Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 478
Filtrar
1.
Org Biomol Chem ; 20(7): 1444-1452, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35084426

RESUMO

Thioacetazone (TAC) used to be a highly affordable, bacteriostatic anti-TB drug but its use has now been restricted, owing to severe side-effects and the frequent appearance of the TAC resistant M. tuberculosis strains. In order to develop new TAC analogues with fewer side-effects, its target enzymes need to be firmly established. It is now hypothesized that TAC, after being activated by a monooxygenase EthA, binds to the dehydratase complex HadAB that finally leads to a covalent modification of HadA, the main partner involved in dehydration. Another dehydratase enzyme, namely HadC in the HadBC complex, is also thought to be a possible target for TAC, for which definitive evidence is lacking. Herein, using a recently exploited azido naphthalimide template attached to thioacetazone and adopting a photo-affinity based labelling technique, coupled with electrophoresis and in-gel visualization, we have successfully demonstrated the involvement of these enzymes including HadBC along with a possible participation of an alternate mycobacterial monooxygenase MymA. In silico studies also revealed strong interactions between the TAC-probe and the concerned enzymes.


Assuntos
Antituberculosos/farmacologia , Inibidores Enzimáticos/farmacologia , Corantes Fluorescentes/farmacologia , Hidroliases/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Tioacetazona/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Hidroliases/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Mycobacterium tuberculosis/enzimologia , Tioacetazona/síntese química , Tioacetazona/química
2.
Proteins ; 90(1): 3-17, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34288118

RESUMO

Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis (TB), employs ten enzymes including imidazoleglycerol-phosphate dehydratase (IGPD) for de novo biosynthesis of histidine. The absence of histidine-biosynthesis in humans combined with its essentiality for Mtb makes the enzymes of this pathway major anti-TB drug targets. We explored the inhibitory potential of a small molecule ß-(1,2,4-Triazole-3-yl)-DL-alanine (DLA) against Mtb IGPD. DLA exhibits an in vitro inhibitory efficacy in the lower micromolar range. Higher-resolution crystal structures of native and substrate-bound Mtb IGPD provided additional structural features of this important drug target. Crystal structure of IGPD-DLA complex at a resolution of 1.75 Å, confirmed that DLA locks down the function of the enzyme by binding in the active site pocket of the IGPD mimicking the substrate-binding mode to a high degree. In our biochemical study, DLA showed an efficient inhibition of Mtb IGPD. Furthermore, DLA also showed bactericidal activity against Mtb and Mycobacterium smegmatis and inhibited their growth in respective culture medium. Importantly, owing to the favorable ADME and physicochemical properties, it serves as an important lead molecule for further derivatizations.


Assuntos
Antibacterianos , Proteínas de Bactérias , Hidroliases , Mycobacterium tuberculosis , Triazóis , Antibacterianos/química , Antibacterianos/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Humanos , Hidroliases/antagonistas & inibidores , Hidroliases/química , Hidroliases/metabolismo , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Triazóis/química , Triazóis/metabolismo , Tuberculose/microbiologia
3.
Nat Commun ; 12(1): 7024, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857733

RESUMO

The sugar fucose is expressed on mammalian cell membranes as part of glycoconjugates and mediates essential physiological processes. The aberrant expression of fucosylated glycans has been linked to pathologies such as cancer, inflammation, infection, and genetic disorders. Tools to modulate fucose expression on living cells are needed to elucidate the biological role of fucose sugars and the development of potential therapeutics. Herein, we report a class of fucosylation inhibitors directly targeting de novo GDP-fucose biosynthesis via competitive GMDS inhibition. We demonstrate that cell permeable fluorinated rhamnose 1-phosphate derivatives (Fucotrim I & II) are metabolic prodrugs that are metabolized to their respective GDP-mannose derivatives and efficiently inhibit cellular fucosylation.


Assuntos
Inibidores Enzimáticos/farmacologia , Fucose/química , Guanosina Difosfato Fucose/antagonistas & inibidores , Hidroliases/antagonistas & inibidores , Pró-Fármacos/farmacologia , Animais , Sequência de Carboidratos , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Expressão Gênica , Glicosilação/efeitos dos fármacos , Guanosina Difosfato Fucose/biossíntese , Halogenação , Humanos , Hidroliases/genética , Hidroliases/metabolismo , Células Jurkat , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Camundongos , Pró-Fármacos/síntese química , Relação Estrutura-Atividade , Células THP-1
4.
J Agric Food Chem ; 69(46): 13871-13880, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34780187

RESUMO

IGPD is an essential metalloenzyme that catalyzes histidine biosynthesis. We found that its C-terminus loop region has a vital role in determining enzyme activity but has been hardly mentioned before. In this work, we focused on the dynamic feature and function of C-Loop in Arabidopsis thaliana and Saccharomyces cerevisiae IGPD (At_IGPD and Sc_IGPD, respectively). Due to the high flexibility of this region, we performed a total of 3.4 µs of accelerated molecular dynamics simulation to enhance sampling. Inhibitor C348 in At-IGPD exhibited instability in the later stage of simulation, while the characteristic sequence in Sc_IGPD reduced solvent interference and significantly restrained the interaction mode. For the C-Loop-assisted ligand-binding process, we proposed a "Lock-Lid" model. Meanwhile, the dissociated ligand in At_IGPD served as a probe, a metastable pocket was determined at the root of C-Loop, and its rationality was proved by theoretical verification and enzyme mutation experiments. This study complemented the important structural features of C-Loop and provided a basis for the design of selective inhibitors. Considering the absence in mammals, we suggested that IGPD could be a promising germicide target.


Assuntos
Hidroliases/química , Hidroliases/fisiologia , Animais , Anti-Infecciosos/farmacologia , Arabidopsis/enzimologia , Hidroliases/antagonistas & inibidores , Saccharomyces cerevisiae/enzimologia
5.
Bioorg Med Chem ; 52: 116518, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34826680

RESUMO

Dihydrodipicolinate synthase (DHDPS), responsible for the first committed step of the diaminopimelate pathway for lysine biosynthesis, has become an attractive target for the development of new antibacterial and herbicidal agents. Herein, we report the discovery and exploration of the first inhibitors of E. coli DHDPS which have been identified from screening lead and are not based on substrates from the lysine biosynthesis pathway. Over 50 thiazolidinediones and related analogues have been prepared in order to thoroughly evaluate the structure-activity relationships against this enzyme of significant interest.


Assuntos
Inibidores Enzimáticos/farmacologia , Compostos Heterocíclicos/farmacologia , Hidroliases/antagonistas & inibidores , Tiazolidinedionas/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Escherichia coli/enzimologia , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Hidroliases/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Tiazolidinedionas/síntese química , Tiazolidinedionas/química
6.
RNA ; 27(11): 1400-1411, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34376564

RESUMO

Pseudouridine (Ψ) is the most common noncanonical ribonucleoside present on mammalian noncoding RNAs (ncRNAs), including rRNAs, tRNAs, and snRNAs, where it contributes ∼7% of the total uridine level. However, Ψ constitutes only ∼0.1% of the uridines present on mRNAs and its effect on mRNA function remains unclear. Ψ residues have been shown to inhibit the detection of exogenous RNA transcripts by host innate immune factors, thus raising the possibility that viruses might have subverted the addition of Ψ residues to mRNAs by host pseudouridine synthase (PUS) enzymes as a way to inhibit antiviral responses in infected cells. Here, we describe and validate a novel antibody-based Ψ mapping technique called photo-crosslinking-assisted Ψ sequencing (PA-Ψ-seq) and use it to map Ψ residues on not only multiple cellular RNAs but also on the mRNAs and genomic RNA encoded by HIV-1. We describe 293T-derived cell lines in which human PUS enzymes previously reported to add Ψ residues to human mRNAs, specifically PUS1, PUS7, and TRUB1/PUS4, were inactivated by gene editing. Surprisingly, while this allowed us to assign several sites of Ψ addition on cellular mRNAs to each of these three PUS enzymes, Ψ sites present on HIV-1 transcripts remained unaffected. Moreover, loss of PUS1, PUS7, or TRUB1 function did not significantly reduce the level of Ψ residues detected on total human mRNA below the ∼0.1% level seen in wild-type cells, thus implying that the PUS enzyme(s) that adds the bulk of Ψ residues to human mRNAs remains to be defined.


Assuntos
Anticorpos Monoclonais/imunologia , Edição de Genes , Transferases Intramoleculares/metabolismo , Pseudouridina/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Células HEK293 , Infecções por HIV/genética , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Hidroliases/antagonistas & inibidores , Hidroliases/genética , Hidroliases/imunologia , Hidroliases/metabolismo , Transferases Intramoleculares/antagonistas & inibidores , Transferases Intramoleculares/genética , Transferases Intramoleculares/imunologia , Pseudouridina/imunologia , RNA Mensageiro/genética , RNA Viral/genética
7.
Biochim Biophys Acta Gen Subj ; 1865(10): 129964, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34252514

RESUMO

Background Mycobacterial FASII pathway is governed by the Protein-Protein Interaction mediated dynamics existent between Acyl Carrier Protein and its partner enzymes. The dehydratase HadAB, involved in the third step of FASII synthesis has remained a key target of drugs like Thiacetazone (TAC) and its consequence on AcpM binding is yet to be deciphered. Owing to the transient nature of these interactions, analysing their implications as a drug target has been exhausting. Methods In this context, we have developed an in vitro method to study the effect of thiocarbamide-containing compounds, TAC and SPA0355 (a thiourea analogue) against mycobacterial HadAB. Additionally, by utilizing crypto-ACP (NBD-tagged Acyl Carrier Protein) as a tool of our choice, we attempted at exploring the effect of TAC and SPA0355 on mycobacterial HadAB. Results SPA0355 behaves at par with TAC and undergoes activation in the presence of monooxygenase EthA thus, bringing about a covalent modification in HadA subunit of HadAB. The crypto-ACP method provides insights into the altered substrate housing capability in HadAB associated with the impediment of its AcpM mediated functionality; an outcome attributed to the repercussions associated with the binding of the aforementioned thiourea compounds. Conclusion This investigation has assisted in unveiling a two-step mechanism undertaken by AcpM for interacting with its corresponding partner protein during acyl chain transfer. General significance This study highlights the alterations brought about by drug binding in the interplay between ACP and HadAB. Additionally, this work for the first time establishes the role of SPA0355 as a promising drug candidate against dehydratase HadAB.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Hidroliases/antagonistas & inibidores , Mycobacterium/enzimologia , Tioureia/farmacologia , Proteínas de Bactérias/metabolismo , Inibidores Enzimáticos/química , Hidroliases/metabolismo , Tioureia/análogos & derivados , Tioureia/química
8.
Arch Biochem Biophys ; 702: 108819, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33639104

RESUMO

Dihydrodipicolinate synthase (DHDPS) catalyzes the first step in the biosynthetic pathway for production of l-lysine in bacteria and plants. The enzyme has received interest as a potential drug target owing to the absence of the enzyme in mammals. The DHDPS reaction is the rate limiting step in lysine biosynthesis and involves the condensation of l-aspartate-ß-semialdehyde and pyruvate to form 2, 3-dihydrodipicolinate. 2, 4-oxo-pentanoic acid (acetopyruvate) is a slow-binding inhibitor of DHDPS that is competitive versus pyruvate with an initial Ki of about 20 µM and a final inhibition constant of about 1.4 µM. The enzyme:acetopyruvate complex displays an absorbance spectrum with a λmax at 304 nm and a longer wavelength shoulder. The rate constant for formation of the complex is 86 M-1 s-1. The enzyme forms a covalent enamine complex with the first substrate pyruvate and can be observed spectrally with a λmax at 271 nm. The spectra of the enzyme in the presence of pyruvate and acetopyruvate shows the initial formation of the pyruvate enamine intermediate followed by the slower appearance of the E:acetopyruvate spectra with a rate constant of about 0.013 s-1. The spectral studies suggest the formation of a Schiff base between acetopyruvate and K161 on enzyme that subsequently deprotonates to form a resonance stabilized anion similar to the enamine intermediate formed with pyruvate. The crystal structure of the E:acetopyruvate complex confirms the formation of the Schiff base between acetopyruvate and K161.


Assuntos
Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Hidroliases/antagonistas & inibidores , Hidroliases/metabolismo , Piruvatos/metabolismo , Piruvatos/farmacologia , Domínio Catalítico , Cristalografia por Raios X , Hidroliases/química , Ligação de Hidrogênio , Cinética , Simulação de Acoplamento Molecular , Ligação Proteica , Análise Espectral
9.
Mol Divers ; 25(1): 1-12, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31820222

RESUMO

Tuberculosis, caused by Mycobacterium tuberculosis (M. tuberculosis), is still responsible for a large number of fatal cases, especially in developing countries with alarming rates of incidence and prevalence worldwide. Mycobacterium tuberculosis has a remarkable ability to develop new resistance mechanisms to the conventional antimicrobials treatment. Because of this, there is an urgent need for novel bioactive compounds for its treatment. The dehydroquinate dehydratase II (DHQase II) is considered a key enzyme of shikimate pathway, and it can be used as a promising target for the design of new bioactive compounds with antibacterial action. The aim of this work was the construction of QSAR models to aid the design of new potential DHQase II inhibitors. For that purpose, various molecular modeling approaches, such as activity cliff, QSAR models and computer-aided ligand design were utilized. A predictive in silico 4D-QSAR model was built using a database comprising 86 inhibitors of DHQase II, and the model was used to predict the activity of the designed ligands. The obtained model proved to predict well the DHQase II inhibition for an external validation dataset ([Formula: see text] = 0.72). Also, the Activity Cliff analysis shed light on important structural features applied to the ligand design.


Assuntos
Antituberculosos/farmacologia , Inibidores Enzimáticos/farmacologia , Hidroliases/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Sítios de Ligação/efeitos dos fármacos , Desenho de Fármacos , Ligantes , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , Relação Quantitativa Estrutura-Atividade
10.
Biotechnol Prog ; 37(1): e3061, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32748555

RESUMO

Antibody-dependent cellular cytotoxicity (ADCC) is the primary mechanism of actions for several marketed therapeutic antibodies (mAbs) and for many more in clinical trials. The ADCC efficacy is highly dependent on the ability of therapeutic mAbs to recruit effector cells such as natural killer cells, which induce the apoptosis of targeted cells. The recruitment of effector cells by mAbs is negatively affected by fucose modification of N-Glycans on the Fc; thus, utilization of afucosylated mAbs has been a trend for enhanced ADCC therapeutics. Most of afucosylated mAbs in clinical or commercial manufacturing were produced from Fut8-/- Chinese hamster ovary cells (CHO) host cells, generally generating low yields compared to wildtype CHO host. This study details the generation and characterization of two engineered CHOZN® cell lines, in which the enzyme involved in guanosine diphosphate (GDP)-fucose synthesis, GDP mannose-4,6-dehydratase (Gmds) and GDP-L-fucose synthase (FX), was knocked out. The top host cell lines for each of the knockouts, FX-/- and Gmds-/-, were selected based on growth robustness, bulk MSX selection tolerance, production titer, fucosylation level, and cell stability. We tested the production of two proprietary IgG1 mAbs in the engineered host cells, and found that the titers were comparable to CHOZN® cells. The mAbs generated from either KO cell line exhibited loss of fucose modification, leading to significantly boosted FcγRIIIa binding and ADCC effects. Our data demonstrated that both FX-/- and Gmds-/- host cells could replace Fut8-/- CHO cells for clinical manufacturing of antibody therapeutics.


Assuntos
Anticorpos Monoclonais/biossíntese , Carboidratos Epimerases/antagonistas & inibidores , Fucose/metabolismo , Guanosina Difosfato/metabolismo , Hidroliases/antagonistas & inibidores , Cetona Oxirredutases/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Sequência de Bases , Células CHO , Sistemas CRISPR-Cas , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Cricetinae , Cricetulus , Glicosilação , Humanos , Hidroliases/genética , Hidroliases/metabolismo , Imunoglobulina G/imunologia , Cetona Oxirredutases/genética , Cetona Oxirredutases/metabolismo , Receptores de IgG/metabolismo
11.
FEBS Lett ; 594(9): 1453-1463, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31943170

RESUMO

The rise of antibiotic resistance combined with the lack of new products entering the market has led to bacterial infections becoming one of the biggest threats to global health. Therefore, there is an urgent need to identify novel antibiotic targets, such as dihydrodipicolinate synthase (DHDPS), an enzyme involved in the production of essential metabolites in cell wall and protein synthesis. Here, we utilised a 7-residue sequence motif to identify mis-annotation of multiple DHDPS genes in the high-priority Gram-negative bacteria Acinetobacter baumannii and Klebsiella pneumoniae. We subsequently confirmed these mis-annotations using a combination of enzyme kinetics and X-ray crystallography. Thus, this study highlights the need to ensure genes encoding promising drug targets, like DHDPS, are annotated correctly, especially for clinically important pathogens. PDB ID: 6UE0.


Assuntos
Acinetobacter baumannii/química , Proteínas de Bactérias/química , Hidroliases/química , Hidroliases/genética , Klebsiella pneumoniae/química , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dicroísmo Circular , Cristalografia por Raios X , Inibidores Enzimáticos/química , Hidroliases/antagonistas & inibidores , Hidroliases/metabolismo , Klebsiella pneumoniae/efeitos dos fármacos , Lisina/metabolismo , Modelos Moleculares , Anotação de Sequência Molecular , Reprodutibilidade dos Testes
12.
J Biochem ; 167(3): 333-341, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31725161

RESUMO

A novel enzyme, thiourocanate hydratase, which catalyses the conversion of thiourocanic acid to 3-(5-oxo-2-thioxoimidazolidin-4-yl) propionic acid, was isolated from the ergothioneine-utilizing strain, Burkholderia sp. HME13. When the HME13 cells were cultured in medium containing ergothioneine as the sole nitrogen source, thiourocanate-metabolizing activity was detected in the crude extract from the cells. However, activity was not detected in the crude extract from HME13 cells that were cultured in Luria-Bertani medium. The gene encoding thiourocanate hydratase was cloned and expressed in Escherichia coli, and the recombinant enzyme was purified to homogeneity. The enzyme showed maximum activity at pH 7.5 and 55°C and was stable between pH 5.0 and 10.5, and at temperatures up to 45°C. The Km and Vmax values of thiourocanate hydratase towards thiourocanic acid were 30 µM and 7.1 µmol/min/mg, respectively. The enzyme was strongly inhibited by CuCl2 and HgCl2. The amino acid sequence of the enzyme showed 46% identity to urocanase from Pseudomonas putida, but thiourocanate hydratase had no urocanase activity.


Assuntos
Burkholderia/enzimologia , Hidroliases/metabolismo , Sequência de Aminoácidos , Burkholderia/genética , Catálise , Clonagem Molecular , Cobre/química , Escherichia coli/metabolismo , Hidroliases/antagonistas & inibidores , Hidroliases/química , Hidroliases/genética , Concentração de Íons de Hidrogênio , Cinética , Espectrometria de Massas , Cloreto de Mercúrio/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Temperatura , Urocanato Hidratase/genética
13.
PLoS One ; 14(12): e0226260, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31860659

RESUMO

Staphylococcus xylosus (S. xylosus) is a type of coagulase-negative Staphylococcus, which was previously considered as non-pathogenic. However, recent studies have linked it with cases of mastitis in cows. Isoliquiritigenin (ISL) is a bioactive compound with pharmacological functions including antibacterial activity. In this study, we evaluated the effect of ISL on S. xylosus in vitro and in vivo. The MIC of ISL against S. xylosus was 80 µg/mL. It was observed that sub-MICs of ISL (1/2MIC, 1/4MIC, 1/8MIC) significantly inhibited the formation of S. xylosus biofilm in vitro. Previous studies have observed that inhibiting imidazole glycerol phosphate dehydratase (IGPD) concomitantly inhibited biofilm formation in S. xylosus. So, we designed experiments to target the formation of IGPD or inhibits its activities in S. xylosus ATCC 700404. The results indicated that the activity of IGPD and its histidine content decreased significantly under 1/2 MIC (40 µg/mL) ISL, and the expression of IGPD gene (hisB) and IGPD protein was significantly down-regulated. Furthermore, Bio-layer interferometry experiments showed that ISL directly interacted with IGPD protein (with strong affinity; KD = 234 µM). In addition, molecular docking was used to predict the binding mode of ISL and IGPD. In vivo tests revealed that, ISL significantly reduced TNF-α and IL-6 levels, mitigated the destruction of the mammary glands and reversed the production of inflammatory cells in mice. The results of the study suggest that, ISL may inhibit S. xylosus growth by acting on IGPD, which can be used as a target protein to treat infections caused by S. xylosus.


Assuntos
Chalconas/administração & dosagem , Hidroliases/antagonistas & inibidores , Mastite/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus/efeitos dos fármacos , Animais , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Biofilmes/efeitos dos fármacos , Chalconas/química , Chalconas/farmacologia , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hidroliases/química , Camundongos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Simulação de Acoplamento Molecular , Staphylococcus/enzimologia , Staphylococcus/crescimento & desenvolvimento
14.
Eur J Med Chem ; 182: 111656, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31494467

RESUMO

Chemical probes of epigenetic 'readers' of histone post-translational modifications (PTMs) have become powerful tools for mechanistic and functional studies of their target proteins in physiology and pathology. However, only limited 'reader' probes have been developed, which restricted our understanding towards these macromolecules and their roles in cells or animals. Here, we reported a structure-guided approach to develop and characterize benzo [d]oxazol-2(3H)-one analogs as the first potent and selective small-molecule inhibitors of chromodomain Y-like (CDYL), a histone methyllysine reader protein. The binding conformation between the chromodomain of CDYL and the modified peptidomimetics was studied via molecular docking and dynamic simulations, facilitating subsequent virtual screening of tens of hits from Specs chemical library validated by SPR technique (KD values: from 271.1 µM to 5.4 µM). Further design and synthesis of 43 compounds helped to interpret the structure-activity relationship (SAR) that lead to the discovery of novel small-molecule inhibitors of CDYL. Compound D03 (KD: 0.5 µM) was discovered and showed excellent selectivity among other chromodomain proteins, including CDYL2 (>140 folds), CDY1 (no observed binding) and CBX7 (>32 folds). Moreover, we demonstrated that D03 engaged with endogenous CDYL in a dose-dependent manner, and perturbed the recruitment of CDYL onto chromatin, resulting in transcriptional derepression of its target genes. Finally, the results showed that D03 promoted the development and branching of neurodendrites by inhibiting CDYL in hippocampal and cortical cultured neurons. This study not only discovers the first selective small-molecule inhibitors of CDYL, but provids a new chemical tool to intervene the dynamic nature of bio-macromolecules involved in epigenetic mechanism.


Assuntos
Benzoxazóis/farmacologia , Proteínas Correpressoras/antagonistas & inibidores , Hidroliases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Benzoxazóis/síntese química , Benzoxazóis/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Hidroliases/genética , Hidroliases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Neurônios/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
15.
J Mol Recognit ; 32(11): e2802, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31353747

RESUMO

Enterococcus faecalis is a gram-positive, rod-shape bacteria responsible for around 65% to 80% of all enterococcal nosocomial infections. It is multidrug resistant (MDR) bacterium resistant to most of the first-line antibiotics. Due to the emergence of MDR strains, there is an urgent need to find novel targets to develop new antibacterial drugs against E. faecalis. In this regard, we have identified naphthoate synthase (1,4-dihydroxy-2-naphthoyl-CoA synthase, EC: 4.1.3.36; DHNS) as an anti-E. faecalis target, as it is an essential enzyme for menaquinone (vitamin K2 ) synthetic pathway in the bacterium. Thus, inhibiting naphtholate synthase may consequently inhibit the bacteria's growth. In this regard, we report here cloning, expression, purification, and preliminary structural studies of naphthoate synthase along with in silico modeling, molecular dynamic simulation of the model and docking studies of naphthoate synthase with quercetin, a plant alkaloid. Biochemical studies have indicated quercetin, a plant flavonoid as the potential lead compound to inhibit catalytic activity of EfDHNS. Quercetin binding has also been validated by spectrofluorimetric studies in order to confirm the bindings of the ligand compound with EfDHNS at ultralow concentrations. Reported studies may provide a base for structure-based drug development of antimicrobial compounds against E. faecalis.


Assuntos
Enterococcus faecalis/enzimologia , Inibidores Enzimáticos/farmacologia , Hidroliases/antagonistas & inibidores , Quercetina/farmacologia , Clonagem Molecular , Simulação por Computador , Cristalização , Enterococcus faecalis/efeitos dos fármacos , Hidroliases/química , Hidroliases/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Quercetina/química
16.
Nature ; 559(7714): 415-418, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29995859

RESUMO

Bioactive natural products have evolved to inhibit specific cellular targets and have served as lead molecules for health and agricultural applications for the past century1-3. The post-genomics era has brought a renaissance in the discovery of natural products using synthetic-biology tools4-6. However, compared to traditional bioactivity-guided approaches, genome mining of natural products with specific and potent biological activities remains challenging4. Here we present the discovery and validation of a potent herbicide that targets a critical metabolic enzyme that is required for plant survival. Our approach is based on the co-clustering of a self-resistance gene in the natural-product biosynthesis gene cluster7-9, which provides insight into the potential biological activity of the encoded compound. We targeted dihydroxy-acid dehydratase in the branched-chain amino acid biosynthetic pathway in plants; the last step in this pathway is often targeted for herbicide development10. We show that the fungal sesquiterpenoid aspterric acid, which was discovered using the method described above, is a sub-micromolar inhibitor of dihydroxy-acid dehydratase that is effective as a herbicide in spray applications. The self-resistance gene astD was validated to be insensitive to aspterric acid and was deployed as a transgene in the establishment of plants that are resistant to aspterric acid. This herbicide-resistance gene combination complements the urgent ongoing efforts to overcome weed resistance11. Our discovery demonstrates the potential of using a resistance-gene-directed approach in the discovery of bioactive natural products.


Assuntos
Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Herbicidas/metabolismo , Herbicidas/farmacologia , Compostos Heterocíclicos com 3 Anéis/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Produtos Biológicos/análise , Inibidores Enzimáticos/análise , Inibidores Enzimáticos/farmacologia , Resistência a Herbicidas/genética , Herbicidas/análise , Compostos Heterocíclicos com 3 Anéis/análise , Hidroliases/antagonistas & inibidores , Hidroliases/química , Hidroliases/metabolismo , Modelos Moleculares , Família Multigênica/genética , Reguladores de Crescimento de Plantas/análise , Reguladores de Crescimento de Plantas/farmacologia , Plantas Geneticamente Modificadas/genética , Transgenes/genética
17.
PLoS One ; 13(7): e0198827, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29969448

RESUMO

Acanthamoeba is normally free-living, but sometimes facultative and occasionally opportunistic parasites. Current therapies are, by necessity, arduous and yet poorly effective due to their inabilities to kill cyst stages or in some cases to actually induce encystation. Acanthamoeba can therefore survive as cysts and cause disease recurrence. Herein, in pursuit of better therapies and to understand the biochemistry of this understudied organism, we characterize its histidine biosynthesis pathway and explore the potential of targeting this with antimicrobials. We demonstrate that Acanthamoeba is a histidine autotroph, but with the ability to scavenge preformed histidine. It is able to grow in defined media lacking this amino acid, but is inhibited by 3-amino-1,2,4-triazole (3AT) that targets Imidazoleglycerol-Phosphate Dehydratase (IGPD) the rate limiting step of histidine biosynthesis. The structure of Acanthamoeba IGPD has also been determined in complex with 2-hydroxy-3-(1,2,4-triazol-1-yl) propylphosphonate [(R)-C348], a recently described novel inhibitor of Arabidopsis thaliana IGPD. This compound inhibited the growth of four Acanthamoeba species, having a 50% inhibitory concentration (IC50) ranging from 250-526 nM. This effect could be ablated by the addition of 1 mM exogenous free histidine, but importantly not by physiological concentrations found in mammalian tissues. The ability of 3AT and (R)-C348 to restrict the growth of four strains of Acanthamoeba spp. including a recently isolated clinical strain, while not inducing encystment, demonstrates the potential therapeutic utility of targeting the histidine biosynthesis pathway in Acanthamoeba.


Assuntos
Acanthamoeba/enzimologia , Amitrol (Herbicida)/química , Antiprotozoários/química , Histidina/antagonistas & inibidores , Hidroliases/química , Acanthamoeba/efeitos dos fármacos , Acanthamoeba/genética , Acanthamoeba/crescimento & desenvolvimento , Amitrol (Herbicida)/farmacologia , Antiprotozoários/farmacologia , Processos Autotróficos/efeitos dos fármacos , Processos Autotróficos/genética , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Histidina/biossíntese , Hidroliases/antagonistas & inibidores , Hidroliases/genética , Hidroliases/metabolismo , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica
18.
J Proteome Res ; 17(6): 2182-2191, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29733654

RESUMO

A20 is a negative regulator of NF-κB signaling; it controls inflammatory responses and ensures tissue homeostasis. A20 is thought to restrict NF-κB activation both by its ubiquitin-editing activity as well as by its nonenzymatic activities. Besides its role in NF-κB signaling, A20 also acts as a protective factor inhibiting apoptosis and necroptosis. Because of the ability of A20 to both ubiquitinate and deubiquitinate substrates, and its involvement in many cellular processes, we hypothesized that deletion of A20 might generally impact on protein levels, thereby disrupting cellular signaling. We performed a differential proteomics study on bone marrow-derived macrophages (BMDMs) from control and myeloid-specific A20 knockout mice, both in untreated conditions and after LPS or TNF treatment, and demonstrated A20-dependent changes in protein expression. Several inflammatory proteins were found up-regulated in the absence of A20, even without an inflammatory stimulus, but, depending on the treatment and the treatment time, more proteins were found regulated. Together these protein changes may affect normal signaling events, which may disturb tissue homeostasis and induce (autoimmune) inflammation, in agreement with A20s proposed identity as a susceptibility gene for inflammatory disease. We further verify that immune-responsive gene 1 (IRG1) is up-regulated in the absence of A20 and that its levels are transcriptionally regulated.


Assuntos
Hidroliases/metabolismo , Proteômica/métodos , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/deficiência , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Hidroliases/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Transcrição Gênica , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/fisiologia , Fator de Necrose Tumoral alfa/farmacologia , Regulação para Cima
19.
Chem Biol Drug Des ; 92(2): 1468-1474, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29676519

RESUMO

In this study, we describe the development of new machine learning models to predict inhibition of the enzyme 3-dehydroquinate dehydratase (DHQD). This enzyme is the third step of the shikimate pathway and is responsible for the synthesis of chorismate, which is a natural precursor of aromatic amino acids. The enzymes of shikimate pathway are absent in humans, which make them protein targets for the design of antimicrobial drugs. We focus our study on the crystallographic structures of DHQD in complex with competitive inhibitors, for which experimental inhibition constant data is available. Application of supervised machine learning techniques was able to elaborate a robust DHQD-targeted model to predict binding affinity. Combination of high-resolution crystallographic structures and binding information indicates that the prevalence of intermolecular electrostatic interactions between DHQD and competitive inhibitors is of pivotal importance for the binding affinity against this enzyme. The present findings can be used to speed up virtual screening studies focused on the DHQD structure.


Assuntos
Hidroliases/metabolismo , Aprendizado de Máquina , Área Sob a Curva , Sítios de Ligação , Humanos , Hidroliases/antagonistas & inibidores , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Curva ROC , Ácido Chiquímico/química , Ácido Chiquímico/metabolismo , Eletricidade Estática
20.
Proc Natl Acad Sci U S A ; 115(8): 1795-1800, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29434040

RESUMO

Histidine biosynthesis is an essential process in plants and microorganisms, making it an attractive target for the development of herbicides and antibacterial agents. Imidazoleglycerol-phosphate dehydratase (IGPD), a key enzyme within this pathway, has been biochemically characterized in both Saccharomyces cerevisiae (Sc_IGPD) and Arabidopsis thaliana (At_IGPD). The plant enzyme, having been the focus of in-depth structural analysis as part of an inhibitor development program, has revealed details about the reaction mechanism of IGPD, whereas the yeast enzyme has proven intractable to crystallography studies. The structure-activity relationship of potent triazole-phosphonate inhibitors of IGPD has been determined in both homologs, revealing that the lead inhibitor (C348) is an order of magnitude more potent against Sc_IGPD than At_IGPD; however, the molecular basis of this difference has not been established. Here we have used single-particle electron microscopy (EM) to study structural differences between the At and Sc_IGPD homologs, which could influence the difference in inhibitor potency. The resulting EM maps at ∼3 Šare sufficient to de novo build the protein structure and identify the inhibitor binding site, which has been validated against the crystal structure of the At_IGPD/C348 complex. The structure of Sc_IGPD reveals that a 24-amino acid insertion forms an extended loop region on the enzyme surface that lies adjacent to the active site, forming interactions with the substrate/inhibitor binding loop that may influence inhibitor potency. Overall, this study provides insights into the IGPD family and demonstrates the power of using an EM approach to study inhibitor binding.


Assuntos
Proteínas de Arabidopsis/antagonistas & inibidores , Arabidopsis/enzimologia , Inibidores Enzimáticos/química , Hidroliases/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Saccharomyces cerevisiae/enzimologia , Arabidopsis/química , Arabidopsis/efeitos dos fármacos , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/ultraestrutura , Sítios de Ligação , Microscopia Crioeletrônica , Cristalografia por Raios X , Herbicidas/química , Hidroliases/química , Hidroliases/ultraestrutura , Modelos Moleculares , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...