfully in a test using sex known samples. CONCLUSION: Our novel microsatellite and sex identification markers should be useful in studies of individual identification and population genetics of the mongoose.


Assuntos
Herpestidae/genética , Repetições de Microssatélites/genética , Animais , Feminino , Geografia , Ilhas , Japão , Masculino , Análise para Determinação do Sexo
7.
Ecol Lett ; 24(9): 1966-1975, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34176203

RESUMO

Personality traits, such as the propensity to cooperate, are often inherited from parents to offspring, but the pathway of inheritance is unclear. Traits could be inherited via genetic or parental effects, or culturally via social learning from role models. However, these pathways are difficult to disentangle in natural systems as parents are usually the source of all of these effects. Here, we exploit natural 'cross fostering' in wild banded mongooses to investigate the inheritance of cooperative behaviour. Our analysis of 800 adult helpers over 21 years showed low but significant genetic heritability of cooperative personalities in males but not females. Cross fostering revealed little evidence of cultural heritability: offspring reared by particularly cooperative helpers did not become more cooperative themselves. Our results demonstrate that cooperative personalities are not always highly heritable in wild, and that the basis of behavioural traits can vary within a species (here, by sex).


Assuntos
Herpestidae , Animais , Comportamento Cooperativo , Herpestidae/genética , Masculino , Linhagem , Personalidade , Fenótipo
8.
J Comp Neurol ; 529(1): 52-86, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32964417

RESUMO

This study provides an analysis of the cytoarchitecture, myeloarchitecture, and chemoarchitecture of the diencephalon (dorsal thalamus, ventral thalamus, and epithalamus) of the banded mongoose (Mungos mungo) and domestic ferret (Mustela putorius furo). Using architectural and immunohistochemical stains, we observe that the nuclear organization of the diencephalon is very similar in the two species, and similar to that reported in other carnivores, such as the domestic cat and dog. The same complement of putatively homologous nuclei were identified in both species, with only one variance, that being the presence of the perireticular nucleus in the domestic ferret, that was not observed in the banded mongoose. The chemoarchitecture was also mostly consistent between species, although there were a number of minor variations across a range of nuclei in the density of structures expressing the calcium-binding proteins parvalbumin, calbindin, and calretinin. Thus, despite almost 53 million years since these two species of carnivores shared a common ancestor, strong phylogenetic constraints appear to limit the potential for adaptive evolutionary plasticity within the carnivore order. Apart from the presence of the perireticular nucleus, the most notable difference between the species studied was the physical inversion of the dorsal lateral geniculate nucleus, as well as the lateral posterior and pulvinar nuclei in the domestic ferret compared to the banded mongoose and other carnivores, although this inversion appears to be a feature of the Mustelidae family. While no functional sequelae are suggested, this inversion is likely to result from the altricial birth of Mustelidae species.


Assuntos
Diencéfalo/anatomia & histologia , Furões/anatomia & histologia , Herpestidae/anatomia & histologia , Animais , Carnívoros/anatomia & histologia , Carnívoros/genética , Diencéfalo/citologia , Furões/genética , Herpestidae/genética , Masculino , Especificidade da Espécie
9.
J Comp Neurol ; 529(1): 8-27, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33016331

RESUMO

Employing cyto-, myelo-, and chemoarchitectural staining techniques, we analyzed the structure of the hippocampal formation in the banded mongoose and domestic ferret, species belonging to the two carnivoran superfamilies, which have had independent evolutionary trajectories for the past 55 million years. Our observations indicate that, despite the time since sharing a last common ancestor, these species show extensive similarities. The four major portions of the hippocampal formation (cornu Ammonis, dentate gyrus, subicular complex, and entorhinal cortex) were readily observed, contained the same internal subdivisions, and maintained the topological relationships of these subdivisions that could be considered typically mammalian. In addition, adult hippocampal neurogenesis was observed in both species, occurring at a rate similar to that observed in other mammals. Despite the overall similarities, several differences to each other, and to other mammalian species, were observed. We could not find evidence for the presence of the CA2 and CA4 fields of the cornu Ammonis region. In the banded mongoose the dentate gyrus appears to be comprised of up to seven lamina, through the sublamination of the molecular and granule cell layers, which is not observed in the domestic ferret. In addition, numerous subtle variations in chemoarchitecture between the two species were observed. These differences may contribute to an overall variation in the functionality of the hippocampal formation between the species, and in comparison to other mammalian species. These similarities and variations are important to understanding to what extent phylogenetic affinities and constraints affect potential adaptive evolutionary plasticity of the hippocampal formation.


Assuntos
Furões/anatomia & histologia , Herpestidae/anatomia & histologia , Hipocampo/anatomia & histologia , Animais , Carnívoros/anatomia & histologia , Carnívoros/genética , Furões/genética , Herpestidae/genética , Hipocampo/citologia , Masculino , Especificidade da Espécie
10.
J Comp Neurol ; 529(1): 28-51, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33009661

RESUMO

The current study provides an analysis of the cytoarchitecture, myeloarchitecture, and chemoarchitecture of the amygdaloid body of the banded mongoose (Mungos mungo) and domestic ferret (Mustela putorius furo). Using architectural and immunohistochemical stains, we observe that the organization of the nuclear and cortical portions of the amygdaloid complex is very similar in both species. The one major difference is the presence of a cortex-amygdala transition zone observed in the domestic ferret that is absent in the banded mongoose. In addition, the chemoarchitecture is, for the most part, quite similar in the two species, but several variances, such as differing densities of neurons expressing the calcium-binding proteins in specific nuclei are noted. Despite this, certain aspects of the chemoarchitecture, such as the cholinergic innervation of the magnocellular division of the basal nuclear cluster and the presence of doublecortin expressing neurons in the shell division of the accessory basal nuclear cluster, appear to be consistent features of the Eutherian mammal amygdala. The domestic ferret presented with an overall lower myelin density throughout the amygdaloid body than the banded mongoose, a feature that may reflect artificial selection in the process of domestication for increased juvenile-like behavior in the adult domestic ferret, such as a muted fear response. The shared, but temporally distant, ancestry of the banded mongoose and domestic ferret allows us to generate observations relevant to understanding the relative influence that phylogenetic constraints, adaptive evolutionary plasticity, and the domestication process may play in the organization and chemoarchitecture of the amygdaloid body.


Assuntos
Tonsila do Cerebelo/anatomia & histologia , Furões/anatomia & histologia , Herpestidae/anatomia & histologia , Tonsila do Cerebelo/citologia , Animais , Carnívoros/anatomia & histologia , Carnívoros/genética , Furões/genética , Herpestidae/genética , Masculino , Filogenia , Especificidade da Espécie
11.
Evolution ; 74(4): 740-748, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31989582

RESUMO

Sexual selection theory provides a framework for investigating the evolution of traits involved in attracting and competing for mates. Given the sexual function of such traits, studies generally focus on individual interactions (i.e., displays and contests) in explaining trait origin and persistence. We show that ecological factors can strongly influence the adaptive value of these traits, and changes to these factors can lead to rapid evolutionary change. We compared sexually selected traits in the small Indian mongoose (Urva auropunctata) between their sparsely populated native range and four tropical islands to which they were introduced within the last 150 years and where, due to a lack of interspecific competition and predation, they have become invasive and densely populated. Because of a likely increase in encounter rate, we predicted that selection on long-distance chemical advertisement by males would relax in the introduced range. Accordingly, male, but not female, anal pads (used in scent marking) decreased in size in relation to both time since introduction and population density, and their relationship to body size and condition weakened. Concurrently, as predicted by intensified sperm competition, testis size increased following introduction. The small Indian mongoose thus experienced an inversion in the relative contributions to fitness of two sexual traits, followed by their rapid evolution in line with ecological changes.


Assuntos
Comunicação Animal , Evolução Biológica , Herpestidae/fisiologia , Seleção Sexual , Animais , Havaí , Herpestidae/anatomia & histologia , Herpestidae/genética , Índia , Espécies Introduzidas , Jamaica , Maurício , Ilhas Virgens Americanas
12.
Philos Trans R Soc Lond B Biol Sci ; 374(1770): 20180117, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30966876

RESUMO

The phenotype of parents can have long-lasting effects on the development of offspring as well as on their behaviour, physiology and morphology as adults. In some cases, these changes may increase offspring fitness but, in others, they can elevate parental fitness at a cost to the fitness of their offspring. We show that in Kalahari meerkats ( Suricata suricatta), the circulating glucocorticoid (GC) hormones of pregnant females affect the growth and cooperative behaviour of their offspring. We performed a 3-year experiment in wild meerkats to test the hypothesis that GC-mediated maternal effects reduce the potential for offspring to reproduce directly and therefore cause them to exhibit more cooperative behaviour. Daughters (but not sons) born to mothers treated with cortisol during pregnancy grew more slowly early in life and exhibited significantly more of two types of cooperative behaviour (pup rearing and feeding) once they were adults compared to offspring from control mothers. They also had lower measures of GCs as they aged, which could explain the observed increases in cooperative behaviour. Because early life growth is a crucial determinant of fitness in female meerkats, our results indicate that GC-mediated maternal effects may reduce the fitness of offspring, but may elevate parental fitness as a consequence of increasing the cooperative behaviour of their daughters. This article is part of the theme issue 'Developing differences: early-life effects and evolutionary medicine'.


Assuntos
Comportamento Cooperativo , Glucocorticoides/metabolismo , Comportamento de Ajuda , Herpestidae/fisiologia , Animais , Variação Biológica Individual , Herpestidae/genética , Herança Materna , África do Sul
13.
Curr Biol ; 28(18): 2934-2939.e4, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30174185

RESUMO

In many cooperatively breeding animal societies, breeders outlive non-breeding subordinates, despite investing heavily in reproduction [1-3]. In eusocial insects, the extended lifespans of breeders arise from specialized slowed aging profiles [1], prompting suggestions that reproduction and dominance similarly defer aging in cooperatively breeding vertebrates, too [4-6]. Although lacking the permanent castes of eusocial insects, breeders of vertebrate societies could delay aging via phenotypic plasticity (similar rank-related changes occur in growth, neuroendocrinology, and behavior [7-10]), and such plastic deferment of aging may reveal novel targets for preventing aging-related diseases [11]. Here, we investigate whether breeding dominants exhibit extended longevity and delayed age-related physiological declines in wild cooperatively breeding meerkats. We show that dominants outlive subordinates but exhibit faster telomere attrition (a marker of cellular senescence and hallmark of aging [12]) and that in dominants (but not subordinates), rapid telomere attrition is associated with mortality. Our findings further suggest that, rather than resulting from specialized aging profiles, differences in longevity between dominants and subordinates are driven by subordinate dispersal forays, which become exponentially more frequent with age and increase subordinate mortality. These results highlight the need to critically examine the causes of rank-related longevity contrasts in other cooperatively breeding vertebrates, including social mole-rats, where they are currently attributed to specialized aging profiles in dominants [4].


Assuntos
Herpestidae/fisiologia , Longevidade/fisiologia , Predomínio Social , Encurtamento do Telômero/fisiologia , Animais , Feminino , Herpestidae/genética , Hierarquia Social , Masculino , Comportamento Sexual Animal
14.
Curr Biol ; 28(11): 1846-1850.e2, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29804813

RESUMO

Cultural inheritance, the transmission of socially learned information across generations, is a non-genetic, "second inheritance system" capable of shaping phenotypic variation in humans and many non-human animals [1-3]. Studies of wild animals show that conformity [4, 5] and biases toward copying particular individuals [6, 7] can result in the rapid spread of culturally transmitted behavioral traits and a consequent increase in behavioral homogeneity within groups and populations [8, 9]. These findings support classic models of cultural evolution [10, 11], which predict that many-to-one or one-to-many transmission erodes within-group variance in culturally inherited traits. However, classic theory [10, 11] also predicts that within-group heterogeneity is preserved when offspring each learn from an exclusive role model. We tested this prediction in a wild mammal, the banded mongoose (Mungos mungo), in which offspring are reared by specific adult carers that are not their parents, providing an opportunity to disentangle genetic and cultural inheritance of behavior. We show using stable isotope analysis that young mongooses inherit their adult foraging niche from cultural role models, not from their genetic parents. As predicted by theory, one-to-one cultural transmission prevented blending inheritance and allowed the stable coexistence of distinct behavioral traditions within the same social groups. Our results confirm that cultural inheritance via role models can promote rather than erode behavioral heterogeneity in natural populations.


Assuntos
Evolução Cultural , Hereditariedade , Herpestidae/genética , Herpestidae/psicologia , Animais , Aprendizagem , Comportamento Social , Uganda
15.
Mol Ecol ; 27(9): 2271-2288, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29603504

RESUMO

Inbreeding depression, the reduced fitness of offspring of closely related parents, is commonplace in both captive and wild populations and has important consequences for conservation and mating system evolution. However, because of the difficulty of collecting pedigree and life-history data from wild populations, relatively few studies have been able to compare inbreeding depression for traits at different points in the life cycle. Moreover, pedigrees give the expected proportion of the genome that is identical by descent (IBDg ) whereas in theory with enough molecular markers realized IBDg can be quantified directly. We therefore investigated inbreeding depression for multiple life-history traits in a wild population of banded mongooses using pedigree-based inbreeding coefficients (fped ) and standardized multilocus heterozygosity (sMLH) measured at 35-43 microsatellites. Within an information theoretic framework, we evaluated support for either fped or sMLH as inbreeding terms and used sequential regression to determine whether the residuals of sMLH on fped explain fitness variation above and beyond fped . We found no evidence of inbreeding depression for survival, either before or after nutritional independence. By contrast, inbreeding was negatively associated with two quality-related traits, yearling body mass and annual male reproductive success. Yearling body mass was associated with fped but not sMLH, while male annual reproductive success was best explained by both fped and residual sMLH. Thus, our study not only uncovers variation in the extent to which different traits show inbreeding depression, but also reveals trait-specific differences in the ability of pedigrees and molecular markers to explain fitness variation and suggests that for certain traits, genetic markers may capture variation in realized IBDg above and beyond the pedigree expectation.


Assuntos
Herpestidae/genética , Depressão por Endogamia , Animais , Conservação dos Recursos Naturais , Marcadores Genéticos , Genótipo , Herpestidae/fisiologia , Longevidade/genética , Repetições de Microssatélites , Linhagem
16.
Proc Biol Sci ; 284(1861)2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855370

RESUMO

Early-life adversity can affect health, survival and fitness later in life, and recent evidence suggests that telomere attrition may link early conditions with their delayed consequences. Here, we investigate the link between early-life competition and telomere length in wild meerkats. Our results show that, when multiple females breed concurrently, increases in the number of pups in the group are associated with shorter telomeres in pups. Given that pups from different litters compete for access to milk, we tested whether this effect is due to nutritional constraints on maternal milk production, by experimentally supplementing females' diets during gestation and lactation. While control pups facing high competition had shorter telomeres, the negative effects of pup number on telomere lengths were absent when maternal nutrition was experimentally improved. Shortened pup telomeres were associated with reduced survival to adulthood, suggesting that early-life competition for nutrition has detrimental fitness consequences that are reflected in telomere lengths. Dominant females commonly kill pups born to subordinates, thereby reducing competition and increasing growth rates of their own pups. Our work suggests that an additional benefit of infanticide may be that it also reduces telomere shortening caused by competition for resources, with associated benefits for offspring ageing profiles and longevity.


Assuntos
Envelhecimento , Herpestidae/genética , Longevidade , Encurtamento do Telômero , Telômero/ultraestrutura , Animais , Feminino , Aptidão Genética
17.
Chromosoma ; 125(4): 807-15, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26743516

RESUMO

In initial studies of the eutherian small Indian mongoose (Herpestes auropunctatus), the Y chromosome could not be identified in somatic cells. The male chromosome number is uniquely odd, 2n = 35, whereas that of females is 2n = 36. Previous reports indicated that this unique karyotype resulted from a translocation of the ancestral Y chromosome to an autosome. However, it has been difficult to identify the chromosomes that harbor the translocated Y chromosomal segment because it is an extremely small euchromatic region. Using a Southern blot analysis, we detected four conserved Y-linked genes, SRY, EIF2S3Y, KDM5D, and ZFY, in the male genome. We cloned homologues of these genes and determined their sequences, which showed high homology to genes in two carnivore species, cat and dog. To unambiguously identify the Y-bearing autosome, we performed immunostaining of pachytene spermatocytes using antibodies against SYCP3, γH2AX, and the centromere. We observed trivalent chromosomes, and the associations between the distal ends of the chromosomes were consistent with those of Y and X1 chromosomes. The centromere of the Y chromosome was located on the ancestral Y chromosomal segment. We mapped the complementary DNA (cDNA) clones of these genes to the male chromosomes using fluorescence in situ hybridization (FISH), and the linear localization of all genes was confirmed by two-colored FISH. These Y-linked genes were localized to the proximal region of the long arm of a single telomeric chromosome, and we successfully identified the chromosome harboring the ancestral Y chromosomal segment.


Assuntos
Genes Ligados ao Cromossomo Y/genética , Marcadores Genéticos/genética , Herpestidae/genética , Hibridização in Situ Fluorescente/veterinária , Cariótipo , Cromossomo Y/genética , Animais , Sequência de Bases , Gatos , Células Cultivadas , Centrômero/fisiologia , Clonagem Molecular , Cães , Histona Desmetilases/genética , Fatores de Transcrição Kruppel-Like/genética , Masculino , Análise de Sequência de DNA , Proteína da Região Y Determinante do Sexo/genética , Fatores de Transcrição/genética , Translocação Genética
18.
Mol Ecol ; 24(14): 3738-51, 2015 07.
Artigo em Inglês | MEDLINE | ID: mdl-26095171

RESUMO

Inbreeding and inbreeding avoidance are key factors in the evolution of animal societies, influencing dispersal and reproductive strategies which can affect relatedness structure and helping behaviours. In cooperative breeding systems, individuals typically avoid inbreeding through reproductive restraint and/or dispersing to breed outside their natal group. However, where groups contain multiple potential mates of varying relatedness, strategies of kin recognition and mate choice may be favoured. Here, we investigate male mate choice and female control of paternity in the banded mongoose (Mungos mungo), a cooperatively breeding mammal where both sexes are often philopatric and mating between relatives is known to occur. We find evidence suggestive of inbreeding depression in banded mongooses, indicating a benefit to avoiding breeding with relatives. Successfully breeding pairs were less related than expected under random mating, which appeared to be driven by both male choice and female control of paternity. Male banded mongooses actively guard females to gain access to mating opportunities, and this guarding behaviour is preferentially directed towards less closely related females. Guard-female relatedness did not affect the guard's probability of gaining reproductive success. However, where mate-guards are unsuccessful, they lose paternity to males that are less related to the females than themselves. Together, our results suggest that both sexes of banded mongoose use kin discrimination to avoid inbreeding. Although this strategy appears to be rare among cooperative breeders, it may be more prominent in species where relatedness to potential mates is variable, and/or where opportunities for dispersal and mating outside of the group are limited.


Assuntos
Herpestidae/genética , Endogamia , Preferência de Acasalamento Animal , Animais , Teorema de Bayes , Feminino , Aptidão Genética , Genótipo , Herpestidae/fisiologia , Masculino , Repetições de Microssatélites , Modelos Genéticos , Dados de Sequência Molecular , Análise de Sequência de DNA
19.
J Evol Biol ; 27(9): 1893-904, 2014 09.
Artigo em Inglês | MEDLINE | ID: mdl-24962704

RESUMO

Individual variation in growth is high in cooperative breeders and may reflect plastic divergence in developmental trajectories leading to breeding vs. helping phenotypes. However, the relative importance of additive genetic variance and developmental plasticity in shaping growth trajectories is largely unknown in cooperative vertebrates. This study exploits weekly sequences of body mass from birth to adulthood to investigate sources of variance in, and covariance between, early and later growth in wild meerkats (Suricata suricatta), a cooperative mongoose. Our results indicate that (i) the correlation between early growth (prior to nutritional independence) and adult mass is positive but weak, and there are frequent changes (compensatory growth) in post-independence growth trajectories; (ii) among parameters describing growth trajectories, those describing growth rate (prior to and at nutritional independence) show undetectable heritability while associated size parameters (mass at nutritional independence and asymptotic mass) are moderately heritable (0.09 ≤ h(2) < 0.3); and (iii) additive genetic effects, rather than early environmental effects, mediate the covariance between early growth and adult mass. These results reveal that meerkat growth trajectories remain plastic throughout development, rather than showing early and irreversible divergence, and that the weak effects of early growth on adult mass, an important determinant of breeding success, are partly genetic. In contrast to most cooperative invertebrates, the acquisition of breeding status is often determined after sexual maturity and strongly impacted by chance in many cooperative vertebrates, who may therefore retain the ability to adjust their morphology to environmental changes and social opportunities arising throughout their development, rather than specializing early.


Assuntos
Herpestidae/crescimento & desenvolvimento , Herpestidae/genética , Animais , Comportamento Animal , Peso Corporal/genética , Meio Ambiente , Feminino , Variação Genética , Masculino , Modelos Genéticos , Fenótipo , Característica Quantitativa Herdável , Reprodução , África do Sul
20.
Biol Rev Camb Philos Soc ; 89(1): 173-98, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23865895

RESUMO

The diversity of extant carnivores provides valuable opportunities for comparative research to illuminate general patterns of mammalian social evolution. Recent field studies on mongooses (Herpestidae), in particular, have generated detailed behavioural and demographic data allowing tests of assumptions and predictions of theories of social evolution. The first studies of the social systems of their closest relatives, the Malagasy Eupleridae, also have been initiated. The literature on mongooses was last reviewed over 25 years ago. In this review, we summarise the current state of knowledge on the social organisation, mating systems and social structure (especially competition and cooperation) of the two mongoose families. Our second aim is to evaluate the contributions of these studies to a better understanding of mammalian social evolution in general. Based on published reports or anecdotal information, we can classify 16 of the 34 species of Herpestidae as solitary and nine as group-living; there are insufficient data available for the remainder. There is a strong phylogenetic signal of sociality with permanent complex groups being limited to the genera Crossarchus, Helogale, Liberiictis, Mungos, and Suricata. Our review also indicates that studies of solitary and social mongooses have been conducted within different theoretical frameworks: whereas solitary species and transitions to gregariousness have been mainly investigated in relation to ecological determinants, the study of social patterns of highly social mongooses has instead been based on reproductive skew theory. In some group-living species, group size and composition were found to determine reproductive competition and cooperative breeding through group augmentation. Infanticide risk and inbreeding avoidance connect social organisation and social structure with reproductive tactics and life histories, but their specific impact on mongoose sociality is still difficult to evaluate. However, the level of reproductive skew in social mongooses is not only determined by the costs and benefits of suppressing each other's breeding attempts, but also influenced by resource abundance. Thus, dispersal, as a consequence of eviction, is also linked to the costs of co-breeding in the context of food competition. By linking these facts, we show that the socio-ecological model and reproductive skew theory share some determinants of social patterns. We also conclude that due to their long bio-geographical isolation and divergent selection pressures, future studies of the social systems of the Eupleridae will be of great value for the elucidation of general patterns in carnivore social evolution.


Assuntos
Comportamento Animal/fisiologia , Ecossistema , Herpestidae/fisiologia , Comportamento Social , Animais , Herpestidae/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...