Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
1.
Biomacromolecules ; 25(5): 2814-2822, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38598701

RESUMO

Peptide-based hydrogels have gained considerable attention as a compelling platform for various biomedical applications in recent years. Their attractiveness stems from their ability to seamlessly integrate diverse properties, such as biocompatibility, biodegradability, easily adjustable hydrophilicity/hydrophobicity, and other functionalities. However, a significant drawback is that most of the functional self-assembling peptides cannot form robust hydrogels suitable for biological applications. In this study, we present the synthesis of novel peptide-PEG conjugates and explore their comprehensive hydrogel properties. The hydrogel comprises double networks, with the first network formed through the self-assembly of peptides to create a ß-sheet secondary structure. The second network is established through covalent bond formation via N-hydroxysuccinimide chemistry between peptides and a 4-arm PEG to form a covalently linked network. Importantly, our findings reveal that this hydrogel formation method can be applied to other peptides containing lysine-rich sequences. Upon encapsulation of the hydrogel with antimicrobial peptides, the hydrogel retained high bacterial killing efficiency while showing minimum cytotoxicity toward mammalian cells. We hope that this method opens new avenues for the development of a novel class of peptide-polymer hydrogel materials with enhanced performance in biomedical contexts, particularly in reducing the potential for infection in applications of tissue regeneration and drug delivery.


Assuntos
Tecnologia Biomédica , Hidrogéis , Peptídeos , Polietilenoglicóis , Hidrogéis/síntese química , Hidrogéis/farmacologia , Hidrogéis/normas , Hidrogéis/toxicidade , Peptídeos/química , Polietilenoglicóis/química , Tecnologia Biomédica/métodos , Humanos , Linhagem Celular , Fibroblastos/efeitos dos fármacos , Reologia , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos
2.
Int J Biol Macromol ; 266(Pt 1): 131175, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552696

RESUMO

Myocardial ischemia-reperfusion injury (MIRI) significantly contributes to the high incidence of complications and mortality associated with acute myocardial infarction. Recently, injectable electroconductive hydrogels (IECHs) have emerged as promising tools for replicating the mechanical, electroconductive, and physiological characteristics of cardiac tissue. Herein, we aimed to develop a novel IECH by incorporating irbesartan as a drug delivery system (DDS) for cardiac repair. Our approach involved merging a conductive poly-thiophene derivative (PEDOT: PSS) with an injectable dual-network adhesive hydrogel (DNAH) comprising a catechol-branched polyacrylamide network and a chitosan-hyaluronic acid covalent network. The resulting P-DNAH hydrogel, benefitting from a high conducting polymer content, a chemically crosslinked network, a robust dissipative matrix, and dynamic oxidation of catechol to quinone exhibited superior mechanical strength, desirable conductivity, and robust wet-adhesiveness. In vitro experiments with the P-DNAH hydrogel carrying irbesartan (P-DNAH-I) demonstrated excellent biocompatibility by cck-8 kit on H9C2 cells and a rapid initial release of irbesartan. Upon injection into the infarcted hearts of MIRI mouse models, the P-DNAH-I hydrogel effectively inhibited the inflammatory response and reduced the infarct size. In conclusion, our results suggest that the P-DNAH hydrogel, possessing suitable mechanical properties and electroconductivity, serves as an ideal IECH for DDS, delivering irbesartan to promote heart repair.


Assuntos
Resinas Acrílicas , Quitosana , Hidrogéis , Traumatismo por Reperfusão Miocárdica , Irbesartana/administração & dosagem , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Quitosana/administração & dosagem , Quitosana/química , Resinas Acrílicas/administração & dosagem , Resinas Acrílicas/química , Hidrogéis/administração & dosagem , Hidrogéis/química , Hidrogéis/toxicidade , Condutividade Elétrica , Elasticidade , Injeções , Linhagem Celular , Animais , Ratos , Modelos Animais de Doenças , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Sobrevivência Celular/efeitos dos fármacos
3.
Langmuir ; 39(33): 11839-11850, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37561909

RESUMO

Vitamin E derivatives are particularly effective in chemotherapy drug development because they are nontoxic, biocompatible, and selective. Among them, α-tocopheryl succinate (α-TOS) can act synergistically with some chemotherapeutic agents. However, its hydrophobicity limits its systemic administration, and localized formulations are not available. Herein, we developed an injectable hydrogel based on self-assembled micelles of a triblock amphiphilic derivative of α-TOS (PEG-2VES), in which doxorubicin (DOX) was encapsulated in the core of the micelles for combined chemotherapy. A molecule of α-TOS was grafted onto each end of poly(ethylene glycols) (PEGs) of different lengths. Hydrogels were prepared by dissolving the polymers or the DOX-loaded micelles in water at room temperature. The subcutaneously injected hydrogels kept their shape and sustainably released the payloads over 7 days without any noticeable inflammatory response. In vitro and in vivo results confirmed the synergistic antitumor effects of the hydrogel and loaded drug. Furthermore, DOX-loaded hydrogels showed greater therapeutic efficiency and fewer toxic side effects than DOX alone. Overall, this hydrogel acts as a multifunctional system that can deliver drug, improve the therapeutic effect, and minimize drug toxicity.


Assuntos
Micelas , Vitamina E , Hidrogéis/toxicidade , Doxorrubicina/farmacologia , Portadores de Fármacos/toxicidade , Polietilenoglicóis/farmacologia , alfa-Tocoferol , Linhagem Celular Tumoral
4.
Langmuir ; 39(27): 9476-9487, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37380965

RESUMO

Bacterial wound infections are one of the growing health and safety threats to the public. In this study, WO3-x/Ag2WO4 photocatalysts were synthesized, and heterogeneous structures were constructed for non-antibiotic bactericidal use. Due to the heterostructure constructed with Ag2WO4, the photogenerated carrier separation efficiency and reactive oxygen generation capacity of WO3-x were improved, which in turn improved the inactivation rate of bacteria. Also, this photocatalyst was loaded into PVA hydrogel for photodynamic treatment of bacterial wound infections. This hydrogel dressing was demonstrated to have good biosafety by in vitro cytotoxicity tests and to have a wound healing-promoting effect by in vivo wound healing experiments. This light-driven antimicrobial hydrogel has the potential ability to treat bacterial wound infections.


Assuntos
Desinfecção , Infecção dos Ferimentos , Humanos , Hidrogéis/toxicidade , Hidrogéis/química , Cicatrização , Antibacterianos/toxicidade , Antibacterianos/química , Bactérias , Infecção dos Ferimentos/tratamento farmacológico
5.
Langmuir ; 39(6): 2368-2379, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36725688

RESUMO

Hydrogels, which can withstand large deformations and have stable chemical properties, are considered a potential material for cartilage repair. However, hydrogels still face some challenges regarding their mechanical properties, tribological behavior, and biocompatibility. Thus, we synthesized a hybrid hydrogel by means of chemical cross-linking and transesterification using glycerol ethoxylate (GE) and zwitterionic polysulfobetaine methacrylate (PSBMA) as raw materials. The hybrid hydrogel showed excellent compressive stress at approximately 3.50 MPa and low loss factors (0.023-0.049). Moreover, because GE has good water binding properties, helping to form a stable hydration layer and maintain low energy dissipation, a low friction coefficient (µ ≈ 0.028) was obtained with the "soft-soft contact mode" of a hydrogel hemisphere and hydrogel disc under reciprocating motion. In vitro cytotoxicity, skin sensitization, and irritation reaction tests were carried out to show good biocompatibility of the GE-PSBMA hybrid hydrogel. In this study, a hybrid hydrogel with no potential cytotoxicity, strong compressive capacity, and excellent lubricity was obtained to provide a potential alternative for developing polymer hybrids, as well as demonstrating an idea for the application of hybrid hydrogels in cartilage replacement.


Assuntos
Cartilagem Articular , Hidrogéis , Hidrogéis/toxicidade , Hidrogéis/química , Fricção , Materiais Biocompatíveis/química , Polímeros
6.
Langmuir ; 39(5): 1838-1851, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36701815

RESUMO

Safflower (Carthamus tinctorius L.) is a potent natural antioxidant because of active compounds such as quercetin (QU) and luteolin (LU). These components prevent damage to the skin caused by free radicals from UV rays. However, due to the poor solubility and transdermal permeation, the effectiveness of the compounds in showing their activity was limited. In this study, we develop solid lipid nanoparticle (SLN)-based hydrogel formulations to enhance the solubility and penetration of two bioactive compounds found in safflower petals extract (SPE). The hot emulsification-ultrasonication method was used to produce SLNs, and to obtain high antioxidant activity, 100% v/v ethanol was used in the extraction procedure. The results showed that this approach could encapsulate >80% of both QU and LU. Moreover, Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD) spectra indicated that most of the QU and LU were trapped in a lipid matrix and dispersed homogeneously at the molecular level, increasing the solubility. Additionally, SLN-hydrogel composites are able to release two lipophilic bioactive compounds for 24 h, which also demonstrated increased skin retention and penetrability of the QU and LU up to 19-fold. In vitro blood biocompatibility showed that no hemolytic toxicity was observed below 500 µg/mL. Accordingly, the formulation was considered safe for use. Sun protective factor (SPF) test shows a value above 15, showing an excellent promising application as the photoprotective agent to prevent symptoms associated with photoinduced skin aging.


Assuntos
Carthamus tinctorius , Nanopartículas , Antioxidantes/farmacologia , Hidrogéis/toxicidade , Hidrogéis/química , Pele , Nanopartículas/química , Polímeros , Tamanho da Partícula , Varredura Diferencial de Calorimetria
7.
Langmuir ; 38(33): 10305-10312, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35960930

RESUMO

Nature-made hydrogels typically combine a wide range of multiscale fibers into biological composite networks, which offer an adaptive property. Inspired by nature, we report a facile approach to construct hybrid hydrogels from a range of natural or commercially available synthetic nongelling polymers (e.g., poly(ethylene glycol), poly(acrylic acid), carboxylated cellulose nanocrystal, and sodium alginate) at a concentration as low as 0.53 wt % using a nonionic fibrous peptide hydrogelator. Through simply mixing the peptide hydrogelator with a polymer aqueous solution, stable hybrid hydrogels can be formed with the concentration of hydrogelator at ∼0.05 wt %. The gel strength of the resulting hydrogels can be effectively modulated by the concentration, molecular weight, and terminal group of the polymer. We further demonstrate that the molecular interactions between the peptide hydrogelator and the polymer are very crucial for the formation of hybrid hydrogel, which synergically induce the gelation at considerably low concentrations. A peptide hydrogelator can be easily obtained by aminolysis of alkyl-oilgo(γ-benzyl-l-glutamate) samples. Live/Dead assays indicate low cytotoxicity of the hybrid hydrogel toward HeLa cells. Combining the low-cost, scalable synthesis, and biocompatibility, the prepared peptide hydrogelator presents a potential candidate to expand the scope of polymer hydrogels for biomedical applications and also shows considerable commercial significance.


Assuntos
Hidrogéis , Polímeros , Células HeLa , Humanos , Hidrogéis/química , Hidrogéis/toxicidade , Peptídeos/toxicidade , Polietilenoglicóis/química , Polímeros/química
8.
Invest Ophthalmol Vis Sci ; 63(1): 11, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34994769

RESUMO

Purpose: To determine the amoebicidal activity of functionalized poly-epsilon-lysine hydrogels (pɛK+) against Acanthamoeba castellanii. Methods: A. castellanii trophozoites and cysts were grown in the presence of pɛK solution (0-2.17 mM), pɛK or pɛK+ hydrogels, or commercial hydrogel contact lens (CL) for 24 hours or 7 days in PBS or Peptone-Yeast-Glucose (PYG) media (nutrient-deplete or nutrient-replete cultures, respectively). Toxicity was determined using propidium iodide and imaged using fluorescence microscopy. Ex vivo porcine corneas were inoculated with A. castellanii trophozoites ± pɛK, pɛK+ hydrogels or commercial hydrogel CL for 7 days. Corneal infection was assessed by periodic acid-Schiff staining and histologic analysis. Regrowth of A. castellanii from hydrogel lenses and corneal discs at 7 days was assessed using microscopy and enumeration. Results: The toxicity of pɛK+ hydrogels resulted in the death of 98.52% or 83.31% of the trophozoites at 24 hours or 7 days, respectively. The toxicity of pɛK+ hydrogels resulted in the death of 70.59% or 82.32% of the cysts in PBS at 24 hours or 7 days, respectively. Cysts exposed to pɛK+ hydrogels in PYG medium resulted in 75.37% and 87.14% death at 24 hours and 7 days. Ex vivo corneas infected with trophozoites and incubated with pɛK+ hydrogels showed the absence of A. castellanii in the stroma, with no regrowth from corneas or pɛK+ hydrogel, compared with infected-only corneas and those incubated in presence of commercial hydrogel CL. Conclusions: pɛK+ hydrogels demonstrated pronounced amoebicidal and cysticidal activity against A. castellanii. pɛK+ hydrogels have the potential for use as CLs that could minimize the risk of CL-associated Acanthamoeba keratitis.


Assuntos
Ceratite por Acanthamoeba/tratamento farmacológico , Acanthamoeba castellanii/efeitos dos fármacos , Amebicidas/farmacologia , Córnea/parasitologia , Infecções Oculares Parasitárias/tratamento farmacológico , Hidrogéis/farmacologia , Polilisina/farmacologia , Ceratite por Acanthamoeba/parasitologia , Amebicidas/toxicidade , Animais , Células Cultivadas , Soluções para Lentes de Contato/farmacologia , Modelos Animais de Doenças , Epitélio Corneano/efeitos dos fármacos , Infecções Oculares Parasitárias/parasitologia , Humanos , Hidrogéis/toxicidade , Microscopia de Fluorescência , Polilisina/toxicidade , Suínos , Trofozoítos/efeitos dos fármacos
9.
ACS Appl Mater Interfaces ; 14(1): 214-224, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34935338

RESUMO

Smart hydrogels with versatile properties, including a tunable gelation time, nonswelling attributes, and biocompatibility, are in great need in the biomedical field. To meet this urgent demand, we explored novel biomaterials with the desired properties from sessile marine organisms. To this end, a novel protein, Sbp9, derived from scallop byssus was extensively investigated, which features typical epidermal growth factor-like (EGFL) multiple repetitive motifs. Our current work demonstrated that the key fragment of Sbp9 (calcium-binding domain (CBD) and 4 EGFL repeats (CE4)) was able to form a smart hydrogel driven by noncovalent interactions and facilitated by disulfide bonds. More importantly, this smart hydrogel demonstrates several desirable and beneficial features, which could offset the drawbacks of typical protein-based hydrogels, including (1) a redox-responsive gelation time (from <1 to 60 min); (2) tunable mechanical properties, nonswelling abilities, and an appropriate microstructure; and (3) good biocompatibility and degradability. Furthermore, proof-of-concept demonstrations showed that the newly discovered hydrogel could be used for anticancer drug delivery and cell encapsulation. Taken together, a smart hydrogel inspired by marine sessile organisms with desirable properties was generated and characterized and demonstrated to have extensive applicability potential in biomedical applications, including tissue engineering and drug release.


Assuntos
Proteínas de Ligação ao Cálcio/química , Encapsulamento de Células/métodos , Portadores de Fármacos/química , Hidrogéis/química , Pectinidae/química , Materiais Inteligentes/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Antineoplásicos/química , Proteínas de Ligação ao Cálcio/toxicidade , Linhagem Celular Tumoral , Doxorrubicina/química , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Humanos , Hidrogéis/toxicidade , Peróxido de Hidrogênio/química , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Oxirredução , Porosidade , Domínios Proteicos , Ratos Sprague-Dawley , Materiais Inteligentes/toxicidade
10.
ACS Appl Mater Interfaces ; 14(1): 236-244, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34935360

RESUMO

Gelatin is one of the most versatile biopolymers in various biomedical applications. A gelatin derivative gelatin-catechol (Gel-C) was developed in this study to further optimize its chemical and physical properties such as thermal reversibility and injectability. We found that Gel-C remains in a solution state at room temperature, and the temperature-dependent gelation capability of gelatin is well preserved in Gel-C. Its gel-forming temperature decreased to about 10 °C (about 30 °C for gelatin), and a series of gelatin derivatives with different gel-forming temperatures (10-30 °C) were formed by mixing gelatin and Gel-C in different ratios. Additionally, irreversible Gel-C hydrogels could be made without the addition of external stimuli by combining the physical cross-linking of gelatin and the chemical cross-linking of catechol. At the same time, properties of Gel-C hydrogels such as thermal reversibility and injectability could be manipulated by controlling the temperature and pH of the precursor solution. By simulating the formation of an irreversible Gel-C hydrogel in vivo, an in situ gelling system was fabricated by lowering the local temperature of the hydrogel with cold shock, thus realizing targeted and localized molecular delivery with prolonged retention time. This simple system integrated with the temperature responsiveness of gelatin and chemical cross-linking of catechol groups thus provides a promising platform to fabricate an in situ gelling system for drug delivery.


Assuntos
Catecóis/química , Preparações de Ação Retardada/química , Gelatina/química , Hidrogéis/química , Animais , Catecóis/administração & dosagem , Catecóis/síntese química , Catecóis/toxicidade , Linhagem Celular , Temperatura Baixa , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/toxicidade , Liberação Controlada de Fármacos , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/química , Gelatina/administração & dosagem , Gelatina/síntese química , Gelatina/toxicidade , Hidrogéis/administração & dosagem , Hidrogéis/síntese química , Hidrogéis/toxicidade , Concentração de Íons de Hidrogênio , Injeções Subcutâneas , Masculino , Camundongos Nus , Transição de Fase/efeitos dos fármacos , Soroalbumina Bovina/química , Temperatura de Transição
11.
Pak J Pharm Sci ; 34(5(Supplementary)): 1849-1859, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34836850

RESUMO

In this study, the interpenetrating polymeric network (IPN) were fabricated via free radical polymerization using polymers hydroxypropyl methylcellulose (HPMC), Polyvinylpyrrolidone (PVP) and monomer Methacrylic acid (MAA) and also investigated their influence by changing their concentrations. The developed polymeric network is crosslinked via N' N' -methylene bis-acrylamide (MBA). Different characterizations have been performed to analyze fabricated interpenetrating polymeric network structure i.e., Scanning Electron Microscopy (SEM), X-ray Powder Diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FT-IR), Thermo-gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). Letrozole (LTZ) was loaded as a model drug in the developed system. Swelling dynamics as well as drug release behavior were thoroughly examined. FTIR studies corroborated the formation of interpenetrating polymeric network. SEM uncovered porous structure while TGA depicted enhanced thermal stability of polymeric network. PXRD depicted amorphous dispersion of LTZ. Swelling dynamics as well as LTZ release behavior from developed interpenetrating polymeric network hydrogels were dependent upon pH of the medium and concentration of pure reactants employed. Higuchi model was best fit to regression coefficient which indicated diffusion controlled mechanism of drug release. Acute oral toxicity study depicted no mortality or any signs relating to acute toxicity throughout the whole observed period. Hence, the designed interpenetrating polymeric network might turn out to be a safe and a potential carrier system for the delivery of LTZ in the treatment of breast cancer (BC).


Assuntos
Hidrogéis/química , Derivados da Hipromelose/química , Polímeros/química , Povidona/química , Animais , Reagentes de Ligações Cruzadas , Preparações de Ação Retardada , Portadores de Fármacos , Composição de Medicamentos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Hidrogéis/toxicidade , Concentração de Íons de Hidrogênio , Derivados da Hipromelose/toxicidade , Letrozol/administração & dosagem , Letrozol/química , Metacrilatos , Polímeros/toxicidade , Povidona/toxicidade , Coelhos
12.
J Mater Chem B ; 9(47): 9684-9699, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34821252

RESUMO

Recently, the incidence of chronic diabetic wounds increases continuously, and the existing clinical treatment is less effective. Thus, it is an urgent need to solve these problems for better clinical treatment effects. Herein, we prepared a brand-new tailored recombinant human collagen type III (rhCol III) and constructed a multifunctional microenvironment-responsive hydrogel carrier based on multifunctional antibacterial nanoparticles (PDA@Ag NPs) and our tailored rhCol III. The multifunctional smart hydrogel disintegrated quickly at the chronic diabetic wound sites and achieved the programed on-demand release of different therapeutic substances. The first released PDA@Ag NPs showed great antibacterial properties against S. aureus and E. coli. They could kill bacteria rapidly, and also showed antioxidant and anti-inflammatory effects at the wound site. The subsequent release of our tailored rhCol III could promote the proliferation and migration of mouse fibroblasts and endothelial cells during the proliferation and remodeling process of wound healing. Relevant results showed that the multifunctional smart hydrogel could promote the expression levels of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF), decrease the inflammatory response, accelerate the deposition of collagen and increase cell proliferation and angiogenesis, thereby speeding up the healing of infected chronic wounds. In a word, the hydrogel, which took into consideration the complex microenvironment at the wound site and multi-stage healing process, could achieve programmed and responsive release of different therapeutic substances to meet the treatment needs in different wound healing stages. More importantly, our work illustrated the great application potential of our brand-new rhCol III in promoting chronic wound repair and regeneration.


Assuntos
Antibacterianos/uso terapêutico , Colágeno Tipo III/uso terapêutico , Complicações do Diabetes/tratamento farmacológico , Hidrogéis/uso terapêutico , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/tratamento farmacológico , Animais , Antibacterianos/química , Antibacterianos/toxicidade , Linhagem Celular , Colágeno Tipo III/química , Liberação Controlada de Fármacos , Escherichia coli/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Hidrogéis/química , Hidrogéis/toxicidade , Indóis/química , Indóis/toxicidade , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/toxicidade , Camundongos , Polímeros/química , Polímeros/toxicidade , Coelhos , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/uso terapêutico , Prata/química , Prata/uso terapêutico , Prata/toxicidade , Staphylococcus aureus/efeitos dos fármacos
13.
J Mater Chem B ; 9(44): 9162-9173, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34697622

RESUMO

Polymer-based hydrogels used in the vitreous cavity could lead to an unsatisfactory gel-forming state, uncontrollable swelling, and potential cytotoxicity. Their application can significantly impair the filling effect and cause severe side effects in the surrounding tissues. To address the concerns, a poly(ethylene glycol)-engineered hydrogel capable of fast in situ gel formation (less than 1 min), with an ultralow swelling ratio and no cytotoxicity in the rabbits' eyes, was constructed as a vitreous substitute. The multi-arm polyethylene glycols (PEGs) modified with functional groups (thiol and maleimide) possess high reaction efficiency in the vitreous cavity and present excellent biomimetic characteristics of the natural vitreous humor in vitro. After injection with a double syringe via a 25-gauge needle in the eyes of rabbits for 6 months, the hydrogel functioned as an artificial vitreous body that could highly promote retinal detachment repair, with excellent biocompatibility and high transparency, and without bio-degradation or ocular complications. Collectively, the fast in situ forming hydrogel could achieve quick and good filling in the vitreous cavity without cytotoxicity, which makes it a promising long-term endotamponade substitute.


Assuntos
Tamponamento Interno/métodos , Hidrogéis/uso terapêutico , Polietilenoglicóis/uso terapêutico , Descolamento Retiniano/tratamento farmacológico , Animais , Hidrogéis/síntese química , Hidrogéis/toxicidade , Polietilenoglicóis/síntese química , Polietilenoglicóis/toxicidade , Coelhos , Cirurgia Vitreorretiniana/métodos , Corpo Vítreo/cirurgia
14.
ACS Appl Mater Interfaces ; 13(41): 48414-48422, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34633793

RESUMO

A novel supramolecular DNA hydrogel system was designed based on a directly synthesized chemically branched DNA. For the hydrogel formation, a self-dimer DNA with two sticky ends was designed as the linker to induce the gelation of B-Y. By programing the linker sequence, thermal and metal-ion responsiveness could be introduced into this hydrogel system. This supramolecular DNA hydrogel shows shear-thinning, designable responsiveness, and good biocompatibility, which will simplify the hydrogel composition and preparation process of the supramolecular DNA hydrogel and accelerate its biomedical applications.


Assuntos
DNA Complementar/química , Hidrogéis/química , Técnicas de Cultura de Células/métodos , Meios de Cultura/síntese química , Meios de Cultura/química , Meios de Cultura/toxicidade , DNA Complementar/síntese química , DNA Complementar/genética , DNA Complementar/toxicidade , Quadruplex G , Células HeLa , Humanos , Hidrogéis/síntese química , Hidrogéis/toxicidade , Hibridização de Ácido Nucleico , Transição de Fase , Reologia , Temperatura de Transição , Viscosidade
15.
Langmuir ; 37(40): 11657-11664, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34597056

RESUMO

To understand the molecular interaction mechanism and develop peptide-based hydrogels, a ß-hairpin peptide CBHH was used as the model peptide, and its coassembly performance with succinic, malic, and tartaric dicarboxylates has been investigated with circular dichroism spectroscopy (CD) and atomic force microscopy (AFM). The rheological properties and cell culture performance of the coassembled hydrogels have also been assessed. The results showed that the dicarboxylates could induce the folding and self-assembly of the ß-hairpin peptide and promote its gelation at low pH. The effects of the dicarboxylates on peptide self-assembly and hydrogel properties were correlated to their hydroxyl group number. The toxicity of the hydrogel has been assessed with NIH-3T3 cells by MTT and Calcein-AM/PI experiments, and it was confirmed that the hydrogel was biocompatible and could be used as cell culture scaffolds. We hope that this study would provide a novel way for biomaterial fabrication in cell and tissue engineering.


Assuntos
Hidrogéis , Peptídeos , Animais , Materiais Biocompatíveis , Hidrogéis/toxicidade , Camundongos , Peptídeos/toxicidade , Reologia , Engenharia Tecidual
16.
ACS Appl Mater Interfaces ; 13(39): 46270-46281, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34550685

RESUMO

Although immune checkpoint blockade (ICB) holds potential for the treatment of various tumors, a considerable proportion of patients show a limited response to ICB therapy due to the low immunogenicity of a variety of tumors. It has been shown that some chemotherapeutics can turn low-immunogenic tumors into immunogenic phenotypes by inducing a cascade of immune responses. In this paper, we synthesized an injectable micelle-incorporated hydrogel, which was able to sequentially release the chemotherapeutic gemcitabine (GEM) and the hydrophobic indoleamine 2, 3-dioxygenase inhibitor, d-1-methyltryptophan (d-1MT) at tumor sites. The hydrogel was formed via the thiol-ene click reaction between the thiolated chondroitin sulfate and the micelle formed by amphiphilic methacrylated Pluronic F127, in which hydrophobic d-1MT was encapsulated in the core of the F127 micelles and the hydrophilic GEM was dispersed in the hydrogel network. The successive release of chemotherapeutics and immune checkpoint inhibitors at tumor tissues will first promote the infiltration of cytotoxic T lymphocytes and subsequently induce a robust antitumor immune response, ultimately exerting a synergetic therapeutic efficacy. In a 4T1 tumor-bearing mice model, our results showed that the combination of chemotherapy and immunotherapy through the micelle-incorporated hydrogel triggered an effective antitumor immune response and inhibited tumor metastasis to the lung. Our results highlight the potential of the injectable micelle-incorporated hydrogel for the localized chemo-immunotherapy in the treatment of breast tumors.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Preparações de Ação Retardada/química , Hidrogéis/química , Micelas , Animais , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linhagem Celular Tumoral , Sulfatos de Condroitina/síntese química , Sulfatos de Condroitina/química , Sulfatos de Condroitina/toxicidade , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/toxicidade , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Feminino , Hidrogéis/síntese química , Hidrogéis/toxicidade , Imunoterapia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Camundongos Endogâmicos BALB C , Metástase Neoplásica/prevenção & controle , Poloxâmero/análogos & derivados , Poloxâmero/toxicidade , Triptofano/análogos & derivados , Triptofano/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Gencitabina
17.
ACS Appl Mater Interfaces ; 13(38): 45175-45190, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34525798

RESUMO

Chemotherapy is one of the main treatments for cancer; however, it usually causes severe atrophy of immune organs and self-immunity damage to patients. Human lactoferrin (hLF) is a multiple biofunctional protein in regulating the immune response and thus holds great promise to alleviate chemotherapy-caused immunosuppression. However, a sufficient hLF resource and efficient delivery of hLF remain a challenge. Here, we provide a useful strategy to simultaneously solve these two problems. A silk sericin hydrogel system delivering recombinant hLF (SSH-rhLF) was fabricated to alleviate the chemotherapeutic drug-caused side effects by rhLF-carrying silk cocoons, which were cost-effectively produced by a transgenic silkworm strain as the resource. SSH-rhLF with a uniform porous microstructural morphology, a dominant ß-sheet internal structure, adjustable concentration and sustainable release of the rhLF, and non-cytotoxicity properties was demonstrated. Interestingly, the sericin hydrogel showed effective protection of the rhLF from degradation in the stomach and small intestine, thus prolonging the bioactivity and bioavailability of rhLF. As a result, the oral administration of SSH-rhLF with a low rhLF dose showed significant therapeutic effects on enhancing the immune organs of cyclophosphamide (CTX)-treated mice by protecting the splenic follicles, promoting the expression of immunoregulatory factors, and recovering the intestinal flora family from CTX-induced imbalance, which were similar to those achieved by oral administration of a high dose of free hLF in the solution form. The results suggest that the strategy of producing rhLF silk cocoons via feeding transgenic silkworms overcomes well the shortage of rhLF resources, improves the bioavailability of oral rhLF, and alleviates the side effects of chemotherapeutic drugs on immune organs. The oral SSH-rhLF will be promising for applications in cancer chemotherapy and immunity enhancement of patients.


Assuntos
Portadores de Fármacos/química , Hidrogéis/química , Síndromes de Imunodeficiência/tratamento farmacológico , Lactoferrina/uso terapêutico , Sericinas/química , Administração Oral , Animais , Animais Geneticamente Modificados , Bombyx/química , Ciclofosfamida , Portadores de Fármacos/toxicidade , Estabilidade de Medicamentos , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Hidrogéis/toxicidade , Síndromes de Imunodeficiência/induzido quimicamente , Lactoferrina/administração & dosagem , Lactoferrina/farmacocinética , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/uso terapêutico , Sericinas/toxicidade
18.
ACS Appl Mater Interfaces ; 13(39): 46938-46950, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34559507

RESUMO

Smart response hydrogel has a broad application prospect in human health real-time monitoring due to its responses to a variety of stimuli. In this study, we developed a novel smart hydrogel dressing based on conductive MXene nanosheets and a temperature-sensitive PNIPAm polymer. γ-Methacryloxypropyltrimethoxysilane (KH570) was selected to functionalize the surface of MXene further to improve the interface compatibility between MXene and PNIPAm. Our prepared K-M/PNIPAm hydrogel was found to have a strain-sensitive property, as well as a respond to NIR phase change and volume change. When applied as a strain flexible sensor, this K-M/PNIPAm hydrogel exhibited a high strain sensitivity with a gauge factor (GF) of 4.491, a broad working strain range of ≈250%, a fast response of ∼160 ms, and good cycle stability (i.e., 3000 s at 20% strain). Besides, this K-M/PNIPAm hydrogel can be used as an efficient NIR light-controlled drug release carrier to achieve on-demand drug release. This work paved the way for the application of smart response hydrogel in human health real-time monitoring and NIR-controlled drug release functions.


Assuntos
Portadores de Fármacos/química , Hidrogéis/química , Materiais Inteligentes/química , Resinas Acrílicas/química , Resinas Acrílicas/farmacologia , Resinas Acrílicas/efeitos da radiação , Resinas Acrílicas/toxicidade , Animais , Linhagem Celular , Portadores de Fármacos/farmacologia , Portadores de Fármacos/efeitos da radiação , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos/efeitos da radiação , Elasticidade , Hidrogéis/farmacologia , Hidrogéis/efeitos da radiação , Hidrogéis/toxicidade , Raios Infravermelhos , Masculino , Metacrilatos/química , Metacrilatos/farmacologia , Metacrilatos/efeitos da radiação , Metacrilatos/toxicidade , Camundongos , Ratos Sprague-Dawley , Silanos/química , Silanos/farmacologia , Silanos/efeitos da radiação , Silanos/toxicidade , Pele/efeitos dos fármacos , Materiais Inteligentes/farmacologia , Materiais Inteligentes/efeitos da radiação , Materiais Inteligentes/toxicidade , Estresse Mecânico , Tetraciclina/química , Titânio/química , Titânio/farmacologia , Titânio/efeitos da radiação , Titânio/toxicidade , Cicatrização/efeitos dos fármacos
19.
Carbohydr Polym ; 273: 118589, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560990

RESUMO

Nowadays, vascularization and mineralization of bone defects is the main bottleneck in the bone regeneration field that is needed to be overcome and developed. Here, we prepared novel in-situ formed injectable hydrogels based on chitosan biguanidine and carboxymethylcellulose loaded with vascular endothelial growth factor (VEGF) and recombinant Bone morphogenetic protein 2 (BMP-2) and studied its influence on osteoblastic differentiation of dental pulp stem cells (DPSCs). The sequential release behavior of the VEGF and BMP-2 from hydrogels adjusted with the pattern of normal human bone growth. MTT assay exhibited that these hydrogels were non-toxic and significantly increased DPSCs proliferation. The Real-time PCR and Western blot analysis on CG11/BMP2-VEGF showed significantly higher gene and protein expression of ALP, COL1α1, and OCN. These results were confirmed by mineralization assay by Alizarin Red staining and Alkaline phosphatase enzyme activity. Based on these evaluations, these hydrogel holds potential as an injectable bone tissue engineering platform.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Portadores de Fármacos/química , Hidrogéis/química , Osteogênese/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Proteína Morfogenética Óssea 2/química , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Quitosana/análogos & derivados , Quitosana/toxicidade , Polpa Dentária/citologia , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Guanidinas/química , Guanidinas/toxicidade , Humanos , Hidrogéis/toxicidade , Osteoblastos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Resistência à Tração , Alicerces Teciduais/química , Fator de Crescimento Transformador beta/química , Fator A de Crescimento do Endotélio Vascular/química
20.
Carbohydr Polym ; 273: 118607, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34561006

RESUMO

Injectable hydrogels have shown therapeutic effects on wound repair, but most of them exhibit poor mechanical strength. The impacts of stiff injectable hydrogels on cell behavior and wound healing remain unclear. Herein, an injectable hydrogel was developed based on thiolated poly(γ-glutamic acid) (γ-PGA-SH) and glycidyl methacrylate-conjuated oxidized hyaluronic acid (OHA-GMA). Thiol-methacrylate Michael chemistry-mediated post-stabilization and increase of polymer concentration were found to improve the mechanical strength of γ-PGA-SH/OHA-GMA hydrogel. Moreover, in vitro studies confirmed its biodegradability, biocompatibility, and self-healing property. Using the mechanically-tunable hydrogel, it further showed that fibroblasts migrated faster on the surface of stiffer hydrogel, but infiltrated slowly inside it compared with softer hydrogel. In animal experiments, the injectable hydrogel could promote wound healing by increasing collagen deposition and vascularization. In summary, γ-PGA-SH/OHA-GMA hydrogel is able to regulate migration and infiltration of fibroblasts by altering stiffness and offers effective in situ forming scaffolds towards skin tissue regeneration.


Assuntos
Movimento Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Hidrogéis/farmacologia , Alicerces Teciduais/química , Cicatrização/efeitos dos fármacos , Animais , Linhagem Celular , Módulo de Elasticidade , Feminino , Ácido Hialurônico/síntese química , Ácido Hialurônico/farmacologia , Ácido Hialurônico/toxicidade , Hidrogéis/síntese química , Hidrogéis/toxicidade , Camundongos , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/síntese química , Ácido Poliglutâmico/farmacologia , Ácido Poliglutâmico/toxicidade , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...