Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.714
Filtrar
1.
Carbohydr Polym ; 339: 122209, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823899

RESUMO

The escalating global health concern arises from chronic wounds induced by bacterial infections, posing a significant threat to individuals. Consequently, an imperative exist for the development of hydrogel dressings to facilitate prompt wound monitoring and efficacious wound management. To this end, pH-sensitive bromothymol blue (BTB) and pH-responsive drug tetracycline hydrochloride (TH) were introduced into the polysaccharide-based hydrogel to realize the integration of wound monitoring and controlled treatment. Polysaccharide-based hydrogels were formed via a Schiff base reaction by cross-linking carboxymethyl chitosan (CMCS) on an oxidized sodium alginate (OSA) skeleton. BTB was used as a pH indicator to monitor wound infection through visual color changes visually. TH could be dynamically released through the pH response of the Schiff base bond to provide effective treatment and long-term antibacterial activity for chronically infected wounds. In addition, introducing polylactic acid nanofibers (PLA) enhanced the mechanical properties of hydrogels. The multifunctional hydrogel has excellent mechanical, self-healing, injectable, antibacterial properties and biocompatibility. Furthermore, the multifaceted hydrogel dressing under consideration exhibits noteworthy capabilities in fostering the healing process of chronically infected wounds. Consequently, the research contributes novel perspectives towards the advancement of intelligent and expeditious bacterial infection monitoring and dynamic treatment platforms.


Assuntos
Alginatos , Antibacterianos , Bandagens , Quitosana , Hidrogéis , Nanofibras , Cicatrização , Nanofibras/química , Hidrogéis/química , Hidrogéis/farmacologia , Cicatrização/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Concentração de Íons de Hidrogênio , Quitosana/química , Quitosana/análogos & derivados , Quitosana/farmacologia , Alginatos/química , Animais , Staphylococcus aureus/efeitos dos fármacos , Tetraciclina/química , Tetraciclina/farmacologia , Camundongos , Infecção dos Ferimentos/tratamento farmacológico , Polissacarídeos/química , Escherichia coli/efeitos dos fármacos , Bases de Schiff/química , Testes de Sensibilidade Microbiana , Humanos
2.
Carbohydr Polym ; 339: 122232, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823905

RESUMO

In this study, new types of hybrid double-network (DN) hydrogels composed of polyvinyl alcohol (PVA), chitosan (CH), and sodium alginate (SA) are introduced, with the hypothesis that this combination and incorporating multi-walled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) will enhance osteogenetic differentiation and the structural and mechanical properties of scaffolds for bone tissue engineering applications. Initially, the impact of varying mass ratios of the PVA/CH/SA mixture on mechanical properties, swelling ratio, and degradability was examined. Based on this investigation, a mass ratio of 4:6:6 was determined to be optimal. At this ratio, the hydrogel demonstrated a Young's modulus of 47.5 ± 5 kPa, a swelling ratio of 680 ± 6 % after 3 h, and a degradation rate of 46.5 ± 5 % after 40 days. In the next phase, following the determination of the optimal mass ratio, CNTs and GNPs were incorporated into the 4:6:6 composite resulting in a significant enhancement in the electrical conductivity and stiffness of the scaffolds. The introduction of CNTs led to a notable increase of 36 % in the viability of MG63 osteoblast cells. Additionally, the inhibition zone test revealed that GNPs and CNTs increased the diameter of the inhibition zone by 49.6 % and 52.6 %, respectively.


Assuntos
Alginatos , Regeneração Óssea , Quitosana , Hidrogéis , Álcool de Polivinil , Engenharia Tecidual , Alicerces Teciduais , Quitosana/química , Alginatos/química , Alginatos/farmacologia , Álcool de Polivinil/química , Alicerces Teciduais/química , Humanos , Regeneração Óssea/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Engenharia Tecidual/métodos , Nanotubos de Carbono/química , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Grafite/química , Grafite/farmacologia , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular
3.
Carbohydr Polym ; 339: 122251, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823918

RESUMO

In this study, the disulfide-linked hyaluronic acid (HA) hydrogels were optimised for potential application as a scaffold in tissue engineering through the Quality by Design (QbD) approach. For this purpose, HA was first modified by incorporating the cysteine moiety into the HA backbone, which promoted the formation of disulfide cross-linked HA hydrogel at physiological pH. Utilising a Design of Experiments (DoE) methodology, the critical factors to achieve stable biomaterials, i.e. the degree of HA substitution, HA molecular weight, and coupling agent ratio, were explored. To establish a design space, the DoE was performed with 65 kDa, 138 kDa and 200 kDa HA and variable concentrations of coupling agent to optimise conditions to obtain HA hydrogel with improved rheological properties. Thus, HA hydrogel with a 12 % degree of modification, storage modulus of ≈2321 Pa and loss modulus of ≈15 Pa, was achieved with the optimum ratio of coupling agent. Furthermore, biocompatibility assessments in C28/I2 chondrocyte cells demonstrated the non-toxic nature of the hydrogel, underscoring its potential for tissue regeneration. Our findings highlight the efficacy of the QbD approach in designing HA hydrogels with tailored properties for biomedical applications.


Assuntos
Materiais Biocompatíveis , Condrócitos , Dissulfetos , Ácido Hialurônico , Hidrogéis , Reologia , Engenharia Tecidual , Ácido Hialurônico/química , Hidrogéis/química , Hidrogéis/síntese química , Dissulfetos/química , Condrócitos/efeitos dos fármacos , Condrócitos/citologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio
4.
Carbohydr Polym ; 339: 122253, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823920

RESUMO

In vitro tumor models are essential for understanding tumor behavior and evaluating tumor biological properties. Hydrogels that can mimic the tumor extracellular matrix have become popular for creating 3D in vitro tumor models. However, designing biocompatible hydrogels with appropriate chemical and physical properties for constructing tumor models is still a challenge. In this study, we synthesized a series of ß-cyclodextrin (ß-CD)-crosslinked polyacrylamide hydrogels with different ß-CD densities and mechanical properties and evaluated their potential for use in 3D in vitro tumor model construction, including cell capture and spheroid formation. By utilizing a combination of ß-CD-methacrylate (CD-MA) and a small amount of N,N'-methylene bisacrylamide (BIS) as hydrogel crosslinkers and optimizing the CD-MA/BIS ratio, the hydrogels performed excellently for tumor cell 3D culture and spheroid formation. Notably, when we co-cultured L929 fibroblasts with HeLa tumor cells on the hydrogel surface, co-cultured spheroids were formed, showing that the hydrogel can mimic the complexity of the tumor extracellular matrix. This comprehensive investigation of the relationship between hydrogel mechanical properties and biocompatibility provides important insights for hydrogel-based in vitro tumor modeling and advances our understanding of the mechanisms underlying tumor growth and progression.


Assuntos
Resinas Acrílicas , Hidrogéis , Esferoides Celulares , beta-Ciclodextrinas , Esferoides Celulares/efeitos dos fármacos , Humanos , Resinas Acrílicas/química , Resinas Acrílicas/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacologia , Células HeLa , Animais , Camundongos , Reagentes de Ligações Cruzadas/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Técnicas de Cultura de Células em Três Dimensões/métodos , Metacrilatos/química , Técnicas de Cocultura , Neoplasias/patologia
5.
Carbohydr Polym ; 339: 122257, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823923

RESUMO

Traditional solid phase extraction (SPE) suffers from a lack of specific adsorption. To overcome this problem, a combination of adsorption method and molecular imprinting technology by polydopamine modification was proposed to realize specific recognition of target compounds in SPE, which is of great significance to improve the separation efficiency of SPE. Cellulose hydrogel beads were prepared by dual cross-linking curing method and modified with polydopamine to make them hydrophilic and biocompatible. Subsequently, cellulose hydrogel-based molecularly imprinted beads (MIBs) were synthesized by surface molecular imprinting technology and used as novel column fillers in SPE to achieve efficient adsorption (34.16 mg·g-1) with specific selectivity towards camptothecin (CPT) in 120 min. The simulation and NMR analysis revealed that recognition mechanism of MIBs involved hydrogen bond interactions and Van der Waals effect. The MIBs were successful used in separating CPT from Camptotheca acuminata fruits, exhibiting impressive adsorption capacity (1.19 mg·g-1) and efficient recovery of CPT (81.54 %). Thus, an environmentally friendly column filler for SPE was developed, offering a promising avenue for utilizing cellulose-based materials in the selective separation of natural products.


Assuntos
Camptotecina , Celulose , Hidrogéis , Impressão Molecular , Extração em Fase Sólida , Camptotecina/química , Camptotecina/isolamento & purificação , Celulose/química , Adsorção , Impressão Molecular/métodos , Hidrogéis/química , Extração em Fase Sólida/métodos , Camptotheca/química , Polímeros/química , Interações Hidrofóbicas e Hidrofílicas , Indóis/química , Frutas/química
6.
Carbohydr Polym ; 339: 122255, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823921

RESUMO

Mixed infectious vaginitis poses a serious threat to female reproductive health due to complex pathogenic factors, a long course and easy recurrence. Currently, antibiotic-based treatment methods are facing a crisis of drug resistance and secondary dysbiosis. Exploring effective drugs for the treatment of mixed vaginitis from Paeonia suffruticosa Andr., a natural traditional Chinese medicine with a long history of medicinal use, is a feasible treatment strategy. P. suffruticosa Andr. leaf extract (PLE) has significant anti-bacterial effects due to its rich content of polyphenols and flavonoids. The polyphenols in peony leaves have the potential to make carboxymethyl chitosan form in situ gel. In the current study, PLE and carboxymethyl chitosan were combined to develop another type of natural anti-bacterial anti-oxidant hydrogel for the treatment of mixed infectious vaginitis. Through a series of characterisations, CP had a three-dimensional network porous structure with good mechanical properties, high water absorption, long retention and a slow-release drug effect. The mixed infectious vaginitis mouse model induced by a mixture of pathogenic bacteria was used to investigate the therapeutic effects of CP in vivo. The appearance of the vagina, H&E colouring of the tissue and inflammatory factors (TNF-α, IL-6) confirm the good anti-vaginal effect of CP. Therefore, CP was expected to become an ideal effective strategy to improve mixed infection vaginitis due to its excellent hydrogel performance and remarkable ability to regulate flora.


Assuntos
Antibacterianos , Quitosana , Hidrogéis , Paeonia , Extratos Vegetais , Folhas de Planta , Quitosana/química , Quitosana/farmacologia , Quitosana/análogos & derivados , Feminino , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Folhas de Planta/química , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Paeonia/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/uso terapêutico , Vaginose Bacteriana/tratamento farmacológico , Vaginose Bacteriana/microbiologia , Antioxidantes/farmacologia , Antioxidantes/química
7.
Carbohydr Polym ; 339: 122174, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823938

RESUMO

Segmental bone defects can arise from trauma, infection, metabolic bone disorders, or tumor removal. Hydrogels have gained attention in the field of bone regeneration due to their unique hydrophilic properties and the ability to customize their physical and chemical characteristics to serve as scaffolds and carriers for growth factors. However, the limited mechanical strength of hydrogels and the rapid release of active substances have hindered their clinical utility and therapeutic effectiveness. With ongoing advancements in material science, the development of injectable and biofunctionalized hydrogels holds great promise for addressing the challenges associated with segmental bone defects. In this study, we incorporated lyophilized platelet-rich fibrin (LPRF), which contains a multitude of growth factors, into a genipin-crosslinked gelatin/hyaluronic acid (GLT/HA-0.5 % GP) hydrogel to create an injectable and biofunctionalized composite material. Our findings demonstrate that this biofunctionalized hydrogel possesses optimal attributes for bone tissue engineering. Furthermore, results obtained from rabbit model with segmental tibial bone defects, indicate that the treatment with this biofunctionalized hydrogel resulted in increased new bone formation, as confirmed by imaging and histological analysis. From a translational perspective, this biofunctionalized hydrogel provides innovative and bioinspired capabilities that have the potential to enhance bone repair and regeneration in future clinical applications.


Assuntos
Regeneração Óssea , Liofilização , Gelatina , Ácido Hialurônico , Hidrogéis , Iridoides , Fibrina Rica em Plaquetas , Animais , Iridoides/química , Iridoides/farmacologia , Gelatina/química , Coelhos , Hidrogéis/química , Hidrogéis/farmacologia , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Regeneração Óssea/efeitos dos fármacos , Fibrina Rica em Plaquetas/química , Engenharia Tecidual/métodos , Reagentes de Ligações Cruzadas/química , Alicerces Teciduais/química , Tíbia/efeitos dos fármacos , Tíbia/cirurgia
8.
Carbohydr Polym ; 339: 122262, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823926

RESUMO

Chitosan has been widely used in biomedical fields due to its good antibacterial properties, excellent biocompatibility, and biodegradability. In this study, a pH-responsive and self-healing hydrogel was synthesized from 3-carboxyphenylboronic acid grafted with chitosan (CS-BA) and polyvinyl alcohol (PVA). The dynamic boronic ester bonds and intermolecular hydrogen bonds are responsible for the hydrogel formation. By changing the mass ratio of CS-BA and PVA, the tensile stress and compressive stress of hydrogel can controlled in the range of 0.61 kPa - 0.74 kPa and 295.28 kPa - 1108.1 kPa, respectively. After doping with tannic acid (TA)/iron nanocomplex (TAFe), the hydrogel successful killed tumor cells through the near infrared laser-induced photothermal conversion and the TAFe-triggered reactive oxygen species generation. Moreover, the photothermal conversion of the hydrogel and the antibacterial effect of CS and TA give the hydrogel a good antibacterial effect. The CS-BA/PVA/TAFe hydrogel exhibit good in vivo and in vitro anti-tumor recurrence and antibacterial ability, and therefore has the potential to be used as a powerful tool for the prevention of local tumor recurrence and bacterial infection after surgery.


Assuntos
Antibacterianos , Quitosana , Hidrogéis , Recidiva Local de Neoplasia , Álcool de Polivinil , Taninos , Quitosana/química , Quitosana/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Concentração de Íons de Hidrogênio , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Álcool de Polivinil/química , Camundongos , Recidiva Local de Neoplasia/prevenção & controle , Taninos/química , Taninos/farmacologia , Humanos , Staphylococcus aureus/efeitos dos fármacos , Ácidos Borônicos/química , Escherichia coli/efeitos dos fármacos , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Ferro/química , Infecção da Ferida Cirúrgica/prevenção & controle
9.
Science ; 384(6701): eadh9979, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38870291

RESUMO

Understanding cellular architectures and their connectivity is essential for interrogating system function and dysfunction. However, we lack technologies for mapping the multiscale details of individual cells and their connectivity in the human organ-scale system. We developed a platform that simultaneously extracts spatial, molecular, morphological, and connectivity information of individual cells from the same human brain. The platform includes three core elements: a vibrating microtome for ultraprecision slicing of large-scale tissues without losing cellular connectivity (MEGAtome), a polymer hydrogel-based tissue processing technology for multiplexed multiscale imaging of human organ-scale tissues (mELAST), and a computational pipeline for reconstructing three-dimensional connectivity across multiple brain slabs (UNSLICE). We applied this platform for analyzing human Alzheimer's disease pathology at multiple scales and demonstrating scalable neural connectivity mapping in the human brain.


Assuntos
Doença de Alzheimer , Encéfalo , Imagem Molecular , Humanos , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imagem Molecular/métodos , Fenótipo , Hidrogéis/química , Conectoma
10.
Nat Commun ; 15(1): 5027, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871693

RESUMO

Generating 3D bone cell networks in vitro that mimic the dynamic process during early bone formation remains challenging. Here, we report a synthetic biodegradable microporous hydrogel for efficient formation of 3D networks from human primary cells, analysis of cell-secreted extracellular matrix (ECM) and microfluidic integration. Using polymerization-induced phase separation, we demonstrate dynamic in situ formation of microporosity (5-20 µm) within matrix metalloproteinase-degradable polyethylene glycol hydrogels in the presence of living cells. Pore formation is triggered by thiol-Michael-addition crosslinking of a viscous precursor solution supplemented with hyaluronic acid and dextran. The resulting microporous architecture can be fine-tuned by adjusting the concentration and molecular weight of dextran. After encapsulation in microporous hydrogels, human mesenchymal stromal cells and osteoblasts spread rapidly and form 3D networks within 24 hours. We demonstrate that matrix degradability controls cell-matrix remodeling, osteogenic differentiation, and deposition of ECM proteins such as collagen. Finally, we report microfluidic integration and proof-of-concept osteogenic differentiation of 3D cell networks under perfusion on chip. Altogether, this work introduces a synthetic microporous hydrogel to efficiently differentiate 3D human bone cell networks, facilitating future in vitro studies on early bone development.


Assuntos
Técnicas de Cultura de Células em Três Dimensões , Diferenciação Celular , Matriz Extracelular , Hidrogéis , Células-Tronco Mesenquimais , Osteoblastos , Osteogênese , Humanos , Hidrogéis/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Matriz Extracelular/metabolismo , Porosidade , Técnicas de Cultura de Células em Três Dimensões/métodos , Polietilenoglicóis/química , Engenharia Tecidual/métodos , Ácido Hialurônico/química , Células Cultivadas , Alicerces Teciduais/química , Dextranos/química
11.
Sci Rep ; 14(1): 12864, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834664

RESUMO

Natural polymer-based hydrogels have demonstrated great potential as wound-healing dressings. They help to maintain a moist wound environment as well as promote faster healing. In this work, a multifunctional hydrogel was prepared using keratin, sodium alginate, and carboxymethyl chitosan with tannic acid modification. Micro-morphology of hydrogels has been performed by scanning electron microscopy. Fourier Transform Infrared Spectroscopy reveals the presence of hydrogen bonding. The mechanical properties of the hydrogels were examined using a universal testing machine. Furthermore, we investigated several properties of the modified hydrogel. These properties include swelling rate, water retention, anti-freezing properties, antimicrobial and antioxidant properties, hemocompatibility evaluation and cell viability test in vitro. The modified hydrogel has a three-dimensional microporous structure, the swelling rate was 1541.7%, the elastic modulus was 589.74 kPa, the toughness was 211.74 kJ/m3, and the elongation at break was 75.39%, which was similar to the human skin modulus. The modified hydrogel also showed inhibition of S. aureus and E. coli, as well as a DPPH scavenging rate of 95%. In addition, the modified hydrogels have good biological characteristics. Based on these findings, the K/SA/CCS hydrogel holds promise for applications in biomedical engineering.


Assuntos
Alginatos , Quitosana , Hidrogéis , Queratinas , Taninos , Quitosana/química , Quitosana/análogos & derivados , Taninos/química , Alginatos/química , Hidrogéis/química , Humanos , Queratinas/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antioxidantes/química , Antioxidantes/farmacologia , Escherichia coli/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Módulo de Elasticidade , Antibacterianos/química , Antibacterianos/farmacologia
12.
Nature ; 630(8015): 84-90, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38840015

RESUMO

Direct and precise monitoring of intracranial physiology holds immense importance in delineating injuries, prognostication and averting disease1. Wired clinical instruments that use percutaneous leads are accurate but are susceptible to infection, patient mobility constraints and potential surgical complications during removal2. Wireless implantable devices provide greater operational freedom but include issues such as limited detection range, poor degradation and difficulty in size reduction in the human body3. Here we present an injectable, bioresorbable and wireless metastructured hydrogel (metagel) sensor for ultrasonic monitoring of intracranial signals. The metagel sensors are cubes 2 × 2 × 2 mm3 in size that encompass both biodegradable and stimulus-responsive hydrogels and periodically aligned air columns with a specific acoustic reflection spectrum. Implanted into intracranial space with a puncture needle, the metagel deforms in response to physiological environmental changes, causing peak frequency shifts of reflected ultrasound waves that can be wirelessly measured by an external ultrasound probe. The metagel sensor can independently detect intracranial pressure, temperature, pH and flow rate, realize a detection depth of 10 cm and almost fully degrade within 18 weeks. Animal experiments on rats and pigs indicate promising multiparametric sensing performances on a par with conventional non-resorbable wired clinical benchmarks.


Assuntos
Hidrogéis , Pressão Intracraniana , Tecnologia sem Fio , Animais , Tecnologia sem Fio/instrumentação , Ratos , Suínos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Hidrogéis/química , Masculino , Ondas Ultrassônicas , Feminino , Concentração de Íons de Hidrogênio , Injeções/instrumentação , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Temperatura , Implantes Absorvíveis , Ratos Sprague-Dawley
13.
Sci Rep ; 14(1): 13050, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844812

RESUMO

This study introduces a novel approach for synthesizing a Cu(II)-based coordination polymer (CP), {[Cu(L)(4,4´-OBA)]·H2O}n (1), using a mixed ligand method. The CP was successfully prepared by reacting Cu(NO3)2·3H2O with the ligand 3,6-bis(benzimidazol-1-yl)pyridazine in the presence of 4,4´-H2OBA, demonstrating an innovative synthesis strategy. Furthermore, a novel hydrogel composed of hyaluronic acid (HA) and carboxymethyl chitosan (CMCS) with a porous structure was developed for drug delivery purposes. This hydrogel facilitates the encapsulation of CP1, and enables the loading of paclitaxel onto the composite to form HA/CMCS-CP1@paclitaxel. In vitro cell experiments demonstrated the promising modulation of thyroid cancer biomarker genes S100A6 and ARID1A by HA/CMCS-CP1@paclitaxel. Finally, reinforcement learning simulations were employed to optimize novel metal-organic frameworks, underscoring the innovative contributions of this study.


Assuntos
Cobre , Hidrogéis , Paclitaxel , Neoplasias da Glândula Tireoide , Paclitaxel/química , Paclitaxel/farmacologia , Cobre/química , Hidrogéis/química , Humanos , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/patologia , Quitosana/química , Quitosana/análogos & derivados , Linhagem Celular Tumoral , Ácido Hialurônico/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Portadores de Fármacos/química , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia
14.
Biosens Bioelectron ; 260: 116462, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38833834

RESUMO

Design and intelligent use renewable natural bioenergy is an important challenge. Electric microorganism-based materials are being serve as an important part of bioenergy devices for energy release and collection, calling for suitable skeleton materials to anchor live microbes. Herein we verified the feasibility of constructing bio-abiotic hybrid living materials based on the combination of gelatin, Li-ions and exoelectrogenic bacteria Shewanella oneidensis manganese-reducing-1 (MR-1). The gelatin-based mesh contains abundant pores, allowing microbes to dock and small molecules to diffuse. The hybrid materials hold plentiful electronegative groups, which effectively anchor Li-ions and facilitate their transition. Moreover, the electrochemical characteristics of the materials can be modulated through changing the ratios of gelatin, bacteria and Li-ions. Based on the gelatin-Li-ion-microorganism hybrid materials, a bifunctional device was fabricated, which could play dual roles alternatively, generation of electricity as a microbial fuel cell and energy storage as a pseudocapacitor. The capacitance and the maximum voltage output of the device reaches 68 F g-1 and 0.67 V, respectively. This system is a new platform and fresh start to fabricate bio-abiotic living materials for microbial electron storage and transfer. We expect the setup will extend to other living systems and devices for synthetic biological energy conversion.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Hidrogéis , Shewanella , Fontes de Energia Bioelétrica/microbiologia , Shewanella/química , Shewanella/metabolismo , Hidrogéis/química , Técnicas Biossensoriais/métodos , Gelatina/química , Lítio/química , Técnicas Eletroquímicas/métodos , Desenho de Equipamento , Capacitância Elétrica
15.
Biomed Mater ; 19(4)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38838701

RESUMO

Although different fabrication methods and biomaterials are used in scaffold development, hydrogels and electrospun materials that provide the closest environment to the extracellular matrix have recently attracted considerable interest in tissue engineering applications. However, some of the limitations encountered in the application of these methods alone in scaffold fabrication have increased the tendency to use these methods together. In this study, a bilayer scaffold was developed using 3D-printed gelatin methacryloyl (GelMA) hydrogel containing ciprofloxacin (CIP) and electrospun polycaprolactone (PCL)-collagen (COL) patches. The bilayer scaffolds were characterized in terms of chemical, morphological, mechanical, swelling, and degradation properties; drug release, antibacterial properties, and cytocompatibility of the scaffolds were also studied. In conclusion, bilayer GelMA-CIP/PCL-COL scaffolds, which exhibit sufficient porosity, mechanical strength, and antibacterial properties and also support cell growth, are promising potential substitutes in tissue engineering applications.


Assuntos
Antibacterianos , Materiais Biocompatíveis , Ciprofloxacina , Gelatina , Hidrogéis , Teste de Materiais , Metacrilatos , Poliésteres , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Gelatina/química , Ciprofloxacina/farmacologia , Ciprofloxacina/química , Poliésteres/química , Antibacterianos/farmacologia , Antibacterianos/química , Materiais Biocompatíveis/química , Hidrogéis/química , Porosidade , Metacrilatos/química , Colágeno/química , Animais , Humanos , Proliferação de Células/efeitos dos fármacos
16.
Nat Commun ; 15(1): 5036, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866734

RESUMO

A technique capable of label-free detection, mass spectrometry imaging (MSI) is a powerful tool for spatial investigation of native biomolecules in intact specimens. However, MSI has often been precluded from single-cell applications due to the spatial resolution limit set forth by the physical and instrumental constraints of the method. By taking advantage of the reversible interaction between the analytes and a superabsorbent hydrogel, we have developed a sample preparation and imaging workflow named Gel-Assisted Mass Spectrometry Imaging (GAMSI) to overcome the spatial resolution limits of modern mass spectrometers. With GAMSI, we show that the spatial resolution of MALDI-MSI can be enhanced ~3-6-fold to the sub-micrometer level without changing the existing mass spectrometry hardware or analysis pipeline. This approach will vastly enhance the accessibility of MSI-based spatial analysis at the cellular scale.


Assuntos
Hidrogéis , Lipidômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Lipidômica/métodos , Hidrogéis/química , Animais , Humanos , Camundongos , Lipídeos/química , Lipídeos/análise
17.
Sci Rep ; 14(1): 13352, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858467

RESUMO

Liver cancer ranks as the fifth leading cause of cancer-related death globally. Direct intratumoral injections of anti-cancer therapeutics may improve therapeutic efficacy and mitigate adverse effects compared to intravenous injections. Some challenges of intratumoral injections are that the liquid drug formulation may not remain localized and have unpredictable volumetric distribution. Thus, drug delivery varies widely, highly-dependent upon technique. An X-ray imageable poloxamer 407 (POL)-based drug delivery gel was developed and characterized, enabling real-time feedback. Utilizing three needle devices, POL or a control iodinated contrast solution were injected into an ex vivo bovine liver. The 3D distribution was assessed with cone beam computed tomography (CBCT). The 3D distribution of POL gels demonstrated localized spherical morphologies regardless of the injection rate. In addition, the gel 3D conformal distribution could be intentionally altered, depending on the injection technique. When doxorubicin (DOX) was loaded into the POL and injected, DOX distribution on optical imaging matched iodine distribution on CBCT suggesting spatial alignment of DOX and iodine localization in tissue. The controllability and localized deposition of this formulation may ultimately reduce the dependence on operator technique, reduce systemic side effects, and facilitate reproducibility across treatments, through more predictable standardized delivery.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Doxorrubicina , Sistemas de Liberação de Medicamentos , Hidrogéis , Agulhas , Poloxâmero , Hidrogéis/química , Animais , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Poloxâmero/química , Bovinos , Tomografia Computadorizada de Feixe Cônico/métodos , Fígado/diagnóstico por imagem , Fígado/metabolismo
18.
J Nanobiotechnology ; 22(1): 325, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858695

RESUMO

BACKGROUND: Osteoarthritis (OA) is an aging-related degenerative joint disorder marked by joint discomfort and rigidity. Senescent chondrocytes release pro-inflammatory cytokines and extracellular matrix-degrading proteins, creating an inflammatory microenvironment that hinders chondrogenesis and accelerates matrix degradation. Targeting of senescent chondrocytes may be a promising approach for the treatment of OA. Herein, we describe the engineering of an injectable peptide-hydrogel conjugating a stem cell-homing peptide PFSSTKT for carrying plasmid DNA-laden nanoparticles and Tanshinon IIA (pPNP + TIIA@PFS) that was designed to attenuate OA progression by improving the senescent microenvironment and fostering cartilage regeneration. RESULTS: Specifically, pPNP + TIIA@PFS elevates the concentration of the anti-aging protein Klotho and blocks the transmission of senescence signals to adjacent healthy chondrocytes, significantly mitigating chondrocyte senescence and enhancing cartilage integrity. Additionally, pPNP + TIIA@PFS recruit bone mesenchymal stem cells and directs their subsequent differentiation into chondrocytes, achieving satisfactory chondrogenesis. In surgically induced OA model rats, the application of pPNP + TIIA@PFS results in reduced osteophyte formation and attenuation of articular cartilage degeneration. CONCLUSIONS: Overall, this study introduces a novel approach for the alleviation of OA progression, offering a foundation for potential clinical translation in OA therapy.


Assuntos
Condrócitos , Condrogênese , Glucuronidase , Hidrogéis , Proteínas Klotho , Células-Tronco Mesenquimais , Osteoartrite , Plasmídeos , Ratos Sprague-Dawley , Animais , Osteoartrite/terapia , Osteoartrite/tratamento farmacológico , Hidrogéis/química , Ratos , Condrócitos/metabolismo , Condrócitos/efeitos dos fármacos , Glucuronidase/metabolismo , Glucuronidase/farmacologia , Condrogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Masculino , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Progressão da Doença , Nanopartículas/química , Humanos , DNA , Senescência Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos
19.
J Mater Chem B ; 12(23): 5571-5572, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38832500

RESUMO

Injectable hydrogels have emerged as intelligent and versatile materials that have been proven to possess huge potential for many biomedical applications including drug delivery, tissue engineering, and regenerative medicine. Hydrogels are a class of polymers with highly hydrated 3D networks that have microenvironmental properties such as oxygen/nutrient permeability that are similar to the native extracellular matrix. In addition to possessing the typical advantages of conventional hydrogels, injectable hydrogels offer extra unique features, enabling minimally invasive injectability and durability for irregularly shaped sites, and the possibility of processing these materials via, e.g., additive manufacturing techniques. As such, there has been a growing interest in using injectable hydrogels as scaffolds/carriers for therapeutic agents, including but not limited to drugs, cells, proteins, and bioactive molecules, targeted to treat chronic diseases including cancer, but also to facilitate the repair and regeneration of damaged organs/tissues. In this themed collection of Journal of Materials Chemistry B and Biomaterials Science, we include outstanding contributions covering recent developments in this rapidly evolving field of injectable hydrogels including emerging chemistries, synthesis pathways, fabrication methods, cell-material interaction, in vitro, ex vivo and in vivo performances, and subsequent targeted applications (drug delivery, tissue engineering and regenerative medicine) of injectable hydrogels.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Injeções , Engenharia Tecidual , Hidrogéis/química , Humanos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Medicina Regenerativa/métodos , Sistemas de Liberação de Medicamentos , Animais
20.
ACS Appl Mater Interfaces ; 16(23): 29600-29609, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38832656

RESUMO

Hydrogel tubes made of sodium alginate (SA) have potential applications in drug delivery, soft robots, biomimetic blood vessels, tissue stents, and other fields. However, the continuous preparation of hollow SA hydrogel tubes with good stability and size control remains a huge challenge for chemists, material scientists, and medical practitioners. Inspired by the plant apical growth strategy, a new method named soft cap-guided growth was proposed to produce SA hydrogel tubes. Due to the introduction of inert low gravity substances, such as air and heptane, into the extrusion needle in front of calcium chloride solution to form a soft cap, the SA hydrogel tubes with controllable sizes were fabricated rapidly and continuously without using a template through a negative gravitropism mechanism. The SA hydrogel tubes had good tensile strength, high burst pressure, and good cell compatibility. In addition, hydrogel tubes with complex patterns were conveniently created by controlling the motion path of a soft cap, such as a rotating SA bath or magnetic force. Our research provided a simple innovative technique to steer the growth of hydrogel tubes, which made it possible to mass produce hydrogel tubes with controllable sizes and programmable patterns.


Assuntos
Alginatos , Hidrogéis , Alginatos/química , Hidrogéis/química , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...