Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
Biosci Biotechnol Biochem ; 85(8): 1830-1838, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34021568

RESUMO

Information about the inulosucrase of nonlactic acid bacteria is scarce. We found a gene encoding inulosucrase (inuBK) in the genome of the Gram-positive bacterium Alkalihalobacillus krulwichiae JCM 11691. The inuBK open reading frame encoded a protein comprising 456 amino acids. We expressed His-tagged InuBK in culture medium using a Brevibacillus system. The optimal pH and temperature of purified InuBK were 7.0-9.0 and 50-55 °C, respectively. The findings of high-performance anion-exchange chromatography, nuclear magnetic resonance spectroscopy, and high-performance size-exclusion chromatography with multiangle laser light scattering showed that the polysaccharide produced by InuBK was an inulin with a molecular weight of 3806, a polydispersity index (PI) of 1.047, and fructosyl chain lengths with 3-27 degrees of polymerization. The size of InuBK was smaller than commercial inulins, and the PI of the inulin that it produced was lower.


Assuntos
Bacillaceae/enzimologia , Hexosiltransferases/metabolismo , Bacillaceae/genética , Cromatografia Líquida de Alta Pressão/métodos , Clonagem Molecular , Meios de Cultura , Genes Bacterianos , Hexosiltransferases/genética , Hexosiltransferases/isolamento & purificação , Inulina/biossíntese , Espectroscopia de Ressonância Magnética/métodos , Peso Molecular , Filogenia , Temperatura
2.
Nat Commun ; 12(1): 2363, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888690

RESUMO

Cell-free gene expression (CFE) systems from crude cellular extracts have attracted much attention for biomanufacturing and synthetic biology. However, activating membrane-dependent functionality of cell-derived vesicles in bacterial CFE systems has been limited. Here, we address this limitation by characterizing native membrane vesicles in Escherichia coli-based CFE extracts and describing methods to enrich vesicles with heterologous, membrane-bound machinery. As a model, we focus on bacterial glycoengineering. We first use multiple, orthogonal techniques to characterize vesicles and show how extract processing methods can be used to increase concentrations of membrane vesicles in CFE systems. Then, we show that extracts enriched in vesicle number also display enhanced concentrations of heterologous membrane protein cargo. Finally, we apply our methods to enrich membrane-bound oligosaccharyltransferases and lipid-linked oligosaccharides for improving cell-free N-linked and O-linked glycoprotein synthesis. We anticipate that these methods will facilitate on-demand glycoprotein production and enable new CFE systems with membrane-associated activities.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/citologia , Glicoproteínas/biossíntese , Hexosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Biossíntese de Proteínas , Membrana Celular/genética , Membrana Celular/metabolismo , Micropartículas Derivadas de Células/genética , Cromatografia Líquida de Alta Pressão/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Glicoproteínas/isolamento & purificação , Hexosiltransferases/genética , Hexosiltransferases/isolamento & purificação , Espectrometria de Massas/métodos , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Oligossacarídeos/metabolismo , Engenharia de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Protein Expr Purif ; 167: 105549, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31805395

RESUMO

Fructooligosaccharides (FOS) have widely used for the manufacture of low-calorie and functional foods, because they can inhibit intestinal pathogenic microorganism growth and increase the absorption of Ca2+ and Mg2+. In this study, the novel fructosyltransferase (FTase) from Aspergillus oryzae strain S719 was successfully purified and characterized. The specific activity of the final purified material was 4200 mg-1 with purification ratio of 66 times and yield of 26%. The molecular weight of FTase of A. oryzae S719 was around 95 kDa by SDS-PAGE, which was identified as a type of FTase by Mass Spectrometry (MS). The purified FTase had optimum temperature and pH of 55 °C and 6.0, respectively. The FTase showed to be stable with more than 80% of its original activity at room temperature after 12 h and maintaining activity above 90% at pH 4.0-11.0. The Km and kcat values of the FTase were 310 mmol L-1 and 2.0 × 103 min-1, respectively. The FTase was activated by 5 mmol L-1 Mg2+ and 10 mmol L-1 Na+ (relative activity of 116 and 114%, respectively), indicating that the enzyme was Mg2+ and Na+ dependent. About 64% of FOS was obtained by the purified FTase under 500 g L-1 sucrose within 4 h of reaction time, which was the shortest reaction time to be reported regarding the purified enzyme production of FOS. Together, these results indicated that the FTase of A. oryzae S719 is an excellent candidate for the industrial production of FOS.


Assuntos
Aspergillus oryzae/enzimologia , Hexosiltransferases , Oligossacarídeos/metabolismo , Indústria Alimentícia , Hexosiltransferases/biossíntese , Hexosiltransferases/química , Hexosiltransferases/isolamento & purificação
4.
Appl Microbiol Biotechnol ; 103(19): 7953-7969, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31407037

RESUMO

Two sustainable and cost-effective cascade enzymatic systems were developed to regenerate uridine diphosphate (UDP)-α-D-glucose and UDP-ß-L-rhamnose from sucrose. The systems were coupled with the UDP generating glycosylation reactions of UDP sugar-dependent glycosyltransferase (UGT) enzymes mediated reactions. As a result, the UDP generated as a by-product of the GT-mediated reactions was recycled. In the first system, YjiC, a UGT from Bacillus licheniformis DSM 13, was used for transferring glucose from UDP-α-D-glucose to naringenin, in which AtSUS1 from Arabidopsis thaliana was used to synthesize UDP-α-D-glucose and fructose as a by-product from sucrose. In the second system, flavonol 7-O-rhamnosyltransferase (AtUGT89C1) from A. thaliana was used to transfer rhamnose from UDP-ß-L-rhamnose to quercetin, in which AtSUS1 along with UDP-ß-L-rhamnose synthase (AtRHM1), also from A. thaliana, were used to produce UDP-ß-L-rhamnose from the same starter sucrose. The established UDP recycling system for the production of naringenin glucosides was engineered and optimized for several reaction parameters that included temperature, metal ions, NDPs, pH, substrate ratio, and enzymes ratio, to develop a highly feasible system for large-scale production of different derivatives of naringenin and other natural products glucosides, using inexpensive starting materials. The developed system showed the conversion of about 37 mM of naringenin into three different glucosides, namely naringenin, 7-O-ß-D-glucoside, naringenin, 4'-O-ß-D-glucoside, and naringenin, 4',7-O-ß-D-diglucoside. The UDP recycling (RCmax) was 20.10 for naringenin glucosides. Similarly, the conversion of quercetin to quercetin 7-O-α-L-rhamnoside reached a RCmax value of 10.0.


Assuntos
Flavanonas/metabolismo , Glucosídeos/metabolismo , Glucuronosiltransferase/metabolismo , Hexosiltransferases/metabolismo , Quercetina/metabolismo , Sacarose/metabolismo , Arabidopsis/enzimologia , Bacillus licheniformis/enzimologia , Biocatálise , Glucuronosiltransferase/isolamento & purificação , Hexosiltransferases/isolamento & purificação
5.
J Basic Microbiol ; 59(10): 1004-1015, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31407369

RESUMO

Screening of 18 bacterial honey isolates revealed that all the isolates were levansucrase producers. The most potent isolate that achieved the highest activity (45.66 U/ml) was identified as Bacillus subtilis NRC based on morphological examination and 16S rRNA. The results recorded the necessity of starch (5 g/L), baker's yeast (12.5 g/L), and AlCl3 (5 mM) in improvement of the enzyme productivity. The Bacillus subtilis levansucrase was eluted as a single protein in one purification step. The enzyme molecular weight was (14 kDa). It showed its optimum activity at 45°C and could retain 60% of its activity after incubation at 50°C for 2 h. Its optimum activity was obtained at pH 8.2 and the enzyme showed great pH stability in both acidic and alkaline ranges. Unlike, most levansucrases all tested metals had an adverse effect in enzyme activity. The enzyme had antioxidant activities and were characterized as spherical micro- and nanoparticles by transmission electron microscopy. The effect of growth conditions and medium composition in levan structure and its fibrinolytic activity was evaluated.


Assuntos
Bacillus subtilis/metabolismo , Frutanos/metabolismo , Hexosiltransferases/química , Hexosiltransferases/metabolismo , Aminoácidos , Antioxidantes/metabolismo , Bacillus subtilis/citologia , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Carboidratos , Meios de Cultura , Estabilidade Enzimática , Fibrinolíticos/metabolismo , Hexosiltransferases/isolamento & purificação , Hexosiltransferases/ultraestrutura , Mel/microbiologia , Concentração de Íons de Hidrogênio , Peso Molecular , RNA Ribossômico 16S/genética , Sais/metabolismo , Temperatura
6.
ScientificWorldJournal ; 2019: 6956202, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30728756

RESUMO

ß-fructofuranosidase (invertase) and ß-D-fructosyltransferase (FTase) are enzymes used in industrial processes to hydrolyze sucrose aiming to produce inverted sugar syrup or fructooligosaccharides. In this work, a black Aspergillus sp. PC-4 was selected among six filamentous fungi isolated from canned peach syrup which were initially screened for invertase production. Cultivations with pure carbon sources showed that invertase and FTase were produced from glucose and sucrose, but high levels were also obtained from raffinose and inulin. Pineapple crown was the best complex carbon source for invertase (6.71 U/mL after 3 days of cultivation) and FTase production (14.60 U/mL after 5 days of cultivation). Yeast extract and ammonium chloride nitrogen sources provided higher production of invertase (6.80 U/mL and 6.30 U/mL, respectively), whereas ammonium nitrate and soybean protein were the best nitrogen sources for FTase production (24.00 U/mL and 24.90 U/mL, respectively). Fermentation parameters for invertase using yeast extract were Y P/S = 536.85 U/g and P P = 1.49 U/g/h. FTase production showed values of Y P/S = 2,627.93 U/g and P P = 4.4 U/h using soybean protein. The screening for best culture conditions showed an increase of invertase production values by 5.10-fold after 96 h cultivation compared to initial experiments (fungi bioprospection), while FTase production increased by 14.60-fold (44.40 U/mL) after 168 h cultivation. A. carbonarius PC-4 is a new promising strain for invertase and FTase production from low cost carbon sources, whose synthesized enzymes are suitable for the production of inverted sugar, fructose syrups, and fructooligosaccharides.


Assuntos
Aspergillus/enzimologia , Alimentos em Conserva/microbiologia , Proteínas Fúngicas/metabolismo , Hexosiltransferases/metabolismo , beta-Frutofuranosidase/metabolismo , Aspergillus/efeitos dos fármacos , Carbono/metabolismo , Carbono/farmacologia , Meios de Cultura/química , Meios de Cultura/metabolismo , Meios de Cultura/farmacologia , Fermentação , Proteínas Fúngicas/isolamento & purificação , Hexosiltransferases/isolamento & purificação , Xarope de Milho Rico em Frutose , Microbiologia Industrial/métodos , Nitrogênio/metabolismo , Nitrogênio/farmacologia , Prunus persica/química , Prunus persica/microbiologia , beta-Frutofuranosidase/isolamento & purificação
7.
Protein Expr Purif ; 156: 44-49, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30597216

RESUMO

The uridine diphosphate glycosyltransferase (UGT) plays the central role in glycosylation of small molecules by transferring sugars to various acceptors including bioactive natural products in plants. UGT89C1 from Arabidopsis thaliana is a novel UGT, a rhamnosyltransferase, specifically recognizes UDP-l-rhamnose as donor. To provide an insight into the sugar specificity for UDP-l-rhamnose and interactions between UGT89C1 and its substrates, the UGT89C1 was expressed in Escherichia coli and purified toward biochemical and structural studies. Enzyme activity assay was performed, and the recombinant UGT89C1 recognized UDP-l-rhamnose and rhamnosylated kaempferol. Crystals of AtUGT89C1 were obtained, they diffracted to 2.7 Šresolution and belonged to space group I41. AtUGT89C1 was also co-crystallized with UDP. Interestingly, two crystal forms were obtained in the same crystallization condition, including the previous I41 crystal form, and the new crystal form that diffracted to 3.0 Šresolution and belonged to space group P21.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Arabidopsis/enzimologia , Hexosiltransferases/genética , Hexosiltransferases/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Cristalografia por Raios X , Escherichia coli/enzimologia , Hexosiltransferases/química , Hexosiltransferases/metabolismo , Quempferóis/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Açúcares de Uridina Difosfato/metabolismo
8.
Biosci Biotechnol Biochem ; 82(10): 1790-1802, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29972345

RESUMO

Rutin, a 3-rutinosyl quercetin, is a representative flavonoid distributed in many plant species, and is highlighted for its therapeutic potential. In this study, we purified uridine diphosphate-rhamnose: quercetin 3-O-glucoside 6″-O-rhamnosyltransferase and isolated the corresponding cDNA (FeF3G6″RhaT) from seedlings of common buckwheat (Fagopyrum esculentum). The recombinant FeF3G6″RhaT enzyme expressed in Escherichia coli exhibited 6″-O-rhamnosylation activity against flavonol 3-O-glucoside and flavonol 3-O-galactoside as substrates, but showed only faint activity against flavonoid 7-O-glucosides. Tobacco cells expressing FeF3G6″RhaT converted the administered quercetin into rutin, suggesting that FeF3G6″RhaT can function as a rhamnosyltransferase in planta. Quantitative PCR analysis on several organs of common buckwheat revealed that accumulation of FeF3G6″RhaT began during the early developmental stages of rutin-accumulating organs, such as flowers, leaves, and cotyledons. These results suggest that FeF3G6″RhaT is involved in rutin biosynthesis in common buckwheat.


Assuntos
Fagopyrum/metabolismo , Hexosiltransferases/metabolismo , Rutina/biossíntese , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Fagopyrum/enzimologia , Hexosiltransferases/genética , Hexosiltransferases/isolamento & purificação , Fenóis/metabolismo , Reação em Cadeia da Polimerase , Plântula/enzimologia , Análise de Sequência de RNA , Especificidade por Substrato
9.
Int J Biol Macromol ; 119: 232-239, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30031821

RESUMO

This study is a new trial aimed to solve levansucrase high cost and levan associated problems during the purification process. Also, kinetic and thermodynamic study was done to compare between the partial pure (PP) and purified forms (PF). Within this context, Aspergillus awamori EM66 levansucrase was produced constitutively (5.44 U.mL-1) using rice straw as the sole medium component. The enzyme was partially purified and was eluted as single protein after two purification steps. Its molecular weight was determined to be 44.5 KDa. The optimum temperature recorded 40 °C for both enzyme forms. While, the purification process lowering the enzyme pH from 5.2 to 4.0. The NaCl concentrations (0.5-3.0 M) pointed to the halophilic nature of the enzyme. The PP form retained about 76% of its original activity after 1 h at 55 °C while the other retained about 57% after 45 min. at the same temperature. The kinetic parameters Km and Vmax concluded that the PF was more efficient than the PP. The thermodynamic parameters such as Ea, Ed, T1/2, D-value, also, ∆G*, ∆H* and ∆ S* for activation recorded that the PP had higher stability than the PF.


Assuntos
Aspergillus/enzimologia , Hexosiltransferases/química , Termodinâmica , Ativação Enzimática , Estabilidade Enzimática , Hexosiltransferases/isolamento & purificação , Concentração de Íons de Hidrogênio , Cinética , Concentração Osmolar , Temperatura
10.
Appl Biochem Biotechnol ; 186(2): 292-305, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29589279

RESUMO

Lactosucrose is a kind of trisaccharide that functions as a significant prebiotic in the maintenance of gastrointestinal homeostasis for human. In this study, a levansucrase from Brenneria goodwinii was further used for the lactosucrose production. The recombinant levansucrase showed efficiency in the lactosucrose production by transfructosylation from sucrose and lactose, and no other oligosaccharide or polysaccharide was detected in the reaction mixture. The transfructosylation product by this recombinant enzyme was structurally determined to be lactosucrose by FT-IR and NMR. The production condition was optimized as pH at 6.0, temperature at 35 °C, 5 U mL-1 enzyme, 180 g L-1 sucrose, and 180 g L-1 lactose. Under the optimal condition, the enzyme could approximately produce 100 g L-1 lactosucrose when the reaction reached equilibrium. The recombinant levansucrase could effectively and exclusively catalyze the formation of lactosucrose, which might expand the enzymatic choice for further preparation of lactosucrose.


Assuntos
Enterobacteriaceae/enzimologia , Hexosiltransferases/metabolismo , Trissacarídeos/biossíntese , Catálise , Cromatografia Líquida de Alta Pressão , Escherichia coli/genética , Hexosiltransferases/genética , Hexosiltransferases/isolamento & purificação , Temperatura Alta , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Trissacarídeos/metabolismo
11.
Plant J ; 94(1): 131-145, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29385647

RESUMO

The oligosaccharyltransferase (OT) complex catalyzes N-glycosylation of nascent secretory polypeptides in the lumen of the endoplasmic reticulum. Despite their importance, little is known about the structure and function of plant OT complexes, mainly due to lack of efficient recombinant protein production systems suitable for studies on large plant protein complexes. Here, we purified Arabidopsis OT complexes using the tandem affinity-tagged OT subunit STAUROSPORINE AND TEMPERATURE SENSITIVE3a (STT3a) expressed by an Arabidopsis protein super-expression platform. Mass-spectrometry analysis of the purified complexes identified three essential OT subunits, OLIGOSACCHARYLTRANSFERASE1 (OST1), HAPLESS6 (HAP6), DEFECTIVE GLYCOSYLATION1 (DGL1), and a number of ribosomal subunits. Transmission-electron microscopy showed that STT3a becomes incorporated into OT-ribosome super-complexes formed in vivo, demonstrating that this expression/purification platform is suitable for analysis of large protein complexes. Pairwise in planta interaction analyses of individual OT subunits demonstrated that all subunits identified in animal OT complexes are conserved in Arabidopsis and physically interact with STT3a. Genetic analysis of newly established OT subunit mutants for OST1 and DEFENDER AGAINST APOTOTIC DEATH (DAD) family genes revealed that OST1 and DAD1/2 subunits are essential for the plant life cycle. However, mutations in these individual isoforms produced much milder growth/underglycosylation phenotypes than previously reported for mutations in DGL1, OST3/6 and STT3a.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Hexosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Regulação da Expressão Gênica de Plantas , Hexosiltransferases/genética , Hexosiltransferases/isolamento & purificação , Espectrometria de Massas , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Microscopia Eletrônica de Transmissão , Ribossomos/enzimologia , Ribossomos/metabolismo , Purificação por Afinidade em Tandem
12.
Int J Biol Macromol ; 109: 1209-1218, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29169948

RESUMO

Inulin is composed of fructose residues connected by ß-(2, 1) glycosidic linkages with many promising physiochemical and physiological properties. In this study, an inulin-producing inulosucrase gene from Lactobacillus gasseri DSM 20604 was cloned, expressed and purified. SDS-PAGE and gel filtration found that the recombinant inulosucrase is a monomeric protein with a molecular weight of 63KDa. The optimal pH for its sucrose hydrolysis and transfructosylation activities was pH 5.5. The optimal temperatures were measured to be 45, 25, and 35°C for sucrose hydrolysis, transfructosylation, and total activity, respectively. Biosynthesis studies showed that the optimal enzyme dosage was 4.5U/g sucrose. Higher sucrose concentrations immensely contributed to inulin biosynthesis; the inulin yield reached its maximum after 1.5h of reaction. Structural analyses of the polysaccharide produced by the recombinant enzyme from sucrose revealed that it is an inulin-type fructan with a molecular weight of 5.858×106Da.


Assuntos
Hexosiltransferases/química , Hexosiltransferases/metabolismo , Inulina/biossíntese , Inulina/química , Lactobacillus gasseri/enzimologia , Sacarose/química , Sacarose/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Ativação Enzimática , Estabilidade Enzimática , Expressão Gênica , Hexosiltransferases/genética , Hexosiltransferases/isolamento & purificação , Concentração de Íons de Hidrogênio , Lactobacillus gasseri/genética , Espectroscopia de Ressonância Magnética , Peso Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
13.
Carbohydr Polym ; 179: 350-359, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29111061

RESUMO

Fructooligosaccharides (FOS) and inulin, composed of ß-2-1 linked fructose units, have a broad range of industrial applications. They are known to have various beneficial health effects and therefore have broad application potential in nutrition. For (modified) inulin also for non-food purposes more applications are arising. Examples are carboxymethylated inulin as anti-scalant and carboymlated inulin as emulsifiers. Various plants synthesize FOS and/or inulin type of fructans. However, isolating of FOS and inulin from plants is challenging due to for instance varying chains length. There is an increasing demand for FOS and inulin oligosaccharides and alternative procedures for their synthesis are attractive. We identified and characterized two fructosyltransferases from Bacillus agaradhaerens WDG185. FosA, a ß-fructofuranosidase, synthesises short chain fructooligosaccharides (GF2-GF4) at high sucrose concentration, whereas InuO, an inulosucrase, synthesises a broad range of inulooligosaccharides (GF2-GF24) from sucrose, very similar to plant derived inulin. FosA and InuO showed activity over a broad pH range from 6 to 10 and optimal temperature at 60°C. Calcium ions and EDTA were found to have no effect on the activity of both enzymes. Kinetic analysis showed that only at relatively low substrate concentrations both enzymes showed Michaelis-Menten type of kinetics for total and transglycosylation activity. Both enzymes showed increased transglycosylation upon increasing substrate concentrations. These are the first examples of the molecular and biochemical characterization of a ß-fructofuranosidase (FosA) and an inulosucrase enzyme (InuO) and its product from a Bacillus agaradhaerens strain.


Assuntos
Bacillus/enzimologia , Hexosiltransferases/química , Hexosiltransferases/isolamento & purificação , Inulina/biossíntese , beta-Frutofuranosidase/biossíntese , Bacillus/genética , Cálcio/química , Ácido Edético/química , Frutose/metabolismo , Glucose/metabolismo , Glicosilação , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Oligossacarídeos/metabolismo , Análise de Sequência de Proteína , Sacarose/metabolismo , Temperatura
14.
Microbiology (Reading) ; 163(7): 1030-1041, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28714842

RESUMO

Polyfructans are synthesized from sucrose by plants (mostly inulin) and by both Gram-negative and Gram-positive bacteria (mostly levan). In the phylum Actinobacteria only levan synthesis by Actinomyces species has been reported. We have identified a putative fructansucrase gene (hugO) in Streptomyces viridochromogenes DSM40736 (Tü494). HugO was heterologously expressed and biochemically characterized. HPSEC-MALLS and 2D-1H-13C nuclear magnetic resonance (NMR) spectroscopy analysis showed that the fructan polymer produced in vitro has an Molecular Weight of 2.5*107 Da and is an inulin that is mainly composed of (ß2-1)-linked fructose units. This is the first report of a fructansucrase from Streptomyces and an inulosucrase from Actinobacteria. Database searches showed that fructansucrases clearly occur more widely in streptomycetes. Analysis of the active site of HugO and other actinobacterial Gram-positive fructansucrases revealed that their +1 substrate-binding sites are conserved, but are most similar to those in Gram-negative fructansucrases. HugO also resembles Gram-negative fructansucrases in not requiring calcium ions for activity. The origin and properties of HugO and other actinobacterial fructansucrases thus clearly differ from those of previously characterized Gram-positive fructansucrases.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Clonagem Molecular , Hexosiltransferases/química , Hexosiltransferases/genética , Streptomyces/enzimologia , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Frutanos/metabolismo , Hexosiltransferases/isolamento & purificação , Hexosiltransferases/metabolismo , Inulina/metabolismo , Peso Molecular , Fases de Leitura Aberta , Streptomyces/química , Streptomyces/genética , Streptomyces/metabolismo , Especificidade por Substrato
15.
J Sci Food Agric ; 97(1): 43-49, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27417332

RESUMO

BACKGROUND: Raffinose, a functional trisaccharide of α-d-galactopyranosyl-(1 → 6)-α-d-glucopyranosyl-(1 → 2)-ß-d-fructofuranoside, is a prebiotic that shows promise for use as a food ingredient. RESULTS: In this study, the production of raffinose from melibiose and sucrose was studied using whole recombinant Escherichia coli cells harboring the levansucrase from Clostridium arbusti SL206. The reaction conditions were optimized for raffinose synthesis. The optimal pH, temperature and washed cell concentration were pH 6.5 (sodium phosphate buffer, 50 mmol L-1 ), 55 °C and 3% (w/v), respectively. High substrate concentrations, which led to low water activity and thus reduced levansucrase hydrolysis activity, strongly favored the production of raffinose through the fructosyl transfer reaction. Additionally, high concentrations of excess acceptor and donor glycosides favored raffinose production. When 30% (w/v) sucrose and 30% (w/v) melibiose were catalyzed using 3% (w/v) whole cells at pH 6.5 (sodium phosphate buffer, 50 mmol L-1 ) and 55 °C, the highest raffinose yield was 222 g L-1 after a 6 h reaction. The conversion ratio from each substrate to raffinose was 50%. CONCLUSION: Raffinose could be effectively produced with melibiose as an acceptor and with sucrose as a fructosyl donor by whole recombinant E. coli cells harboring C. arbusti levansucrase. The yield from E. coli was significantly higher than those of the previously reported Bacillus subtilis levansucrase and fungal α-galactosidases. © 2016 Society of Chemical Industry.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridium/enzimologia , Hexosiltransferases/metabolismo , Rafinose/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Frutose/metabolismo , Hexosiltransferases/química , Hexosiltransferases/genética , Hexosiltransferases/isolamento & purificação , Melibiose/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Sacarose/metabolismo
16.
Appl Biochem Biotechnol ; 179(3): 497-513, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26857855

RESUMO

Although fructosyltransferases from Aspergillus aculeatus have received a considerable interest for the prebiotics industry, their amino acid sequences and structural features remain unknown. This study sequenced and characterized a fructosyltransferase from A. aculeatus (AcFT) isolated by heat treatment of Pectinex Ultra SP-L. The AcFT enzyme showed two isoforms, low-glycosylated AcFT1 and high-glycosylated AcFT2 forms, with similar optimum activity at 60 °C. The purified heat-resistant AcFT1 and AcFT2 isoforms produced identical patterns of fructooligosaccharides (FOS; kestose, nystose and fructosylnystose) with a notable transfructosylation capability (~90 % transferase/hydrolase ratio). In contrast, the pI and optimum pH values exhibited discrete differences, attributable to their glycosylation pattern. Partial protein sequencing showed that AcFT enzyme corresponds to Aspac1_37092, a putative 654-residue fructosyltransferase encoded in the genome of A. aculeatus ATCC16872. A homology model of AcFT also revealed the typical fold common to members of the glycoside hydrolase family 32 (GH32), with an N-terminal five-blade ß-propeller domain enclosing catalytic residues D60, D191, and E292, linked to a C-terminal ß-sandwich domain. To our knowledge, this is the first report describing the amino acid sequence and structural features of a heat-resistant FOS-forming enzyme from A. aculeatus, providing insights into its potential applications in the prebiotics industry.


Assuntos
Aspergillus/enzimologia , Hexosiltransferases/química , Oligossacarídeos/biossíntese , Sequência de Aminoácidos , Aspergillus/química , Sequência de Bases , Hexosiltransferases/genética , Hexosiltransferases/isolamento & purificação , Cinética , Oligossacarídeos/química , Prebióticos , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
17.
Phytother Res ; 29(6): 933-43, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25858861

RESUMO

Tribulus terrestris L. was evaluated for its cardioprotective property against myocardial ischemia in a cell line model. Initially, methanolic extract was prepared and subjected to sequential extraction with various solvents. The extract with high phenolic content (T. terrestris L. ethyl acetate extract-TTME) was further characterized for its chemical constituents and taken forward for evaluation against cardiac ischemia. HPLC analysis revealed the presence of phenolic compounds like caffeic acid (12.41 ± 0.22 mg g(-1)), chlorogenic acid (0.52 ± 0.06 mg g(-1)) and 4-hydroxybenzoic acid (0.60 ± 0.08 mg g(-1)). H9c2 cells were pretreated with TTME (10, 25, 50 and 100 µg/ml) for 24 h before the induction of ischemia. Then ischemia was induced by exposing cells to ischemia buffer, in a hypoxic chamber, maintained at 0.1% O2, 95% N2 and 5% CO2, for 1 h. A significant (p ≤ 0.05) increase in reactive oxygen species generation (56%), superoxide production (18%), loss of plasma membrane integrity, dissipation of transmembrane potential, permeability transition pore opening and apoptosis had been observed during ischemia. However, pretreatment with TTME was found to significantly (p ≤ 0.05) attenuate the alterations caused by ischemia. The overall results of this study partially reveal the scientific basis of the use of T. terrestris L. in the traditional system of medicine for heart diseases.


Assuntos
Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Tribulus/química , Animais , Apoptose/efeitos dos fármacos , Cardiotônicos/farmacologia , Hipóxia Celular , Linhagem Celular , Dano ao DNA , Hexosiltransferases/isolamento & purificação , Potencial da Membrana Mitocondrial , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Fenóis/isolamento & purificação , Fenóis/farmacologia , Proteínas de Plantas/isolamento & purificação , Ratos , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
18.
Biotechnol Appl Biochem ; 62(6): 815-22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25524717

RESUMO

An intracellular levansucrase from Bacillus methylotrophicus SK 21.002 was isolated, purified, and characterized. The final specific levansucrase activity was 135.40 U/mg protein with an 11.78-fold enrichment and a 9.28% recovery rate. The molecular weight of the enzyme was approximately 60,000 Da as evaluated by gel filtration and SDS-PAGE. Both the maximum transfructosylation and hydrolytic activities were observed at pH 6.5. The enzyme exhibited optimum transfructosylation activity at 40 °C, whereas the optimum temperature of hydrolytic activity was 45 °C. Cu(2+), Fe(2+), Zn(2+), and Ni(2+) inhibited both the transfructosylation and hydrolytic activities up to 100%, whereas Mn(2+) inhibited only hydrolytic activity. Ca(2+) and Mg(2+) stimulated both transfructosylation and hydrolytic activities. The chemical modifiers (n-bromosuccinimide and phenylmethanesulfonyl fluoride) strongly inhibited hydrolytic and transfructosylation activity of the levansucrase. The Km and Vmax values of the purified levansucrase were 117.2 mM and 33.23 µmol/mg·Min, respectively. When the fructose concentration was below 0.2 M, higher fructose concentrations promoted the transfructosylation and inhibited the hydrolytic activity.


Assuntos
Bacillus/citologia , Hexosiltransferases/isolamento & purificação , Hexosiltransferases/metabolismo , Espaço Intracelular/enzimologia , Animais , Bacillus/enzimologia , Inibidores Enzimáticos/farmacologia , Estabilidade Enzimática , Frutose/metabolismo , Hexosiltransferases/antagonistas & inibidores , Hexosiltransferases/química , Concentração de Íons de Hidrogênio , Hidrólise , Metais/farmacologia , Peso Molecular , Especificidade por Substrato , Temperatura
19.
PLoS One ; 9(6): e100541, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24941127

RESUMO

BACKGROUND: Salivaricins are bacteriocins produced by Streptococcus salivarius, some strains of which can have significant probiotic effects. S. salivarius strains were isolated from Malaysian subjects showing variable antimicrobial activity, metabolic profile, antibiotic susceptibility and lantibiotic production. METHODOLOGY/PRINCIPAL FINDINGS: In this study we report new S. salivarius strains isolated from Malaysian subjects with potential as probiotics. Safety assessment of these strains included their antibiotic susceptibility and metabolic profiles. Genome sequencing using Illumina's MiSeq system was performed for both strains NU10 and YU10 and demonstrating the absence of any known streptococcal virulence determinants indicating that these strains are safe for subsequent use as probiotics. Strain NU10 was found to harbour genes encoding salivaricins A and 9 while strain YU10 was shown to harbour genes encoding salivaricins A3, G32, streptin and slnA1 lantibiotic-like protein. Strain GT2 was shown to harbour genes encoding a large non-lantibiotic bacteriocin (salivaricin-MPS). A new medium for maximum biomass production buffered with 2-(N-morpholino)ethanesulfonic acid (MES) was developed and showed better biomass accumulation compared with other commercial media. Furthermore, we extracted and purified salivaricin 9 (by strain NU10) and salivaricin G32 (by strain YU10) from S. salivarius cells grown aerobically in this medium. In addition to bacteriocin production, S. salivarius strains produced levan-sucrase which was detected by a specific ESI-LC-MS/MS method which indicates additional health benefits from the developed strains. CONCLUSION: The current study established the bacteriocin, levan-sucrase production and basic safety features of S. salivarius strains isolated from healthy Malaysian subjects demonstrating their potential for use as probiotics. A new bacteriocin-production medium was developed with potential scale up application for pharmaceuticals and probiotics from S. salivarius generating different lantibiotics. This is relevant for the clinical management of oral cavity and upper respiratory tract in the human population.


Assuntos
Bacteriocinas/isolamento & purificação , Genes Bacterianos , Hexosiltransferases/isolamento & purificação , Streptococcus/metabolismo , Aerobiose , Ácidos Alcanossulfônicos/química , Sequência de Aminoácidos , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/isolamento & purificação , Bacteriocinas/biossíntese , Meios de Cultura/química , Meios de Cultura/farmacologia , Expressão Gênica , Hexosiltransferases/biossíntese , Humanos , Malásia , Dados de Sequência Molecular , Morfolinas/química , Probióticos , Streptococcus/efeitos dos fármacos , Streptococcus/genética , Streptococcus/isolamento & purificação
20.
Zhongguo Zhong Yao Za Zhi ; 39(2): 185-91, 2014 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-24761629

RESUMO

The tissue-specific and MeJA-induced transcriptional levels of BcUGT3 and BcUGT6 in Bupleurum chinense were analyzed in the present study. The transcriptional levels of BcUGT3 in root, leaf, flower and fruit were similar and they all were higher than those in stem. The transcriptional level of BcUGT6 was the highest in leaf and the lowest in flower among in all tested tissues. With non-treated adventitious roots as control, BcUGT6's transcriptional levels were elevated to nearly 2 folds for 2 h, 8 h, 24 h, 2 d and 4 d in MeJA-treated adventitious roots of B. chinense. It showed that the transcriptional level of BcUGT6 was slightly affected by MeJA. While, BcUGT3's transcriptional levels were gradually elevated, and till 4 d after MeJA treatment, the expression level was about 7 folds than that of non-treated control. Using pET-28a (+), the expressions of two genes was investigated. Induced by IPTG, the target proteins were expressed in E. coli and then purified. All the results obtained in the present study will be helpful for follow-up bio-function analysis of BcUGT3 and BcUGT6.


Assuntos
Bupleurum/enzimologia , Bupleurum/genética , Escherichia coli/genética , Regulação da Expressão Gênica de Plantas , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Acetatos/farmacologia , Bupleurum/citologia , Membrana Celular/metabolismo , Ciclopentanos/farmacologia , Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hexosiltransferases/química , Hexosiltransferases/isolamento & purificação , Espaço Intracelular/metabolismo , Oxilipinas/farmacologia , Sinais Direcionadores de Proteínas , Estrutura Secundária de Proteína , Transporte Proteico , Análise de Sequência , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...