Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.188
Filtrar
1.
Ecotoxicol Environ Saf ; 278: 116349, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38714081

RESUMO

BACKGROUND: Exposures to polyaromatic hydrocarbons (PAHs) contribute to cancer in the fire service. Fire investigators are involved in evaluations of post-fire scenes. In the US, it is estimated that there are up to 9000 fire investigators, compared to approximately 1.1 million total firefighting personnel. This exploratory study contributes initial evidence of PAH exposures sustained by this understudied group using worn silicone passive samplers. OBJECTIVES: Evaluate PAH exposures sustained by fire investigators at post-fire scenes using worn silicone passive samplers. Assess explanatory factors and health risks of PAH exposure at post-fire scenes. METHODS: As part of a cross-sectional study design, silicone wristbands were distributed to 16 North Carolina fire investigators, including eight public, seven private, and one public and private. Wristbands were worn during 46 post-fire scene investigations. Fire investigators completed pre- and post-surveys providing sociodemographic, occupational, and post-fire scene characteristics. Solvent extracts from wristbands were analyzed via gas chromatography-mass spectrometry (GC-MS). Results were used to estimate vapor-phase PAH concentration in the air at post-fire scenes. RESULTS: Fire investigations lasted an average of 148 minutes, standard deviation ± 93 minutes. A significant positive correlation (r=0.455, p<.001) was found between investigation duration and PAH concentrations on wristbands. Significantly greater time-normalized PAH exposures (p=0.039) were observed for investigations of newer post-fire scenes compared to older post-fire scenes. Regulatory airborne PAH exposure limits were exceeded in six investigations, based on exposure to estimated vapor-phase PAH concentrations in the air at post-fire scenes. DISCUSSION: Higher levels of off-gassing and suspended particulates at younger post-fire scenes may explain greater PAH exposure. Weaker correlations are found between wristband PAH concentration and investigation duration at older post-fire scenes, suggesting reduction of off-gassing PAHs over time. Exceedances of regulatory PAH limits indicate a need for protection against vapor-phase contaminants, especially at more recent post-fire scenes.


Assuntos
Bombeiros , Exposição Ocupacional , Hidrocarbonetos Policíclicos Aromáticos , Silicones , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Exposição Ocupacional/análise , Estudos Transversais , North Carolina , Adulto , Masculino , Feminino , Pessoa de Meia-Idade , Monitoramento Ambiental/métodos , Poluentes Ocupacionais do Ar/análise , Cromatografia Gasosa-Espectrometria de Massas , Punho
2.
Anal Chim Acta ; 1306: 342609, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692788

RESUMO

BACKGROUND: Accurate quantitative analysis of small molecule metabolites in biological samples is of great significance. Hydroxypolycyclic aromatic hydrocarbons (OH-PAHs) are metabolic derivatives of emerging pollutants, reflecting exposure to polycyclic aromatic hydrocarbons (PAHs). Macromolecules such as proteins and enzymes in biological samples will interfere with the accurate quantification of OH-PAHs, making direct analysis impossible, requiring a series of complex treatments such as enzymatic hydrolysis. Therefore, the development of matrix-compatible fiber coatings that can exclude macromolecules is of great significance to improve the ability of solid-phase microextraction (SPME) technology to selectively quantify small molecules in complex matrices and achieve rapid and direct analysis. RESULTS: We have developed an innovative coating with a stable macromolecular barrier using electrospinning and flexible filament winding (FW) technologies. This coating, referred to as the hollow fibrous covalent organic framework@polyionic liquid (F-COF@polyILs), demonstrates outstanding conductivity and stability. It accelerates the adsorption equilibrium time (25 min) for polar OH-PAHs through electrically enhanced solid-phase microextraction (EE-SPME) technology. Compared to the powder form, F-COF@polyILs coating displays effective non-selective large-size molecular sieving. Combining gas chromatography-tandem triple quadrupole mass spectrometry (GC-MS/MS), we have established a simple, efficient quantitative analysis method for OH-PAHs with a low detection limit (0.008-0.05 ng L-1), wide linear range (0.02-1000 ng L-1), and good repeatability (1.0%-7.3 %). Experimental results show that the coated fiber exhibits good resistance to matrix interference (2.5%-16.7 %) in complex biological matrices, and has been successfully used for OH-PAHs analysis in human urine and plasma. SIGNIFICANCE: FW technology realizes the transformation of the traditional powder form of COF in SPME coating to a uniform non-powder coating, giving its ability to exclude large molecules in complex biological matrices. A method for quantitatively detecting OH-PAHs in real biological samples was also developed. Therefore, the filament winding preparation method for F-COF@polyILs coated fibers, along with fibrous COFs' morphology control, has substantial implications for efficiently extracting target compounds from complex matrices.


Assuntos
Microextração em Fase Sólida , Microextração em Fase Sólida/métodos , Estruturas Metalorgânicas/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Substâncias Macromoleculares/química , Limite de Detecção , Adsorção , Técnicas Eletroquímicas/métodos
3.
Sci Rep ; 14(1): 10585, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719868

RESUMO

Here, a comprehensive study was designed to estimate the human risk assessment attributed to exposure of polycyclic aromatic hydrocarbons (PAHs)in sediment and fish in most polluted shore area in north of Persian Gulf. To this end, a total of 20 sediment and inhabitual Fish, as one of most commercial fish, samples were randomly collected from 20 different stations along Bushehr Province coastline. The 16 different components of PAHs were extracted from sediment and edible parts of inhabitual fish and measured with high-performance liquid chromatography (HPLC) and gas chromatography (GC), respectively. In addition, dietary daily intake (DDI) values of PAHs via ingestion Indian halibut and the incremental lifetime cancer risk (ILCR) attributed to human exposure to sediments PAHs via (a) inhalation, (b) ingestion, and (c) dermal contact for two groups of ages: children (1-11 years) and adults (18-70 years) were estimated. The results indicated that all individual PAHs except for Benzo(b)flouranthene (BbF) and Benzo(ghi) perylene (BgP) were detected in different sediment sample throughout the study area with average concentration between 2.275 ± 4.993 mg.kg-1 dw. Furthermore, Naphthalene (Nap) with highest average concentration of 3.906 ± 3.039 mg.kg-1 dw was measured at the Indian halibut. In addition, the human risk analysis indicated that excess cancer risk (ECR) attributed to PAHs in sediment and fish in Asaluyeh with high industrial activities on oil and derivatives were higher the value recommended by USEPA (10-6). Therefore, a comprehensive analysis on spatial distribution and human risk assessment of PAHs in sediment and fish can improve the awareness on environmental threat in order to aid authorities and decision maker to find a sustainable solution.


Assuntos
Peixes , Sedimentos Geológicos , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Oceano Índico , Animais , Medição de Risco , Adulto , Poluentes Químicos da Água/análise , Criança , Adolescente , Pessoa de Meia-Idade , Adulto Jovem , Pré-Escolar , Idoso , Lactente , Monitoramento Ambiental
4.
Environ Monit Assess ; 196(6): 564, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773003

RESUMO

This study investigated the impact of micropollutants on fish health from Segredo hydroelectric reservoir (HRS) along the Iguaçu River, Southern Brazil, contaminated by urban, industrial, and agricultural activities. This is the first comprehensive study assessment in the river after the severe drought in the 2020s in three fish species from different trophic levels Astyanax spp. (water column depth/omnivorous), Hypostomus commersoni (demersal/herbivorous), and Pimelodus maculatus (demersal/omnivorous). Animals, water, and sediment samples were collected from three distinct sites within the reservoir: Floresta (upstream), Iratim (middle), and Station (downstream). The chemical analysis revealed elevated concentrations of metals (Al, Cu, Fe) and the metalloid As in water, or Cu, Zn, and As in sediment, surpassing Brazilian regulatory limits, while the organic pollutants as DDT, PAHs, PCBs, and PBDEs were found under the Brazilian regulatory limits. The metal bioaccumulation was higher in gills with no significant differences among sites. The species Astyanax spp. and H. commersoni displayed variations in hepatosomatic index (HSI) and P. maculatus in the condition factor index (K) between sites, while adverse effects due to micropollutants bioaccumulation were observed by biochemical, genotoxic, and histopathological biomarkers. The principal component analysis and integrated biomarker response highlighted the upstream site Floresta as particularly inhospitable for biota, with distinctions based on trophic level. Consequently, this multifaceted approach, encompassing both fish biomarkers and chemical analyses, furnishes valuable insights into the potential toxic repercussions of micropollutant exposure. These findings offer crucial data for guiding management and conservation endeavors in the Iguaçu River.


Assuntos
Monitoramento Ambiental , Rios , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Brasil , Rios/química , Biomarcadores/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Metais/análise , Characidae , Bifenilos Policlorados/análise , Bifenilos Policlorados/metabolismo , Sedimentos Geológicos/química , Peixes/metabolismo
5.
Environ Monit Assess ; 196(6): 585, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809286

RESUMO

The Niger Delta in Nigeria is a complex and heavily contaminated area with over 150,000 interconnected contaminated sites. This intricate issue is compounded by the region's strong hydrological processes and high-energy environment, necessitating a science-based approach for effective contamination assessment and management. This study introduces the concept of sub-catchment contamination assessment and management, providing an overarching perspective rather than addressing each site individually. A description of the sub-catchment delineation process using the digital elevation model data from an impacted area within the Delta is provided. Additionally, the contamination status from the delineated sub-catchment is reported. Sediment, surface water and groundwater samples from the sub-catchment were analyzed for total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs), respectively. Surface sediment TPH concentrations ranged from 129 to 20,600 mg/kg, with subsurface (2-m depth) concentrations from 15.5 to 729 mg/kg. PAHs in surface and subsurface sediment reached 9.55 mg/kg and 0.46 mg/kg, respectively. Surface water exhibited TPH concentrations from 10 to 620 mg/L, while PAHs ranged from below detection limits to 1 mg/L. Groundwater TPH concentrations spanned 3 to 473 mg/L, with total PAHs varying from below detection limits to 0.28 mg/L. These elevated TPH and PAH levels indicate extensive petroleum contamination in the investigated sediment and water environment. Along with severe impacts on large areas of mangroves and wetlands, comparison of TPH and PAH concentrations with sediment and water quality criteria found 54 to 100% of stations demonstrated exceedances, suggesting adverse biological effects on aquatic and sediment biota are likely occurring.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Água Subterrânea , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Nigéria , Poluentes Químicos da Água/análise , Poluição por Petróleo/análise , Sedimentos Geológicos/química , Água Subterrânea/química
6.
Water Res ; 257: 121622, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38733961

RESUMO

Microplastics (MPs) and polycyclic aromatic hydrocarbons (PAHs) are toxic contaminants that have been found in marine ecosystems. This review aims to explore the sources and mechanisms of PAHs and MPs mixed contamination in marine environments. Understanding the released sources of PAHs and MPs is crucial for proposing appropriate regulations on the release of these contaminants. Additionally, the mechanisms of co-occurrence and the role of MPs in distributing PAHs in marine ecosystems were investigated in detail. Moreover, the chemical affinity between PAHs and MPs was proposed, highlighting the potential mechanisms that lead to their persistence in marine ecosystems. Moreover, we delve into the various factors influencing the co-occurrence, chemical affinity, and distribution of mixed contaminants in marine ecosystems. These factors, including environmental characteristics, MPs properties, PAHs molecular weight and hydrophobicity, and microbial interactions, were critically examined. The co-contamination raises concerns about the potential synergistic effects on their degradation and toxicity. Interesting, few studies have reported the enhanced photodegradation and biodegradation of contaminants under mixed contamination compared to their individual remediation. However, currently, the remediation strategies reported for PAHs and MPs mixed contamination are scarce and limited. While there have been some initiatives to remove PAHs and MPs individually, there is a lack of research specifically targeting the removal of mixed contaminants. This deficiency highlights the need for further investigation and the development of effective remediation approaches for the efficient remediation of PAHs and MPs from marine ecosystems.


Assuntos
Ecossistema , Monitoramento Ambiental , Microplásticos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Água do Mar/química
7.
J Hazard Mater ; 471: 134467, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38691930

RESUMO

The beneficial roles of hydrochar in carbon sequestration and soil improvement are widely accepted. Despite few available reports regarding polycyclic aromatic hydrocarbons (PAHs) generated during preparation, their potential negative impacts on ecosystems remain a concern. A heating treatment method was employed in this study for rapidly removing PAHs and reducing the toxicity of corn stover-based hydrochar (CHC). The result showed total PAHs content (∑PAH) decreased and then sharply increased within the temperature range from 150 °C to 400 °C. The ∑PAH and related toxicity in CHC decreased by more than 80% under 200 °C heating temperature, compared with those in the untreated sample, representing the lowest microbial toxicity. Benzo(a)pyrene produced a significant influence on the ecological toxicity of the hydrochar among the 16 types of PAHs. The impact of thermal treatment on the composition, content, and toxicity of PAHs was significantly influenced by the adsorption, migration, and desorption of PAHs within hydrochar pores, as well as the disintegration and aggregation of large molecular polymers. The combination of hydrochar with carbonized waste heat and exhaust gas collection could be a promising method to efficiently and affordably reduce hydrochar ecological toxicity.


Assuntos
Temperatura Alta , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/química , Poluentes do Solo/toxicidade , Poluentes do Solo/química , Carvão Vegetal/química , Zea mays , Solo/química , Adsorção , Calefação
8.
J Hazard Mater ; 471: 134437, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38691934

RESUMO

Crude oil is a hazardous pollutant that poses significant and lasting harm to human health and ecosystems. In this study, Moesziomyces aphidis XM01, a biosurfactant mannosylerythritol lipids (MELs)-producing yeast, was utilized for crude oil degradation. Unlike most microorganisms relying on cytochrome P450, XM01 employed two extracellular unspecific peroxygenases, MaUPO.1 and MaUPO.2, with preference for polycyclic aromatic hydrocarbons (PAHs) and n-alkanes respectively, thus facilitating efficient crude oil degradation. The MELs produced by XM01 exhibited a significant emulsification activity of 65.9% for crude oil and were consequently supplemented in an "exogenous MELs addition" strategy to boost crude oil degradation, resulting in an optimal degradation ratio of 72.3%. Furthermore, a new and simple "pre-MELs production" strategy was implemented, achieving a maximum degradation ratio of 95.9%. During this process, the synergistic up-regulation of MaUPO.1, MaUPO.1 and the key MELs synthesis genes contributed to the efficient degradation of crude oil. Additionally, the phylogenetic and geographic distribution analysis of MaUPO.1 and MaUPO.1 revealed their wide occurrence among fungi in Basidiomycota and Ascomycota, with high transcription levels across global ocean, highlighting their important role in biodegradation of crude oil. In conclusion, M. aphidis XM01 emerges as a novel yeast for efficient and eco-friendly crude oil degradation.


Assuntos
Biodegradação Ambiental , Glicolipídeos , Oxigenases de Função Mista , Petróleo , Tensoativos , Petróleo/metabolismo , Tensoativos/metabolismo , Tensoativos/química , Glicolipídeos/metabolismo , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/genética , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/química , Alcanos/metabolismo
9.
Environ Geochem Health ; 46(6): 196, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695954

RESUMO

We evaluated spatial distribution and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in water and sediments at four selected sites of the Ganga River. Also, we measured PAHs in muscle tissues of Rohu (Labeo rohita), the most common edible carp fish of the Ganga River and potential human health risk was addressed. Total concentration of PAHs (∑PAHs) in water was highest at Manika Site (1470.5 ng/L) followed by Knuj (630.0 ng/L) and lowest at Adpr (219.0 ng/L). A similar trend was observed for sediments with highest concentration of ∑PAHs at Manika (461.8 ng/g) and lowest at Adpr Site (94.59 ng/g). Among PAHs, phenanthrene (Phe) showed highest concentration in both water and sediment. Of the eight major carcinogenic contributors (∑PAH8C), Indeno (1,2,3-C,D) pyrene (InP) did appear the most dominant component accounting for 42% to this group at Manika Site. Isomer ratios indicated vehicular emission and biomass combustion as major sources of PAHs. The ∑PAHs concentrations in fish tissue ranged from 117.8 to 758.0 ng/g (fresh weight basis) where low molecular weight PAHs assumed predominance (above 80%). The risk level in fish tissues appeared highest at Manika Site and site-wise differences were statistically significant (p < 0.05). The ILCR (> 10-4) indicated carcinogenic risk in adults and children associated with BaP and DBahA at Manika Site and with BaP at Knuj Site. Overall, the concentrations exceeding permissible limit, carcinogenic potential and BaP equivalent all indicated carcinogenic risks associated with some individual PAHs. This merits attention because the Ganga River is a reservoir of fisheries.


Assuntos
Carpas , Exposição Dietética , Sedimentos Geológicos , Hidrocarbonetos Policíclicos Aromáticos , Rios , Poluentes Químicos da Água , Animais , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Rios/química , Medição de Risco , Sedimentos Geológicos/química , Carpas/metabolismo , Humanos , Monitoramento Ambiental/métodos
10.
Environ Geochem Health ; 46(6): 186, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695998

RESUMO

Atmospheric distribution of polycyclic aromatic hydrocarbons and associated human health risks have been studied in India. However, a comprehensive overview is not available in India, this review highlights the possible sources, and associated cancer risks in people living in different zones of India. Different databases were searched for the scientific literature on polycyclic aromatic hydrocarbons in ambient air in India. Database searches have revealed a total of 55 studies conducted at 139 locations in India in the last 14 years between 1996 and 2018. Based on varying climatic conditions in India, the available data was analysed and distributed with four zone including north, east, west/central and south zones. Comparatively higher concentrations were reported for locations in north zone, than east, west/central and south zones. The average concentrations of ∑PAHs is lower in east zone, and concentrations in north, west/central and south zones are higher by 1.67, 1.47, and 1.12 folds respectively than those in east zone. Certain molecular diagnostic ratios and correlation receptor models were used for identification of possible sources, which aided to the conclusion that both pyrogenic and petrogenic activities are the mixed sources of PAH emissions to the Indian environment. Benzo(a)pyrene toxicity equivalency for different zones is estimated and presented. Estimated Chronic daily intake (CDI) due to inhalation of PAHs and subsequently, cancer risk (CR) is found to be ranging from extremely low to low in various geographical zones of India.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/análise , Índia/epidemiologia , Poluentes Atmosféricos/análise , Humanos , Medição de Risco , Monitoramento Ambiental , Neoplasias/epidemiologia , Neoplasias/induzido quimicamente , Atmosfera/química , Exposição Ambiental , Poluição do Ar
11.
Food Res Int ; 183: 114240, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38760119

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic organic pollutants found in various environments, notably aquatic ecosystems and the food chain, posing significant health risks. Traditional methods for detecting PAHs in food involve complex processes and considerable reagent usage, raising environmental concerns. This study explores eco-friendly approaches suing solid phases derived from natural sources in matrix solid phase dispersion. We aimed to develop, optimize, and validate a sample preparation technique for seafood, employing natural materials for PAH analysis. Ten natural phases were compared with a commercial reference phase. The methodology involved matrix solid phase dispersion and pressurized liquid extraction, followed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Three solid phases (perlite, sweet manioc starch, and barley) showed superior performance in LC-MS/MS and were further evaluated with gas chromatography-tandem mass spectrometry (GC-MS/MS), confirming perlite as the most effective phase. Validation followed Brazilian regulatory guidelines and European Community Regulation 2021/808/EC. The resulting method offered advantages in cost-effectiveness, reduced environmental impact, cleaner extracts, and enhanced analytical performance compared to the reference solid phase and LC-MS/MS. Proficiency analysis confirmed method reliability, with over 50% alignment with green analytical chemistry principles. In conclusion, this study developed an environmentally sustainable sample preparation technique for seafood analysis using natural solid phases, particularly perlite, for PAH determination.


Assuntos
Contaminação de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos Policíclicos Aromáticos , Alimentos Marinhos , Espectrometria de Massas em Tandem , Hidrocarbonetos Policíclicos Aromáticos/análise , Alimentos Marinhos/análise , Espectrometria de Massas em Tandem/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cromatografia Líquida/métodos , Contaminação de Alimentos/análise , Extração em Fase Sólida/métodos , Reprodutibilidade dos Testes , Brasil , Química Verde/métodos
12.
Chemosphere ; 358: 142176, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701864

RESUMO

Spatial patterns, potential origins, and ecotoxicological risk of alkylated (APAH) -and parent -(PPAH) polycyclic aromatic hydrocarbons (PAHs) were studied in mangrove surface sediments along the northern coasts of the Persian Gulf, Iran. The mean total concentrations (ngg-1dw) ∑32PAH, ∑PPAHs and ∑APAHs in sediments were 3482 (1689-61228), 2642 (1109-4849), and 840 (478-1273), respectively. The spatial variability was similar among these PAH groups, with the highest levels occurring in Nayband National Marine Park (NNMP). Physicochemical environmental factors, such as sediment grain size, and total organic carbon (TOC) contents, are significant factors of PAH distribution. These findings suggest that PAH pollution level is moderate-to-high, supporting the current view that mangrove ecosystems are under intensive anthropogenic impacts, such as petrochemical, oil and gas loads, port activities, and urbanization. Non-parametric multidimensional scaling (NPMDS) ordination demonstrated that NNMP mangrove is the critical site exhibiting high loading of PAH pollutants. Here, for the first time in this region, Soil quality guidelines (SQGs), Toxic equivalency quotient (TEQ), Mutagenic equivalency quotient (MEQ), and composition indices comprising Mean maximum permissible concentration quotient (m-MPC-Q), and Mean effect range median quotient (m-ERM-Q) methods were used to have a comprehensive risk assessment for PAH compounds and confirmed medium-to-high ecological risks of PAHs in the study area, particularly in the western part of the Gulf, highlighting the industrial impacts on the environment.


Assuntos
Ecotoxicologia , Monitoramento Ambiental , Sedimentos Geológicos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Sedimentos Geológicos/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Irã (Geográfico) , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Oceano Índico , Medição de Risco , Áreas Alagadas
13.
Sci Total Environ ; 931: 172920, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38701933

RESUMO

Scleractinian corals are capable of accumulating polycyclic aromatic hydrocarbons (PAHs) in reef environments; however, the mechanism behind their PAHs tolerance is unknown. This study investigated the occurrence and bioaccumulation of PAHs in coral reef ecosystems and examined the physiological responses induced by PAHs in coral hosts and their algal symbionts, the massive coral Galaxea fascicularis and branching coral Pocillopora damicornis. G. fascicularis had a higher PAHs accumulation capacity than P. damicornis. Both the coral hosts and algal symbionts preferentially accumulated acenaphthene, dibenzo(a,h)anthracene, and benzo(a)pyrene. The accumulated PAHs by G. fascicularis and P. damicornis hosts was accompanied by a reduction in detoxification ability. The accumulated PAHs could induce oxidative stress in P. damicorni hosts, thus G. fascicularis demonstrated a greater tolerance to PAHs compared to P. damicornis. Meanwhile, their algal symbionts had fewer physiological responses to accumulated PAHs than the coral hosts. Negative effects were not observed with benzo(a)pyrene. Taken together, these results suggest massive and branching scleractinian corals have different PAHs bioaccumulation and tolerance mechanisms, and indicate that long-term PAHs pollution could cause significant alterations of community structures in coral reef ecosystems.


Assuntos
Antozoários , Recifes de Corais , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Antozoários/fisiologia , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes Químicos da Água/metabolismo , Bioacumulação , Monitoramento Ambiental , Simbiose
14.
Sci Total Environ ; 931: 172911, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38705305

RESUMO

Breastfeeding provides numerous health benefits for both infants and mothers, promoting optimal growth and development while offering protection against various illnesses and diseases. This study investigated the levels of polychlorinated biphenyls (PCB), organochlorine pesticides (OCP) and polycyclic aromatic hydrocarbons (PAH) in human milk sampled in Zadar (Croatia). The primary objectives were twofold: firstly, to evaluate the individual impact of each compound on the total antioxidant capacity (TAC) value, and secondly, to assess associated health risks. Notably, this study presents pioneering and preliminary insights into PAH levels in Croatian human milk, contributing to the limited research on PAH in breast milk worldwide. PCB and OCP levels in Croatian human milk were found to be relatively lower compared to worldwide data. Conversely, PAH levels were comparatively higher, albeit with lower detection frequencies. A negative correlation was established between organic contaminant levels and antioxidative capacity, suggesting a potential link between higher antioxidative potential and lower organic contaminant levels. Diagnostic ratio pointed towards traffic emissions as the primary source of the detected PAH. The presence of PAH suggests potential health risk, underscoring the need for further in-depth investigation.


Assuntos
Antioxidantes , Hidrocarbonetos Clorados , Leite Humano , Hidrocarbonetos Policíclicos Aromáticos , Leite Humano/química , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Clorados/análise , Medição de Risco , Croácia , Feminino , Poluentes Orgânicos Persistentes , Praguicidas/análise , Monitoramento Ambiental , Bifenilos Policlorados/análise , Adulto , Poluentes Ambientais/análise
15.
Chemosphere ; 358: 142242, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710409

RESUMO

The release of polycyclic aromatic hydrocarbons (PAHs) into the environment is posing a threat to ecosystems and human health. Benzo(a)pyrene (BaP) is considered a biomarker of PAH exposure and is classified as a Group 1 carcinogen. However, it was not known whether BaP is mutagenic, i.e. induces inherited germline mutations. In this study, we used a recently established method, which combines short-term mutation accumulation lines (MAL) with whole genome sequencing (WGS) to assess mutagenicity in the non-biting midge Chironomus riparius. The mutagenicity analysis was supplemented by an evaluation of the development of population fitness in three successive generations in the case of chronic exposure to BaP at a high concentration (100 µg/L). In addition, the level of ROS-induced oxidative stress was examined in vivo. Exposure to the higher BaP concentration led to an increase in germline mutations relative to the control, while the lower concentration showed no mentionable effect. Against expectations, BaP exposure decreased ROS-level compared to the control and is thus probably not responsible for the increased mutation rate. Likewise, the higher BaP concentration decreased fitness measured as population growth rate per day (PGR) significantly over all generations, without signs of rapid evolutionary adaptations. Our results thus highlighted that high BaP exposure may influence the evolutionary trajectory of organisms.


Assuntos
Benzo(a)pireno , Chironomidae , Estresse Oxidativo , Animais , Benzo(a)pireno/toxicidade , Chironomidae/efeitos dos fármacos , Chironomidae/genética , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Sequenciamento Completo do Genoma , Mutagênicos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Testes de Mutagenicidade
16.
Chemosphere ; 358: 142171, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38714247

RESUMO

Marine oil spills directly cause polycyclic aromatic hydrocarbons (PAHs) pollution and affect marine organisms due to their toxic property. Chemical and bio-based dispersants composed of surfactants and solvents are considered effective oil spill-treating agents. Dispersants enhance oil biodegradation in the marine environment by rapidly increasing their solubility in the water column. However, the effect of dispersants, especially surfactants, on PAHs degradation by enzymes produced by microorganisms has not been studied at the molecular level. The role of the cytochrome P450 (CYP) enzyme in converting contaminants into reactive metabolites during the biodegradation process has been evidenced, but the activity in the presence of surfactants is still ambiguous. Thus, this study focused on the evaluation of the impact of chemical and bio-surfactants (i.e., Tween 80 (TWE) and Surfactin (SUC)) on the biodegradation of naphthalene (NAP), chrysene (CHR), and pyrene (PYR), the representative components of PAHs, with CYP enzyme from microalgae Parachlorella kessleri using molecular docking and molecular dynamics (MD) simulation. The molecular docking analysis revealed that PAHs bound to residues at the CYP active site through hydrophobic interactions for biodegradation. The MD simulation showed that the surfactant addition changed the enzyme conformation in the CYP-PAH complexes to provide more interactions between the enzyme and PAHs. This led to an increase in the enzyme's capability to degrade PAHs. Binding free energy (ΔG||Bind) calculations confirmed that surfactant treatment could enhance PAHs degradation by the enzyme. The SUC gave a better result on NAP and PYR biodegradation based on ΔG||Bind, while TWE facilitated the biodegradation of CHR. The research outputs could greatly facilitate evaluating the behaviors of oil spill-treating agents and oil spill response operations in the marine environment.


Assuntos
Biodegradação Ambiental , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Poluição por Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Tensoativos , Poluentes Químicos da Água , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/química , Tensoativos/química , Tensoativos/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química , Sistema Enzimático do Citocromo P-450/metabolismo , Clorófitas/metabolismo
17.
Bull Environ Contam Toxicol ; 112(5): 76, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733550

RESUMO

Traffic-related particulate matter emissions have been considerably reduced due to stringent regulations in Europe. However, emission of diesel-powered vehicles still poses a significant environmental threat, affecting rural ecosystems and agriculture. Several studies have reported that polycyclic aromatic hydrocarbons (PAHs), a group of potentially toxic organic compounds, can accumulate in crops and vegetables. In our study, white mustard (Sinapis alba L.) plants were experimentally treated with an extract of diesel exhaust. PAH concentrations were measured in the different plant compartments (stems, leaves and seeds), bioconcentration factors (BCFs) were also calculated. Significant accumulation was measured in the leaves and seeds, stems showed lower accumulation potential. All plant matrices showed high tendency to accumulate higher molecular weight PAHs, BCF was the highest in the 6-ring group. The fact that considerable accumulation was experienced in the seeds might show the risk of cultivating crops nearby roads highly impacted by traffic-related emissions.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Sementes , Sementes/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes Atmosféricos/análise , Sinapis , Emissões de Veículos/análise , Material Particulado/análise
18.
Ecotoxicol Environ Saf ; 278: 116429, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718731

RESUMO

Air pollutants deteriorate the survival environment and endanger human health around the world. A large number of studies have confirmed that air pollution jeopardizes multiple organs, such as the cardiovascular, respiratory, and central nervous systems. Skin is the largest organ and the first barrier that protects us from the outside world. Air pollutants such as particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs) will affect the structure and function of the skin and bring about the development of inflammatory skin diseases (atopic dermatitis (AD), psoriasis), skin accessory diseases (acne, alopecia), auto-immune skin diseases (cutaneous lupus erythematosus(CLE) scleroderma), and even skin tumors (melanoma, basal cell carcinoma (BCC), squamous-cell carcinoma (SCC)). Oxidative stress, skin barrier damage, microbiome dysbiosis, and skin inflammation are the pathogenesis of air pollution stimulation. In this review, we summarize the current evidence on the effects of air pollution on skin diseases and possible mechanisms to provide strategies for future research.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado , Dermatopatias , Compostos Orgânicos Voláteis , Humanos , Poluição do Ar/efeitos adversos , Dermatopatias/induzido quimicamente , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/efeitos adversos , Material Particulado/toxicidade , Compostos Orgânicos Voláteis/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Pele/efeitos dos fármacos
19.
Sci Rep ; 14(1): 11608, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773163

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are highly toxic, carcinogenic substances. On soils contaminated with PAHs, crop cultivation, animal husbandry and even the survival of microflora in the soil are greatly perturbed, depending on the degree of contamination. Most microorganisms cannot tolerate PAH-contaminated soils, however, some microbial strains can adapt to these harsh conditions and survive on contaminated soils. Analysis of the metagenomes of contaminated environmental samples may lead to discovery of PAH-degrading enzymes suitable for green biotechnology methodologies ranging from biocatalysis to pollution control. In the present study, our goal was to apply a metagenomic data search to identify efficient novel enzymes in remediation of PAH-contaminated soils. The metagenomic hits were further analyzed using a set of bioinformatics tools to select protein sequences predicted to encode well-folded soluble enzymes. Three novel enzymes (two dioxygenases and one peroxidase) were cloned and used in soil remediation microcosms experiments. The experimental design of the present study aimed at evaluating the effectiveness of the novel enzymes on short-term PAH degradation in the soil microcosmos model. The novel enzymes were found to be efficient for degradation of naphthalene and phenanthrene. Adding the inorganic oxidant CaO2 further increased the degrading potential of the novel enzymes for anthracene and pyrene. We conclude that metagenome mining paired with bioinformatic predictions, structural modelling and functional assays constitutes a powerful approach towards novel enzymes for soil remediation.


Assuntos
Biodegradação Ambiental , Metagenômica , Hidrocarbonetos Policíclicos Aromáticos , Microbiologia do Solo , Poluentes do Solo , Metagenômica/métodos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes do Solo/metabolismo , Solo/química , Dioxigenases/metabolismo , Dioxigenases/genética , Dioxigenases/química , Fenantrenos/metabolismo , Naftalenos/metabolismo , Metagenoma
20.
Front Public Health ; 12: 1385628, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716244

RESUMO

Background: During the use of electronic cigarettes (e-cigarettes), users are still exposed to carcinogens similar to those found in tobacco products. Since these carcinogens are metabolized and excreted in urine, they may have carcinogenic effects on the bladder urinary tract epithelium. This meta-analysis aimed to compare bladder cancer carcinogens in the urine of tobacco users and e-cigarette users using a large number of samples. Methods: A systematic meta-analysis was performed using data obtained from several scientific databases (up to November 2023). This cumulative analysis was performed following the Preferred Reporting Items for Systematic Evaluation and Meta-Analysis (PRISMA) and Assessing the Methodological Quality of Systematic Evaluations (AMSTAR) guidelines, according to a protocol registered with PROSPERO. This study was registered on PROSPERO and obtained the unique number: CRD42023455600. Results: The analysis included 10 high-quality studies that considered polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs) and tobacco-specific nitrosamines (TSNAs). Statistical indicators show that there is a difference between the tobacco user group and the e-cigarette user group in terms of 1-Hydroxynaphthalene (1-NAP) [weighted mean difference (WMD)10.14, 95% confidence interval (CI) (8.41 to 11.88), p < 0.05], 1-Hydroxyphenanthrene (1-PHE) [WMD 0.08, 95% CI (-0.14 to 0.31), p > 0.05], 1-Hydroxypyrene (1-PYR) [WMD 0.16, 95% CI (0.12 to 0.20), p < 0.05], 2-Hydroxyfluorene (2-FLU) [WMD 0.69, 95% CI (0.58 to 0.80), p < 0.05], 2-Hydroxynaphthalene (2-NAP) [WMD 7.48, 95% CI (4.15 to 10.80), p < 0.05], 3-Hydroxyfluorene (3-FLU) [WMD 0.57, 95% CI (0.48 to 0.66), p < 0.05], 2-Carbamoylethylmercapturic acid (AAMA) [WMD 66.47, 95% CI (27.49 to 105.46), p < 0.05], 4-Hydroxy-2-buten-1-yl-mercapturic acid (MHBMA) [WMD 287.79, 95% CI (-54.47 to 630.04), p > 0.05], 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNAL) [WMD 189.37, 95% CI (78.45 to 300.29), p < 0.05], or N0-nitrosonornicotine (NNN) [WMD 11.66, 95% CI (7.32 to 16.00), p < 0.05]. Conclusion: Urinary bladder cancer markers were significantly higher in traditional tobacco users than in e-cigarette users.Systematic review registration: PROSPERO (CRD42023455600: https://www.crd.york.ac.uk/PROSPERO/).


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/urina , Sistemas Eletrônicos de Liberação de Nicotina/estatística & dados numéricos , Carcinógenos/análise , Compostos Orgânicos Voláteis/urina , Carcinogênese , Hidrocarbonetos Policíclicos Aromáticos/urina , Biomarcadores/urina , Nitrosaminas/urina , Produtos do Tabaco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...