Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
PLoS One ; 19(7): e0307100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39012858

RESUMO

The outbreak of clade 2.3.4.4b H5 highly pathogenic avian influenza (HPAI) in North America that started in 2021 has increased interest in applying vaccination as a strategy to help control and prevent the disease in poultry. Two commercially available vaccines based on the recombinant herpes virus of turkeys (rHVT) vector were tested against a recent North American clade 2.3.4.4b H5 HPAI virus isolate: A/turkey/Indiana/22-003707-003/2022 H5N1 in specific pathogen free white leghorn (WL) chickens and commercial broiler chickens. One rHVT-H5 vaccine encodes a hemagglutinin (HA) gene designed by the computationally optimized broadly reactive antigen method (COBRA-HVT vaccine). The other encodes an HA gene of a clade 2.2 virus (2.2-HVT vaccine). There was 100% survival of both chicken types COBRA-HVT vaccinated groups and in the 2.2-HVT vaccinated groups there was 94.8% and 90% survival of the WL and broilers respectively. Compared to the 2.2-HVT vaccinated groups, WL in the COBRA-HVT vaccinated group shed significantly lower mean viral titers by the cloacal route and broilers shed significantly lower titers by the oropharyngeal route than broilers. Virus titers detected in oral and cloacal swabs were otherwise similar among both vaccine groups and chicken types. To assess antibody-based tests to identify birds that have been infected after vaccination (DIVA-VI), sera collected after the challenge were tested with enzyme-linked lectin assay-neuraminidase inhibition (ELLA-NI) for N1 neuraminidase antibody detection and by commercial ELISA for detection of antibodies to the NP protein. As early as 7 days post challenge (DPC) 100% of the chickens were positive by ELLA-NI. ELISA was less sensitive with a maximum of 75% positive at 10DPC in broilers vaccinated with 2.2-HVT. Both vaccines provided protection from challenge to both types of chickens and ELLA-NI was sensitive at identifying antibodies to the challenge virus therefore should be evaluated further for DIVA-VI.


Assuntos
Galinhas , Virus da Influenza A Subtipo H5N1 , Vacinas contra Influenza , Influenza Aviária , Animais , Galinhas/virologia , Galinhas/imunologia , Influenza Aviária/prevenção & controle , Influenza Aviária/virologia , Influenza Aviária/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Virus da Influenza A Subtipo H5N1/genética , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , América do Norte , Vacinação , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Herpesvirus Meleagrídeo 1/imunologia , Herpesvirus Meleagrídeo 1/genética
2.
Avian Dis ; 68(2): 117-128, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38885053

RESUMO

Cytokines are co-administrated with vaccines or co-expressed in the vaccine virus genome to improve protective efficacy by stimulating immune responses. Using glycosylphosphatidylinositol (GPI) anchoring by attachment to the target cytokine, we constructed recombinant Marek's disease virus (MDV) vaccine strain 301B/1 (v301B/1-rtg-IL-15) that expresses chicken interleukin-15 (IL-15) as the membrane-bound form at the cell surface. We evaluated the vaccine efficacy of v301B/1-rtg-IL-15 given as a bivalent Marek's disease (MD) vaccine in combination with turkey herpesvirus (HVT) against a very virulent plus MDV strain 648A challenge. The efficacy was compared with that of conventional bivalent MD vaccine, as a mixture with HVT plus parental v301B/1 or v301B/1-IL-15, which expresses a natural form of IL-15. The membrane-bound IL-15 expression did not interfere with the virus growth of recombinant v301B/1-rtg-IL-15. However, the MD incidence in birds vaccinated with v301B/1-rtg-IL-15 was higher than that of birds given the conventional bivalent MD vaccine containing parental v301B/1 virus, although the v301B/1-rtg-IL-15 vaccinated group showed increased natural killer cell activation at day 5 postvaccination, the same day as challenge. Overall, the protection of v301B/1-rtg-IL-15 was not improved from that of v301B/1 against very virulent plus MDV challenge.


Eficacia de una vacuna contra el virus de la enfermedad de Marek cepa 301B/1 recombinante que expresa la interleucina-15 de pollo anclada a la membrana. Las citocinas se administran junto con vacunas o se co-expresan en el genoma del virus de la vacuna para mejorar la eficacia protectora mediante la estimulación de respuestas inmunitarias. Utilizando el anclaje de glicosilfosfatidilinositol (GPI) mediante unión a la citoquina objetivo, se construyó una cepa de vacuna recombinante del virus de la enfermedad de Marek (MDV) 301B/1 (v301B/1-rtg-IL-15) que expresa la interleucina-15 de pollo (IL-15) como la forma unida a la membrana en la superficie celular. Se evaluó la eficacia de la vacuna v301B/1-rtg-IL-15 administrada como vacuna bivalente en combinación con el herpesvirus del pavo (HVT) contra el desafío con un virus muy virulento cepa 648A de la enfermedad de Marek (MD). La eficacia se comparó con la de la vacuna bivalente convencional contra la enfermedad de Marek, como una mezcla con HVT más la cepa v301B/1 parental o con el virus recombinante v301B/1-IL-15, que expresa una forma natural de IL-15. La expresión de IL-15 unida a membrana no interfirió con el crecimiento del virus de v301B/1-rtg-IL-15 recombinante. Sin embargo, la incidencia de la enfermedad de Marek en aves vacunadas con v301B/1-rtg-IL-15 fue mayor que la de las aves que recibieron la vacuna de Marek bivalente convencional que contenía el virus v301B/1 parental, aunque el grupo vacunado con v301B/1-rtg-IL-15 mostró una mayor activación de las células asesinas naturales en el día 5 después de la vacunación, que fue el mismo día del desafío. En general, la protección por la vacuna v301B/1-rtg-IL-15 no mejoró con respecto a la conferida por v301B/1 contra un desafío muy virulento de la enfermedad de Marek.


Assuntos
Galinhas , Herpesvirus Galináceo 2 , Interleucina-15 , Vacinas contra Doença de Marek , Doença de Marek , Vacinas Sintéticas , Animais , Interleucina-15/genética , Interleucina-15/imunologia , Interleucina-15/metabolismo , Doença de Marek/prevenção & controle , Doença de Marek/imunologia , Vacinas contra Doença de Marek/imunologia , Vacinas contra Doença de Marek/genética , Vacinas Sintéticas/imunologia , Herpesvirus Galináceo 2/genética , Herpesvirus Galináceo 2/imunologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Herpesvirus Meleagrídeo 1/imunologia , Herpesvirus Meleagrídeo 1/genética , Herpesvirus Meleagrídeo 1/metabolismo
3.
PLoS Pathog ; 20(5): e1012261, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38805555

RESUMO

Marek's disease virus (MDV) vaccines were the first vaccines that protected against cancer. The avirulent turkey herpesvirus (HVT) was widely employed and protected billions of chickens from a deadly MDV infection. It is also among the most common vaccine vectors providing protection against a plethora of pathogens. HVT establishes latency in T-cells, allowing the vaccine virus to persist in the host for life. Intriguingly, the HVT genome contains telomeric repeat arrays (TMRs) at both ends; however, their role in the HVT life cycle remains elusive. We have previously shown that similar TMRs in the MDV genome facilitate its integration into host telomeres, which ensures efficient maintenance of the virus genome during latency and tumorigenesis. In this study, we investigated the role of the TMRs in HVT genome integration, latency, and reactivation in vitro and in vivo. Additionally, we examined HVT infection of feather follicles. We generated an HVT mutant lacking both TMRs (vΔTMR) that efficiently replicated in cell culture. We could demonstrate that wild type HVT integrates at the ends of chromosomes containing the telomeres in T-cells, while integration was severely impaired in the absence of the TMRs. To assess the role of TMRs in vivo, we infected one-day-old chickens with HVT or vΔTMR. vΔTMR loads were significantly reduced in the blood and hardly any virus was transported to the feather follicle epithelium where the virus is commonly shed. Strikingly, latency in the spleen and reactivation of the virus were severely impaired in the absence of the TMRs, indicating that the TMRs are crucial for the establishment of latency and reactivation of HVT. Our findings revealed that the TMRs facilitate integration of the HVT genome into host chromosomes, which ensures efficient persistence in the host, reactivation, and transport of the virus to the skin.


Assuntos
Galinhas , Doença de Marek , Telômero , Integração Viral , Latência Viral , Animais , Galinhas/virologia , Telômero/genética , Telômero/virologia , Doença de Marek/virologia , Doença de Marek/imunologia , Doença de Marek/prevenção & controle , Vetores Genéticos , Herpesvirus Meleagrídeo 1/genética , Herpesvirus Meleagrídeo 1/imunologia , Vacinas contra Doença de Marek/imunologia , Vacinas contra Doença de Marek/genética , Genoma Viral , Herpesvirus Galináceo 2/genética , Herpesvirus Galináceo 2/imunologia , Sequências Repetitivas de Ácido Nucleico , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/prevenção & controle
4.
Vaccine ; 42(15): 3410-3419, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38641498

RESUMO

The application of recombinant herpesvirus of turkey, expressing the H9 hemagglutinin gene from low pathogenic avian influenza virus (LPAIV) H9N2 and the avian orthoavulavirus-1 (AOAV-1) (commonly known as Newcastle Disease virus (NDV)) fusion protein (F) as an rHVT-H9-F vaccine, is an alternative to currently used classical vaccines. This study investigated H9- and ND-specific humoral and mucosal responses, H9-specific cell-mediated immunity, and protection conferred by the rHVT-H9-F vaccine in specific pathogen-free (SPF) chickens. Vaccination elicited systemic NDV F- and AIV H9-specific antibody response but also local antibodies in eye wash fluid and oropharyngeal swabs. The ex vivo H9-specific stimulation of splenic and pulmonary T cells in the vaccinated group demonstrated the ability of vaccination to induce systemic and local cellular responses. The clinical protection against a challenge using a LPAIV H9N2 strain of the G1 lineage isolated in Morocco in 2016 was associated with a shorter duration of shedding along with reduced viral genome load in the upper respiratory tract and reduced cloacal shedding compared to unvaccinated controls.


Assuntos
Anticorpos Antivirais , Galinhas , Vírus da Influenza A Subtipo H9N2 , Vacinas contra Influenza , Influenza Aviária , Eliminação de Partículas Virais , Animais , Vírus da Influenza A Subtipo H9N2/imunologia , Vírus da Influenza A Subtipo H9N2/genética , Galinhas/imunologia , Influenza Aviária/prevenção & controle , Influenza Aviária/imunologia , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Eliminação de Partículas Virais/imunologia , Organismos Livres de Patógenos Específicos , Vírus da Doença de Newcastle/imunologia , Vírus da Doença de Newcastle/genética , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Imunidade Celular , Herpesvirus Meleagrídeo 1/imunologia , Herpesvirus Meleagrídeo 1/genética , Vacinação/métodos , Imunidade Humoral , Vetores Genéticos/imunologia , Imunogenicidade da Vacina , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética
5.
Viruses ; 15(10)2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37896880

RESUMO

Infectious laryngotracheitis (ILT) is an economically important disease in chickens. We previously showed that an in ovo adjuvantation of recombinant herpesvirus of the turkey-Laryngotracheitis (rHVT-LT) vaccine with CpG-oligonucleotides (ODN) can boost vaccine-induced responses in one-day-old broiler chickens. Here, we evaluated the protective efficacy of in ovo administered rHVT-LT + CpG-ODN vaccination against a wild-type ILT virus (ILTV) challenge at 28 days of age and assessed splenic immune gene expression as well as cellular responses. A chicken-embryo-origin (CEO)-ILT vaccine administered in water at 14 days of age was also used as a comparative control for the protection assessment. The results showed that the rHVT-LT + CpG-ODN or the CEO vaccinations provided significant protection against the ILTV challenge and that the level of protection induced by both the vaccines was statistically similar. The protected birds had a significantly upregulated expression of interferon (IFN)γ or interleukin (IL)-12 cytokine genes. Furthermore, the chickens vaccinated with the rHVT-LT + CpG-ODN or CEO vaccine had a significantly higher frequency of γδ T cells and activated CD4+ or CD8+ T cells, compared to the unvaccinated-ILTV challenge control. Collectively, our findings suggest that CpG-ODN can be used as an effective adjuvant for rHVT-LT in ovo vaccination to induce protective immunity against ILT in broiler chickens.


Assuntos
Infecções por Herpesviridae , Herpesvirus Galináceo 1 , Doenças das Aves Domésticas , Vacinas Virais , Animais , Galinhas , Adjuvantes de Vacinas , Herpesvirus Galináceo 1/fisiologia , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/veterinária , Vacinação/veterinária , Vacinas Sintéticas , Herpesvirus Meleagrídeo 1/genética , Perus
6.
Vaccine ; 41(38): 5507-5517, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37537093

RESUMO

Vaccines for avian influenza (AI) can protect poultry against disease, mortality, and virus transmission. Numerous factors, including: vaccine platform, immunogenicity, and relatedness to the field strain, are known to be important to achieving optimal AI vaccine efficacy. To better understand how these factors contribute to vaccine protection, a systematic meta-analysis was conducted to evaluate efficacy data for vaccines in chickens challenged with highly pathogenic (HP) AI. Data from a total of 120 individual trials from 25 publications were selected and evaluated. Two vaccine criteria were evaluated for their effects on two metrics of protection. The vaccine criteria were: 1) the relatedness of the vaccine antigen and challenge strain in the hemagglutinin 1 domain (HA1) protein sequence; 2) vaccine-induced antibody titers to the challenge virus (VIAC). The metrics of protection were: A) survival of vaccinated chickens vs unvaccinated controls; and B) reduction in oral virus-shedding by vaccinated vs unvaccinated controls 2-4 days post challenge. Three vaccine platforms were evaluated: oil-adjuvanted inactivated whole AI virus, recombinant herpes virus of turkeys (rHVT) vectored, and a non-replicating alpha-virus vectored RNA particle (RP) vaccine. Higher VIAC correlated with greater reduction of virus-shed and vaccine efficacy by all vaccine platforms. Both higher HA1 relatedness and higher VIAC using challenge virus as antigen correlated with better survival by inactivated vaccines and rHVT-vectored vaccines. However, rHVT-vectored and RP based vaccines were more tolerant of variation in the HA1; the relatedness of the HA1 of the vaccine and challenge virus did not significantly correlate with survival with rHVT-vectored vaccines. Protection was achieved with the lowest aa similarity for which there was data, 90-93 % for rHVT vaccines and 88 % for the RP vaccine.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Vacinas contra Influenza , Influenza Aviária , Animais , Galinhas , Vacinas Sintéticas , Herpesvirus Meleagrídeo 1/genética
7.
Vaccine ; 41(18): 2893-2904, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37012117

RESUMO

Vaccines are an essential tool for the control of viral infections in domestic animals. We generated recombinant vector herpesvirus of turkeys (vHVT) vaccines expressing computationally optimized broadly reactive antigen (COBRA) H5 of avian influenza virus (AIV) alone (vHVT-AI) or in combination with virus protein 2 (VP2) of infectious bursal disease virus (IBDV) (vHVT-IBD-AI) or fusion (F) protein of Newcastle disease virus (NDV) (vHVT-ND-AI). In vaccinated chickens, all three vHVT vaccines provided 90-100% clinical protection against three divergent clades of high pathogenicity avian influenza viruses (HPAIVs), and significantly decreased number of birds and oral viral shedding titers at 2 days post-challenge compared to shams. Four weeks after vaccination, most vaccinated birds had H5 hemagglutination inhibition antibody titers, which significantly increased post-challenge. The vHVT-IBD-AI and vHVT-ND-AI vaccines provided 100% clinical protection against IBDVs and NDV, respectively. Our findings demonstrate that multivalent HVT vector vaccines were efficacious for simultaneous control of HPAIV and other viral infections.


Assuntos
Infecções por Birnaviridae , Herpesviridae , Vírus da Doença Infecciosa da Bursa , Vírus da Influenza A , Influenza Aviária , Doença de Newcastle , Doenças das Aves Domésticas , Vacinas Virais , Animais , Vírus da Doença de Newcastle/genética , Doença de Newcastle/prevenção & controle , Galinhas , Perus , Virulência , Vacinas Sintéticas/genética , Infecções por Birnaviridae/prevenção & controle , Infecções por Birnaviridae/veterinária , Herpesvirus Meleagrídeo 1/genética , Vacinas Combinadas , Doenças das Aves Domésticas/prevenção & controle
8.
Vaccine ; 41(15): 2514-2523, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36894394

RESUMO

In ovo vaccination with herpesvirus of turkey (HVT) hastens immunocompetence in chickens and the recommended dose (RD) of 6080 plaque-forming-units (PFU) offers the most optimal effects. In previous studies conducted in egg-type chickens, in ovo vaccination with HVT enhanced lymphoproliferation, wing-web thickness with phytohemagglutinin-L (PHA-L), and increased spleen and lung interferon-gamma(IFN-γ) andToll-like receptor 3 (TLR3) transcripts. Here, we evaluated the cellular mechanisms by which HVT-RD can hasten immunocompetence in one-day-old meat-type chickens, and also determined if HVT adjuvantation with a TLR3 agonist, polyinosinic-polycytidylic acid (poly(I:C)), could enhance vaccine-induced responses and provide dose-sparing effects. Compared to sham-inoculated chickens, HVT-RD significantly increased transcription of splenic TLR3 and IFN γ receptor 2 (R2), and lung IFN γ R2, while the splenic IL-13 transcription was found decreased. Additionally, these birds showed increased wing-web thickness following PHA-L inoculation. The thickness was due to an innate inflammatory cell population, CD3+ T cells, and edema. In another experiment, HVT-1/2 (3040 PFU) supplemented with 50 µg poly(I:C) [HVT-1/2 + poly(I:C)] was administered in ovo and immune responses were compared with those produced by HVT-RD, HVT-1/2, 50 µg poly(I:C), and sham-inoculated. Immunophenotyping of splenocytes showed HVT-RD induced a significantly higher frequency of CD4+, CD4+MHC-II+, CD8+CD44+, and CD4+CD28+ T cells compared to sham-inoculated chickens, and CD8+MHC-II+, CD4+CD8+, CD4+CD8+CD28+, and CD4+CD8+CD44+ T cells compared to all groups. Treatment groups, except HVT-1/2 + poly(I:C), had significantly higher frequencies of γδ T cells and all groups induced significantly higher frequencies of activated monocytes/macrophages, compared to sham-inoculated chickens. Poly(I:C)-induced dose-sparing effect was only observed in the frequency of activated monocytes/macrophages. No differences in the humoral responses were observed. Collectively, HVT-RD downregulated IL-13 transcripts (Th2 immune response) and had strong immunopotentiation effects on innate immune responses and the activation of T cells. However addition of poly(I:C) offered a minimal adjuvant/dose-sparing effect.


Assuntos
Galinhas , Doença de Marek , Animais , Poli I-C/farmacologia , Receptor 3 Toll-Like , Interleucina-13 , Antígenos CD28 , Herpesvirus Meleagrídeo 1 , Interferon gama , Vacinação/veterinária
9.
Viruses ; 14(11)2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36423104

RESUMO

Turkey herpesvirus (HVT) is widely used as an effective recombinant vaccine vector for expressing protective antigens of multiple avian pathogens from different loci of the HVT genome. These include the HVT029/031 (UL22-23) locus for the insertion of IBDV VP2 and the recently identified HVT005/006 locus as a novel site for expressing heterologous proteins. In order to compare the efficacy of recombinant vaccines with the HA gene at different sites, the growth curves and the HA expression levels of HVT-005/006-hCMV-HA, HVT-005/006-MLV-HA, and HVT-029/031-MLV-HA were first examined in vitro. While the growth kinetics of three recombinant viruses were not significantly different from those of parent HVT, higher expression of the HA gene was achieved from the HVT005/006 site than that from the HVT029/031 site. The efficacy of the three recombinant viruses against avian influenza H9N2 virus was also evaluated using one-day-old SPF chickens. Chickens immunized with HVT-005/006-MLV-HA or HVT-005/006-hCMV-HA displayed reduced virus shedding compared to HVT-029/031-MLV-HA vaccinated chickens. Moreover, the overall hemagglutination inhibition (HI) antibody titers of HVT-005/006-HA-vaccinated chickens were higher than that of HVT-029/031-HA-vaccinated chickens. However, HVT-005/006-MLV-HA and HVT-005/006-hCMV-HA did not result in a significant difference in the level of HA expression in vitro and provided the same protective efficacy (100%) at 5 days after challenge. In the current study, the results suggested that recombinant HVT005/006 vaccines caused better expression of HA than recombinant HVT029/031 vaccine, and that HVT-005/006-MLV-HA or HVT-005/006-hCMV-HA could be a candidate vaccine for the protection of chickens against H9N2 influenza.


Assuntos
Herpesvirus Galináceo 2 , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Herpesvirus Meleagrídeo 1 , Vírus da Influenza A Subtipo H9N2/genética , Galinhas , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vacinas Sintéticas/genética
10.
Viruses ; 14(4)2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458523

RESUMO

In this study, we developed a new recombinant virus rHVT-F using a Turkey herpesvirus (HVT) vector, expressing the fusion (F) protein of the genotype XII Newcastle disease virus (NDV) circulating in Peru. We evaluated the viral shedding and efficacy against the NDV genotype XII challenge in specific pathogen-free (SPF) chickens. The F protein expression cassette was inserted in the unique long (UL) UL45-UL46 intergenic locus of the HVT genome by utilizing a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 gene-editing technology via a non-homologous end joining (NHEJ) repair pathway. The rHVT-F virus, which expressed the F protein stably in vitro and in vivo, showed similar growth kinetics to the wild-type HVT (wtHVT) virus. The F protein expression of the rHVT-F virus was detected by an indirect immunofluorescence assay (IFA), Western blotting, and a flow cytometry assay. The presence of an NDV-specific IgY antibody was detected in serum samples by an enzyme-linked immunosorbent assay (ELISA) in SPF chickens vaccinated with the rHVT-F virus. In the challenge experiment, the rHVT-F vaccine fully protects a high, and significantly reduced, virus shedding in oral at 5 days post-challenge (dpc). In conclusion, this new rHVT-F vaccine candidate is capable of fully protecting SPF chickens against the genotype XII challenge.


Assuntos
Herpesvirus Galináceo 2 , Doença de Newcastle , Doenças das Aves Domésticas , Vacinas Virais , Animais , Anticorpos Antivirais , Sistemas CRISPR-Cas , Galinhas , Genótipo , Herpesvirus Meleagrídeo 1/genética , Integrases , Doença de Newcastle/prevenção & controle , Vírus da Doença de Newcastle/genética , Vacinas Sintéticas/genética , Vacinas Virais/genética
11.
Vet Microbiol ; 268: 109429, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35421830

RESUMO

Herpesvirus of turkeys (HVT), a commonly used live vaccine against Marek's disease, has proven to be a highly effective viral vector for the generation of recombinant vaccines that deliver protective antigens of other avian pathogens. In this study, a vaccine designated rHVT-NDV-opti F was constructed by inserting a codon-optimized genotype Ⅶ Newcastle disease virus (NDV) fusion (F) gene into the US2 gene of HVT Fc126 vaccine strain using CRISPR/Cas9 gene-editing technology coupled with two single-guide RNAs (sgRNA). The F protein expression of rHVT-NDV-opti F was detectable by western blotting and an indirect immunofluorescence assay. Compared with wildtype HVT, rHVT-NDV-opti F has similar plaque morphology but lower in vitro replication capacity. The F protein of rHVT-NDV-opti F is genetically stable and predominantly expressed in the cell plasma. Immunization of one-day-old specific pathogen-free chickens with 4000 plaque-forming units of rHVT-NDV-opti F induced NDV-specific antibodies and provided 70% protection against a homologous NDV challenge, effectively reducing virus shedding, clinical signs, tissue viral load, and mortality. These results suggest that rHVT-NDV-opti F could be a potential vaccine candidate against Newcastle disease in chickens and that HDR-CRISPR/Cas9 combined with dual sgRNA can rapidly and efficiently construct HVT-vectored vaccine candidates.


Assuntos
Herpesvirus Galináceo 2 , Vacinas contra Herpesvirus , Doença de Newcastle , Doenças das Aves Domésticas , Vacinas Virais , Animais , Anticorpos Antivirais , Galinhas , Genótipo , Herpesvirus Meleagrídeo 1/genética , Herpesvirus Galináceo 2/genética , Vírus da Doença de Newcastle/genética , Doenças das Aves Domésticas/prevenção & controle , Proteínas Recombinantes de Fusão/genética , Perus , Vacinas Sintéticas
12.
Avian Pathol ; 50(6): 540-556, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34612113

RESUMO

The types of immune cells that populate the trachea after ILTV vaccination and infection have not been assessed. The objective of this study was to quantify CD4+, CD8α+, CD8ß+, TCRγδ+, and MRC1LB+ cells that infiltrate the trachea after vaccination with chicken embryo origin (CEO), tissue culture origin (TCO), and recombinant herpesvirus of turkey-laryngotracheitis (rHVT-LT) vaccines, and after challenge of vaccinated and non-vaccinated chickens with a virulent ILTV strain. Eye-drop vaccination with CEO, or TCO, or in ovo vaccination with rHVT-LT did not alter the number of CD4+, CD8α+, CD8ß+, TCRγδ+, and MRC1LB+ cells in the trachea. After challenge, the CEO vaccinated group of chickens showed swift clearance of the challenge virus, the mucosa epithelium of the trachea remained intact, and a limited number of CD4+, CD8α+, and CD8ß+ cells were detected in the upper trachea mucosa. The TCO and rHVT-LT vaccinated groups of chickens showed narrow viral clearance with moderate disruption of the trachea epithelial integrity, and a significant increase in CD4+, CD8α+, CD8ß+, and TCRγδ+ cells infiltrated the upper trachea mucosa. Non-vaccinated challenged chickens showed high levels of viral replication, the epithelial organization of the upper trachea mucosa was heavily disrupted, and the predominant infiltrates were CD4+, TCRγδ+, and MRC1LB+ cells. Hence, the very robust protection provided by CEO vaccination was characterized by minimal immune cell infiltration to the trachea mucosa. In contrast, partial protection induced by the TCO and rHVT-LT vaccines requires a prolonged period of T cell expansion to overcome the established infection in the trachea mucosa.


Assuntos
Herpesvirus Galináceo 1 , Vacinas , Animais , Embrião de Galinha , Galinhas/imunologia , Herpesvirus Galináceo 1/imunologia , Herpesvirus Meleagrídeo 1 , Mucosa , Traqueia , Vacinação/veterinária
13.
J Vet Med Sci ; 83(10): 1582-1589, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34470973

RESUMO

Marek's disease virus (MDV) is an oncogenic alphaherpesvirus that causes immunosuppression, T-cell lymphomas, and neuropathic disease in infected chickens. To protect chickens from MDV infection, an avirulent live vaccine of turkey herpesvirus (HVT) has been successfully used for chickens worldwide. Similar to MDV for natural infection in both chickens and turkeys, HVT also infects lung in the early stage of infection and then lymphocytes from lymphoid organs. Virus replication requires cell-to-cell contact for spreading and semi-productive lytic replication in T and B cells. Then, cell-free infectious virions matured in the feather follicle epithelium (FFE) are released and spread through the feather from infected turkeys or chickens. To understand the lifecycle of HVT in inoculated chickens via the subcutaneous route, we investigate the replication kinetics and tissue organ tropism of HVT in chickens by a subcutaneous inoculation which is a major route of MDV vaccination. We show that the progeny virus matured in lymphocytes from the thymus, spleen, and lung as early as 2 days post-infection (dpi) and bursa of Fabricius at 4 dpi, whereas viral maturation in the FFE was observed at 6 dpi. Furthermore, semi-quantitative reverse transcription-PCR experiments to measure viral mRNA expression levels revealed that the higher expression levels of the late genes were associated with viral maturation in the FFE. These data that tropism and replication kinetics of HVT could be similar to those of MDV through the intake pathway of natural infection from respiratory tracts.


Assuntos
Plumas , Herpesvirus Meleagrídeo 1 , Animais , Galinhas , Epitélio , Cinética
14.
Viruses ; 13(8)2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34452285

RESUMO

Marek's disease (MD) in chickens is caused by Gallid alphaherpesvirus 2, better known as MD herpesvirus (MDV). Current vaccines do not block interindividual spread from chicken-to-chicken, therefore, understanding MDV interindividual spread provides important information for the development of potential therapies to protect against MD, while also providing a natural host to study herpesvirus dissemination. It has long been thought that glycoprotein C (gC) of alphaherpesviruses evolved with their host based on their ability to bind and inhibit complement in a species-selective manner. Here, we tested the functional importance of gC during interindividual spread and host specificity using the natural model system of MDV in chickens through classical compensation experiments. By exchanging MDV gC with another chicken alphaherpesvirus (Gallid alphaherpesvirus 1 or infectious laryngotracheitis virus; ILTV) gC, we determined that ILTV gC could not compensate for MDV gC during interindividual spread. In contrast, exchanging turkey herpesvirus (Meleagrid alphaherpesvirus 1 or HVT) gC could compensate for chicken MDV gC. Both ILTV and MDV are Gallid alphaherpesviruses; however, ILTV is a member of the Iltovirus genus, while MDV is classified as a Mardivirus along with HVT. These results suggest that gC is functionally conserved based on the virus genera (Mardivirus vs. Iltovirus) and not the host (Gallid vs. Meleagrid).


Assuntos
Antígenos Virais/metabolismo , Galinhas/virologia , Herpesvirus Galináceo 2/fisiologia , Doença de Marek/transmissão , Doença de Marek/virologia , Proteínas do Envelope Viral/metabolismo , Animais , Antígenos Virais/genética , Células Cultivadas , Herpesvirus Galináceo 1/classificação , Herpesvirus Galináceo 1/genética , Herpesvirus Meleagrídeo 1/classificação , Herpesvirus Meleagrídeo 1/genética , Herpesvirus Galináceo 2/classificação , Herpesvirus Galináceo 2/genética , Proteínas Recombinantes/metabolismo , Perus/virologia , Proteínas do Envelope Viral/genética , Replicação Viral
15.
Avian Dis ; 65(3): 335-339, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34427404

RESUMO

Marek's disease virus (MDV) is an oncogenic alphaherpesvirus that causes immunosuppression, T cell lymphomas, and neuropathic disease in infected chickens. To protect chickens from MDV infection, an avirulent live vaccine of turkey herpesvirus (HVT) has been successfully used in chickens worldwide. Many vaccine manufacturers have used chicken embryo fibroblast (CEF) cells to produce the HVT vaccine. Generally, it has been suggested that HVT is a highly cell-associated herpesvirus that spread via cell-to-cell contact, but it is unclear how HVT is transmitted from infected cells to uninfected target cells. Here, we show via immunofluorescence analysis that nanotubes containing the actin cytoskeleton and HVT antigens from infected CEF cells were observed to contact neighboring cells. When the infected cells were treated with inhibitors for actin polymerization or depolymerization, the formation and extension of the nanotubes from infected cells were greatly inhibited and the intercellular contact was abolished, leading to a drastic reduction in plaque formation and viral titers of the cell-associated virus. Our data indicate that cell-to-cell contacts via nanotubes composed of actin filaments are essential for efficient viral spreading and replication. This finding might contribute to the further improvement of efficient HVT vaccine production.


Nota de investigación­Transmisión de célula a célula del virus herpes del pavo en células embrionarias de pollo a través de tunelización por nanotubos. El virus de la enfermedad de Marek (MDV) es un alfaherpesvirus oncogénico que causa inmunosupresión, linfomas de células T y enfermedad neuropática en pollos infectados. Para proteger a los pollos de la infección por MDV, se ha utilizado con éxito una vacuna viva avirulenta del virus herpes del pavo (HVT) en pollos de todo el mundo. Muchos fabricantes de vacunas han utilizado células de fibroblasto de embrión de pollo (CEF) para producir la vacuna HVT. En general, se ha sugerido que el HVT es un virus herpes muy asociado a células que se propaga mediante el contacto entre células, pero no está claro cómo se transmite el virus HVT a partir de las células infectadas a las células blanco no infectadas. Aquí, se demuestra mediante análisis de inmunofluorescencia que nanotubos que contienen el citoesqueleto de actina y los antígenos del HVT dentro las células de fibroblasto de embrión de pollo infectadas son lo que contactan con las células vecinas. Cuando las células infectadas se trataron con inhibidores para la polimerización o despolimerización de actina, la formación y extensión de los nanotubos de las células infectadas se inhibió en gran medida y se abolió el contacto intercelular, lo que llevó a una reducción drástica en la formación de placa y de los títulos virales de virus asociados a células. Estos datos indican que los contactos entre células a través de nanotubos compuestos de filamentos de actina son esenciales para la propagación y replicación viral eficiente. Este hallazgo podría contribuir a la mejora adicional de la producción eficiente de vacunas HVT.


Assuntos
Herpesvirus Galináceo 2 , Doença de Marek , Nanotubos , Animais , Estruturas da Membrana Celular , Embrião de Galinha , Galinhas , Herpesvirus Meleagrídeo 1 , Doença de Marek/prevenção & controle
16.
Vaccine ; 38(31): 4837-4845, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32505441

RESUMO

In ovo vaccination with herpesvirus of turkey (HVT) or recombinant HVT (rHVT) is commonly used in meat-type chickens. Previous studies showed that in ovo vaccination with HVT enhances innate, cellular, and humoral immune responses in egg-type chicken embryos. This study evaluated if in ovo vaccination with HVT hastens immunocompetence of commercial meat-type chickens and optimized vaccination variables (dose and strain of HVT) to accelerate immunocompetence. A conventional HVT vaccine was given at recommended dose (RD), HVT-RD = 6080 plaque forming units (PFU), double-dose (2x), half-dose (1/2), or quarter-dose (1/4). Two rHVTs were given at RD: rHVT-A = 7380 PFU, rHVT-B = 8993 PFU. Most, if not all, treatments enhanced splenic lymphoproliferation with Concanavalin A and increased the percentage of granulocytes at day of age. Dose had an effect and HVT-RD was ideal. An increase of wing-web thickness after exposure to phytohemagglutinin-L was only detected after vaccination with HVT-RD. Furthermore, compared to sham-inoculated chickens, chickens in the HVT-RD had an increased percentage of CD3+ T cells and CD4+ T-helper cells, and increased expression of major histocompatibility complex (MHC)-II on most cell subsets (CD45+ cells, non-T leukocytes, T cells and the CD8+ and T cell receptor γδ T-cell subsets). Other treatments (HVT-1/2 and rHVT-B) share some of these features but differences were not as remarkable as in the HVT-RD group. Expression of MHC-I was reduced, compared to sham-inoculated chickens, in most of the cell phenotypes evaluated in the HVT-RD, HVT-2x and rHVT-A groups, while no effect was observed in other treatments. The effect of in ovo HVT on humoral immune responses (antibody responses to keyhole limpet hemocyanin and to a live infectious bronchitis/Newcastle disease vaccine) was minimal. Our study demonstrates in ovo vaccination with HVT in meat-type chickens can accelerate innate and adaptive immunity and we could optimize such effect by modifying the vaccine dose.


Assuntos
Doença de Marek , Doenças das Aves Domésticas , Vacinas Virais , Animais , Embrião de Galinha , Galinhas , Herpesvirus Meleagrídeo 1 , Carne , Doenças das Aves Domésticas/prevenção & controle , Vacinação
17.
J Gen Virol ; 101(5): 542-552, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32134378

RESUMO

Marek's disease virus (MDV), a causative agent of Marek's disease, has evolved its virulence partly because the current control strategies fail to provide sterilizing immunity. Gallid alphaherpesvirus 3 (GaHV-3) and turkey herpesvirus have been developed as bivalent vaccines to improve upon the level of protection elicited by single formulations. Since the in vitro passage of vaccines can result in attenuation, a GaHV-3 strain 301B/1 was cloned as a bacterial artificial chromosome (BAC) by inserting the mini-F replicon into the virus genome. A fully infectious virus, v301B-BAC, was reconstituted from the 301B/1 BAC clone and had similar growth kinetics comparable to that of the parental 301B/1 virus with strong reactivity against anti-301B/1 chicken sera. Protective efficacies of v301B-BAC, parental 301B/1, and SB-1 vaccine were evaluated against a very virulent MDV Md5 challenge. Clinical signs were significantly lower in the v301B-BAC vaccinated groups (24-25 %), parental 301B/1 (29 %) compare to that of non-vaccinated control (100%) and the removal of BAC sequences from v301B-BAC genome further reduced this to 17 %. The protective indices of v301B-BACs (75-76 %) were comparable with those of both the 301B/1 and the SB-1 vaccine (71%). Removal of the mini-F replicon resulted in a reconstituted virus with a protective index of 83 %. The shedding of challenge virus was notably lower in the v301B-BAC, and v301B-delBAC vaccinated groups. Overall, the protective efficacy of the 301B-BAC-derived vaccine virus against a very virulent MDV challenge was comparable to that of the parental 301B/1 virus as well as the SB-1 vaccine virus.


Assuntos
Herpesvirus Galináceo 2/imunologia , Doença de Marek/imunologia , Doenças das Aves Domésticas/imunologia , Virulência/imunologia , Animais , Galinhas/virologia , Cromossomos Artificiais Bacterianos/genética , Clonagem Molecular , Vetores Genéticos/genética , Genoma Viral/imunologia , Herpesvirus Meleagrídeo 1/imunologia , Doença de Marek/virologia , Doenças das Aves Domésticas/virologia , Vacinas de DNA/genética , Vacinas Virais/genética , Replicação Viral/imunologia
18.
Avian Dis ; 63(4): 670-680, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31865682

RESUMO

Marek's disease (MD) is a complex pathology of chickens caused by MD virus (MDV) 1 and is observed as paralysis, immune suppression, neurologic signs, and the rapid formation of T-cell lymphomas. The incidence of MD in commercial broilers is largely controlled via vaccination, either in ovo or at hatch with live attenuated vaccines, i.e., turkey herpesvirus (HVT) or a bivalent combination of HVT with the MDV 2 strain (SB1). To further extend the protection conferred by bivalent HVT/SB-1, recombinant HVTs encoding transgenes of other avian viruses have similarly been used for in ovo administration. Despite decades of use, the specific mechanisms associated with vaccine-induced protection remain obscure. Additionally, the mechanistic basis for vaccine synergism conferred by bivalent HVT/SB-1, compared with HVT or SB-1 administered alone, is largely unknown. In the present study, we report on temporal changes in innate and acquired immune-patterning gene expression by using ex vivo splenocyte infection and in ovo vaccination models. We report that in the ex vivo splenocyte infection model, by 72 hr postinfection, vaccines induced IFN and IFN-stimulated gene expression, with lesser proinflammatory cytokine induction. For several genes (TLR3, IFN-γ, OASL, Mx1, NOS2A, and IL-1ß), the effects on gene expression were additive for HVT, SB1, and HVT/SB1 infection. We observed similar patterns of induction in in ovo-vaccinated commercial broiler embryos and chicks with HVT/SB-1 or recombinant HVT-based bivalent combination (HVT-LT/SB-1). Furthermore, HVT/SB-1 or HVT-LT/SB-1 in ovo vaccination appeared to hasten immune maturation, with expression patterns suggesting accelerated migration of T and natural killer cells into the spleen. Finally, HVT/SB-1 vaccination resulted in a coordinated induction of IL-12p40 and downregulation of suppressors of cytokine signaling 1 and 3, indicative of classical macrophage 1 and T-helper 1 patterning.


Análisis transcripcionales de patrones inmunes innatos y adquiridos inducidos por cepas vacunales del virus de la enfermedad de Marek: virus herpes del pavo (HVT), virus de Marek 2 (cepa SB1) y vacunas bivalentes (HVT/SB1 y HVT-LT/SB1). La enfermedad de Marek (MD) es una patología compleja de los pollos causada por el virus de Marek (MDV) 1 y se observa como parálisis, depresión inmune, signos neurológicos y la formación rápida de linfomas de células T. La incidencia de la enfermedad de Marek en pollos de engorde comerciales se controla en gran medida a través de la vacunación, ya sea in ovo o al momento de la eclosión con vacunas vivas atenuadas, por ejemplo, herpesvirus de pavo (HVT) o una combinación bivalente de HVT con la cepa SB1. Para ampliar aún más la protección conferida por la vacuna bivalente HVT/SB-1, los HVT recombinantes que codifican transgenes de otros virus aviares se han utilizado de forma similar para la administración in ovo. A pesar de décadas de uso, los mecanismos específicos asociados con la protección inducida por la vacuna siguen sin ser esclarecidos completamente. Además, el mecanismo para la sinergia de la vacuna conferida por la vacuna bivalente HVT/SB-1, en comparación con la administración de la cepa HVT o de la cepa SB-1 por sí solas, es en gran medida desconocida. En el presente estudio, se informa sobre los cambios temporales en la expresión genética de patrones inmunes innatos y adquiridos mediante la infección de esplenocitos ex vivo y en modelos de vacunación in ovo. Se reporta que en el modelo de infección de esplenocitos ex vivo, por 72 horas después de la infección, las vacunas indujeron IFN y la expresión de genes estimulada por IFN, con menor inducción de citocinas proinflamatorias. Para varios genes (TLR3, IFNc, OASL, Mx1, NOS2A e IL-1ß), los efectos sobre la expresión de genes fueron aditivos para la infección por HVT, SB1 y HVT/SB1. Se Observaron patrones de inducción similares en embriones de pollo y pollos de engorde comerciales vacunados in ovo con HVT/SB-1 o con la combinación bivalente recombinante basada en HVT (HVT-LT/SB-1). Además, la vacunación in ovo con HVT/SB-1 o HVT-LT/SB-1 parecen acelerar la maduración inmune, con patrones de expresión que sugieren una migración acelerada de células T y células asesinas naturales en el bazo. Finalmente, la vacuna HVT/SB-1 dio como resultado una inducción coordinada de IL-12p40 y una regulación a la baja de supresores de las señales de citocinas 1 y 3, indicativas de los patrones clásicos de macrófagos 1 y células cooperadoras tipo 1.


Assuntos
Imunidade Adaptativa/genética , Herpesvirus Meleagrídeo 1/imunologia , Herpesvirus Galináceo 3/imunologia , Imunidade Inata/genética , Vacinas contra Doença de Marek/imunologia , Transcrição Gênica , Vacinas Virais/imunologia , Animais , Embrião de Galinha , Fibroblastos , Doença de Marek/imunologia
19.
Vaccine ; 37(43): 6397-6404, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31515142

RESUMO

BACKGROUND: Marek's disease (MD) is a lymphoproliferative disease of chickens caused by Marek's disease virus (MDV), an oncogenic α-herpesvirus. Since 1970, MD has been controlled by widespread vaccination; however, more effective MD vaccines are needed to counter more virulent MDV strains. The bivalent vaccine combination of SB-1 and herpesvirus of turkey (HVT) strain FC126 has been widely used. Nonetheless, the mechanism(s) underlying this synergistic effect has not been investigated. METHODS: Three experiments were conducted where SB-1 or HVT were administered as monovalent or bivalent vaccines to newly hatched chickens, then challenged five days later with MDV. In Experiment 1, levels of MDV replication in PBMCs were measured over time, and tumor incidence and vaccinal protection determined. In Experiment 2, MDV and vaccine strains replication levels in lymphoid organs were measured at 1, 5, 10, and 14 days post-challenge (DPC). In Experiment 3, to verify that the bursa was necessary for HVT protection, a subset of chicks were bursectomized and these birds plus controls were similarly vaccinated and challenged, and the levels of vaccinal protection determined. RESULTS: The efficacy of bivalent SB-1 + HVT surpasses that of either SB-1 or HVT monovalent vaccines in controlling the level of pathogenic MDV in PBMCs until the end of the study, and this correlated with the ability to inhibit tumor formation. SB-1 replication in the spleen increased from 1 to 14 DPC, while HVT replicated only in the bursa at 1 DPC. The bursa was necessary for immune protection induced by HVT vaccine. CONCLUSION: Synergy of SB-1 and HVT vaccines is due to additive influences of the individual vaccines acting at different times and target organs. And the bursa is vital for HVT to replicate and induce immune protection.


Assuntos
Linfoma/veterinária , Vacinas contra Doença de Marek/imunologia , Doenças das Aves Domésticas/prevenção & controle , Vacinação/veterinária , Vacinas Virais/imunologia , Animais , Galinhas/imunologia , Sinergismo Farmacológico , Herpesvirus Meleagrídeo 1/imunologia , Herpesvirus Galináceo 2/imunologia , Herpesvirus Galináceo 2/fisiologia , Leucócitos Mononucleares/virologia , Tecido Linfoide/virologia , Linfoma/prevenção & controle , Linfoma/virologia , Vacinas contra Doença de Marek/administração & dosagem , Cavidade Peritoneal/virologia , Doenças das Aves Domésticas/virologia , Vacinas Virais/administração & dosagem , Replicação Viral
20.
Viruses ; 11(9)2019 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-31450681

RESUMO

Newcastle disease (ND) is responsible for significant economic losses in the poultry industry. The disease is caused by virulent strains of Avian avulavirus 1 (AAvV-1), a species within the family Paramyxoviridae. We developed a recombinant construct based on the herpesvirus of turkeys (HVT) as a vector expressing two genes: F and HN (HVT-NDV-F-HN) derived from the AAvV-1 genotype VI ("pigeon variant" of AAvV-1). This recombinant viral vaccine candidate was used to subcutaneously immunize one group of specific pathogen-free (SPF) chickens and two groups of broiler chickens (20 one-day-old birds/group). Humoral immune response was evaluated by hemagglutination-inhibition test and enzyme-linked immunosorbent assay (ELISA). The efficacy of the immunization was assessed in two separate challenge studies performed at 6 weeks of age with the use of virulent AAvV-1 strains representing heterologous genotypes IV and VII. The developed vaccine candidate elicited complete protection in SPF chickens since none of the birds became sick or died during the 2-week observation period. In the broiler groups, 90% and 100% clinical protection were achieved after challenges with AAvV-1 of IV and VII genotypes, respectively. We found no obvious relationship between antibody levels and protection assessed in broilers in the challenge study. The developed recombinant HVT-NDV-F-HN construct containing genes from a genotype VI AAvV-1 offers promising results as a potential vaccine candidate against ND in chickens.


Assuntos
Proteína HN/imunologia , Imunização/veterinária , Vírus da Doença de Newcastle , Vacinas Sintéticas/imunologia , Proteínas Virais de Fusão/imunologia , Animais , Antígenos Virais/biossíntese , Antígenos Virais/genética , Galinhas/virologia , Proteção Cruzada , Genes Virais , Proteína HN/biossíntese , Proteína HN/genética , Testes de Inibição da Hemaglutinação , Herpesvirus Meleagrídeo 1/genética , Herpesvirus Meleagrídeo 1/imunologia , Herpesvirus Meleagrídeo 1/metabolismo , Imunidade Heteróloga , Doença de Newcastle/imunologia , Doença de Newcastle/prevenção & controle , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/imunologia , Doenças das Aves Domésticas/virologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Vacinas Sintéticas/virologia , Proteínas Virais de Fusão/biossíntese , Proteínas Virais de Fusão/genética , Vacinas Virais/biossíntese , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...