RESUMO
Transglycosylation potential of the fungal diglycosidase α-rhamnosyl-ß-glucosidase was explored. The biocatalyst was shown to have broad acceptor specificity toward aliphatic and aromatic alcohols. This feature allowed the synthesis of the diglycoconjugated fluorogenic substrate 4-methylumbelliferyl-rutinoside. The synthesis was performed in one step from the corresponding aglycone, 4-methylumbelliferone, and hesperidin as rutinose donor. 4-Methylumbelliferyl-rutinoside was produced in an agitated reactor using the immobilized biocatalyst with a 16% yield regarding the sugar acceptor. The compound was purified by solvent extraction and silica gel chromatography. MALDI-TOF/TOF data recorded for the [M+Na](+) ions correlated with the theoretical monoisotopic mass (calcd [M+Na](+): 507.44 m/z; obs. [M+Na](+): 507.465 m/z). 4-Methylumbelliferyl-rutinoside differs from 4-methylumbelliferyl-glucoside in the rhamnosyl substitution at the C-6 of glucose, and this property brings about the possibility to explore in nature the occurrence of endo-ß-glucosidases by zymographic analysis.
Assuntos
Acremonium/enzimologia , Dissacarídeos/química , Dissacarídeos/síntese química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Glucosidases/metabolismo , Glicosídeos/química , Glicosídeos/síntese química , Glicosilação , Himecromona/síntese química , Himecromona/química , Solubilidade , Solventes/química , Especificidade por Substrato , Água/químicaRESUMO
We compared the accuracy and reliability of three amplification systems for enzyme immunoassays in the detection of specific IgG antibodies for the diagnosis of cutaneous leishmaniasis caused by Leishmania (Viannia) braziliensis in patients from an endemic area in Rio de Janeiro, Brazil. Partially soluble antigens obtained from the promastigote forms of L. (V.) braziliensis were used. For development of the reaction, two chromogens, 1,2-orthophenylenediamine (OPD) and 3,3',5,5'-tetramethylbenzidine (TMB), and a fluorogen, 4-methylumbelliferylphosphate (MUP), were tested. The performance of each system was compared using the following parameters: accuracy, intraclass correlation coefficient (ICC), and area under the receiver operating characteristic (ROC) curve. Sensitivity was the same (97.4%) for all systems. The reliability was excellent (ICC = 98.6, 98.7, and 99.1%) and specificity was 93.7, 95.8, and 97.4% for OPD, MUP, and TMB, respectively, showing no statistical significance. Despite the absence of differences in the performance of the three systems, the use of TMB is suggested because of its operational advantages, such as low cost compared with fluorogens, easy manipulation, greater stability, and lower toxicity.