Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 345
Filtrar
1.
Mov Disord Clin Pract ; 11(6): 708-715, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38698576

RESUMO

BACKGROUND: Genetic syndromes of hyperkinetic movement disorders associated with epileptic encephalopathy and intellectual disability are becoming increasingly recognized. Recently, a de novo heterozygous NACC1 (nucleus accumbens-associated 1) missense variant was described in a patient cohort including one patient with a combined mitochondrial oxidative phosphorylation (OXPHOS) deficiency. OBJECTIVES: The objective is to characterize the movement disorder in affected patients with the recurrent c.892C>T NACC1 variant and study the NACC1 protein and mitochondrial function at the cellular level. METHODS: The movement disorder was analyzed on four patients with the NACC1 c.892C>T (p.Arg298Trp) variant. Studies on NACC1 protein and mitochondrial function were performed on patient-derived fibroblasts. RESULTS: All patients had a generalized hyperkinetic movement disorder with chorea and dystonia, which occurred cyclically and during sleep. Complex I was found altered, whereas the other OXPHOS enzymes and the mitochondria network seemed intact in one patient. CONCLUSIONS: The movement disorder is a prominent feature of NACC1-related disease.


Assuntos
Hipercinese , Humanos , Masculino , Hipercinese/genética , Feminino , Criança , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas Repressoras/genética , Mutação de Sentido Incorreto , Fosforilação Oxidativa
3.
Proc Natl Acad Sci U S A ; 119(11): e2113813119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35259014

RESUMO

SignificanceThe GGGGCC hexanucleotide repeat expansion in the chromosome 9 open reading frame 72 (C9orf72) gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS). Despite myriad studies on the toxic effects of poly-dipeptides produced from the C9orf72 repeats, the mechanisms underlying the selective hyperexcitability of motor cortex that characterizes the early stages of C9orf72 ALS patients remain elusive. Here, we show that the proline-arginine poly-dipeptides cause hyperexcitability in cortical motor neurons by increasing persistent sodium currents conducted by the Nav1.2/ß4 sodium channel complex, which is highly expressed in the motor cortex. These findings provide the basis for understanding how the C9orf72 mutation causes motor neuron hyperactivation that can lead to the motor neuron death in C9orf72 ALS.


Assuntos
Esclerose Lateral Amiotrófica/etiologia , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/genética , Dipeptídeos/genética , Hipercinese/genética , Neurônios Motores/metabolismo , Esclerose Lateral Amiotrófica/patologia , Arginina , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Dipeptídeos/metabolismo , Suscetibilidade a Doenças , Potencial Evocado Motor , Predisposição Genética para Doença , Humanos , Fenótipo , Prolina , Sódio/metabolismo
4.
Am J Hum Genet ; 109(2): 328-344, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35077668

RESUMO

Progress in earlier detection and clinical management has increased life expectancy and quality of life in people with Down syndrome (DS). However, no drug has been approved to help individuals with DS live independently and fully. Although rat models could support more robust physiological, behavioral, and toxicology analysis than mouse models during preclinical validation, no DS rat model is available as a result of technical challenges. We developed a transchromosomic rat model of DS, TcHSA21rat, which contains a freely segregating, EGFP-inserted, human chromosome 21 (HSA21) with >93% of its protein-coding genes. RNA-seq of neonatal forebrains demonstrates that TcHSA21rat expresses HSA21 genes and has an imbalance in global gene expression. Using EGFP as a marker for trisomic cells, flow cytometry analyses of peripheral blood cells from 361 adult TcHSA21rat animals show that 81% of animals retain HSA21 in >80% of cells, the criterion for a "Down syndrome karyotype" in people. TcHSA21rat exhibits learning and memory deficits and shows increased anxiety and hyperactivity. TcHSA21rat recapitulates well-characterized DS brain morphology, including smaller brain volume and reduced cerebellar size. In addition, the rat model shows reduced cerebellar foliation, which is not observed in DS mouse models. Moreover, TcHSA21rat exhibits anomalies in craniofacial morphology, heart development, husbandry, and stature. TcHSA21rat is a robust DS animal model that can facilitate DS basic research and provide a unique tool for preclinical validation to accelerate DS drug development.


Assuntos
Ansiedade/genética , Cromossomos Humanos Par 21 , Síndrome de Down/genética , Efeito Fundador , Hipercinese/genética , Animais , Ansiedade/metabolismo , Ansiedade/patologia , Cerebelo/metabolismo , Cerebelo/patologia , Modelos Animais de Doenças , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Feminino , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Hipercinese/metabolismo , Hipercinese/patologia , Cariótipo , Aprendizagem , Masculino , Mutagênese Insercional , Tamanho do Órgão , Postura , Prosencéfalo/metabolismo , Prosencéfalo/patologia , Ratos , Ratos Transgênicos
5.
Neurobiol Dis ; 158: 105473, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34371144

RESUMO

CalDAG-GEFI (CDGI) is a protein highly enriched in the striatum, particularly in the principal spiny projection neurons (SPNs). CDGI is strongly down-regulated in two hyperkinetic conditions related to striatal dysfunction: Huntington's disease and levodopa-induced dyskinesia in Parkinson's disease. We demonstrate that genetic deletion of CDGI in mice disrupts dendritic, but not somatic, M1 muscarinic receptors (M1Rs) signaling in indirect pathway SPNs. Loss of CDGI reduced temporal integration of excitatory postsynaptic potentials at dendritic glutamatergic synapses and impaired the induction of activity-dependent long-term potentiation. CDGI deletion selectively increased psychostimulant-induced repetitive behaviors, disrupted sequence learning, and eliminated M1R blockade of cocaine self-administration. These findings place CDGI as a major, but previously unrecognized, mediator of cholinergic signaling in the striatum. The effects of CDGI deletion on the self-administration of drugs of abuse and its marked alterations in hyperkinetic extrapyramidal disorders highlight CDGI's therapeutic potential.


Assuntos
Dendritos , Fatores de Troca do Nucleotídeo Guanina/genética , Neostriado/fisiopatologia , Plasticidade Neuronal , Sistema Nervoso Parassimpático/fisiopatologia , Sinapses , Animais , Doenças dos Gânglios da Base/genética , Doenças dos Gânglios da Base/fisiopatologia , Doenças dos Gânglios da Base/psicologia , Estimulantes do Sistema Nervoso Central/farmacologia , Potenciais Pós-Sinápticos Excitadores/genética , Hipercinese/genética , Hipercinese/psicologia , Potenciação de Longa Duração , Masculino , Camundongos , Camundongos Knockout , Atividade Motora , Polimorfismo de Nucleotídeo Único , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/fisiologia , Transtornos Relacionados ao Uso de Substâncias/genética , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Transtornos Relacionados ao Uso de Substâncias/psicologia
6.
Neurosci Bull ; 37(12): 1658-1670, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34309811

RESUMO

Mechanistic target of rapamycin (mTOR) signaling governs important physiological and pathological processes key to cellular life. Loss of mTOR negative regulators and subsequent over-activation of mTOR signaling are major causes underlying epileptic encephalopathy. Our previous studies showed that UBTOR/KIAA1024/MINAR1 acts as a negative regulator of mTOR signaling, but whether UBTOR plays a role in neurological diseases remains largely unknown. We therefore examined a zebrafish model and found that ubtor disruption caused increased spontaneous embryonic movement and neuronal activity in spinal interneurons, as well as the expected hyperactivation of mTOR signaling in early zebrafish embryos. In addition, mutant ubtor larvae showed increased sensitivity to the convulsant pentylenetetrazol, and both the motor activity and the neuronal activity were up-regulated. These phenotypic abnormalities in zebrafish embryos and larvae were rescued by treatment with the mTORC1 inhibitor rapamycin. Taken together, our findings show that ubtor regulates motor hyperactivity and epilepsy-like behaviors by elevating neuronal activity and activating mTOR signaling.


Assuntos
Hipercinese , Peixe-Zebra , Animais , Hipercinese/genética , Mutação/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Peixe-Zebra/metabolismo
7.
Mol Brain ; 14(1): 61, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785025

RESUMO

The 15q13.3 microdeletion syndrome is a genetic disorder characterized by a wide spectrum of psychiatric disorders that is caused by the deletion of a region containing 7 genes on chromosome 15 (MTMR10, FAN1, TRPM1, MIR211, KLF13, OTUD7A, and CHRNA7). The contribution of each gene in this syndrome has been studied using mutant mouse models, but no single mouse model recapitulates the whole spectrum of human 15q13.3 microdeletion syndrome. The behavior of Trpm1-/- mice has not been investigated in relation to 15q13.3 microdeletion syndrome due to the visual impairment in these mice, which may confound the results of behavioral tests involving vision. We were able to perform a comprehensive behavioral test battery using Trpm1 null mutant mice to investigate the role of Trpm1, which is thought to be expressed solely in the retina, in the central nervous system and to examine the relationship between TRPM1 and 15q13.3 microdeletion syndrome. Our data demonstrate that Trpm1-/- mice exhibit abnormal behaviors that may explain some phenotypes of 15q13.3 microdeletion syndrome, including reduced anxiety-like behavior, abnormal social interaction, attenuated fear memory, and the most prominent phenotype of Trpm1 mutant mice, hyperactivity. While the ON visual transduction pathway is impaired in Trpm1-/- mice, we did not detect compensatory high sensitivities for other sensory modalities. The pathway for visual impairment is the same between Trpm1-/- mice and mGluR6-/- mice, but hyperlocomotor activity has not been reported in mGluR6-/- mice. These data suggest that the phenotype of Trpm1-/- mice extends beyond that expected from visual impairment alone. Here, we provide the first evidence associating TRPM1 with impairment of cognitive function similar to that observed in phenotypes of 15q13.3 microdeletion syndrome.


Assuntos
Ansiedade/genética , Cromossomos Humanos Par 15/genética , Hipercinese/genética , Canais de Cátion TRPM/genética , Animais , Monoaminas Biogênicas/análise , Química Encefálica , Comportamento Exploratório , Estudos de Associação Genética , Humanos , Masculino , Aprendizagem em Labirinto/fisiologia , Metilfenidato/farmacologia , Camundongos , Camundongos Knockout , Teste de Campo Aberto , Reflexo de Sobressalto , Teste de Desempenho do Rota-Rod , Deleção de Sequência , Interação Social , Memória Espacial , Natação , Canais de Cátion TRPM/deficiência , Transtornos da Visão/genética
8.
Psychopharmacology (Berl) ; 238(4): 1111-1120, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33511450

RESUMO

RATIONALE: Elevated whole-blood serotonin (5-HT) is a robust biomarker in ~ 30% of patients with autism spectrum disorders, in which repetitive behavior is a core symptom. Furthermore, elevated whole-blood 5-HT has also been described in patients with pediatric obsessive-compulsive disorder. The 5-HT1B receptor is associated with repetitive behaviors seen in both disorders. Chronic blockade of serotonin transporter (SERT) reduces 5-HT1B receptor levels in the orbitofrontal cortex (OFC) and attenuates the sensorimotor deficits and hyperactivity seen with the 5-HT1B agonist RU24969. We hypothesized that enhanced SERT function would increase 5-HT1B receptor levels in OFC and enhance sensorimotor deficits and hyperactivity induced by RU24969. OBJECTIVES: We examined the impact of the SERT Ala56 mutation, which leads to enhanced SERT function, on 5-HT1B receptor binding and 5-HT1B-mediated sensorimotor deficits. METHODS: Specific binding to 5-HT1B receptors was measured in OFC and striatum of naïve SERT Ala56 or wild-type mice. The impact of the 5-HT1A/1B receptor agonist RU24969 on prepulse inhibition (PPI) of startle, hyperactivity, and expression of cFos was examined. RESULTS: While enhanced SERT function increased 5-HT1B receptor levels in OFC of Ala56 mice, RU24969-induced PPI deficits and hyperlocomotion were not different between genotypes. Baseline levels of cFos expression were not different between groups. RU24969 increased cFos expression in OFC of wild-types and decreased cFos in the striatum. CONCLUSIONS: While reducing 5-HT1B receptors may attenuate sensorimotor gating deficits, increased 5-HT1B levels in SERT Ala56 mice do not necessarily exacerbate these deficits, potentially due to compensations during neural circuit development in this model system.


Assuntos
Comportamento Animal/efeitos dos fármacos , Receptor 5-HT1B de Serotonina/efeitos dos fármacos , Receptor 5-HT1B de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Substituição de Aminoácidos , Animais , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Genótipo , Hipercinese/genética , Hipercinese/psicologia , Indóis/farmacologia , Masculino , Camundongos , Mutação/genética , Inibição Pré-Pulso/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/biossíntese , Proteínas Proto-Oncogênicas c-fos/genética , Filtro Sensorial/efeitos dos fármacos , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia
9.
Neuroscience Bulletin ; (6): 1658-1670, 2021.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-922653

RESUMO

Mechanistic target of rapamycin (mTOR) signaling governs important physiological and pathological processes key to cellular life. Loss of mTOR negative regulators and subsequent over-activation of mTOR signaling are major causes underlying epileptic encephalopathy. Our previous studies showed that UBTOR/KIAA1024/MINAR1 acts as a negative regulator of mTOR signaling, but whether UBTOR plays a role in neurological diseases remains largely unknown. We therefore examined a zebrafish model and found that ubtor disruption caused increased spontaneous embryonic movement and neuronal activity in spinal interneurons, as well as the expected hyperactivation of mTOR signaling in early zebrafish embryos. In addition, mutant ubtor larvae showed increased sensitivity to the convulsant pentylenetetrazol, and both the motor activity and the neuronal activity were up-regulated. These phenotypic abnormalities in zebrafish embryos and larvae were rescued by treatment with the mTORC1 inhibitor rapamycin. Taken together, our findings show that ubtor regulates motor hyperactivity and epilepsy-like behaviors by elevating neuronal activity and activating mTOR signaling.


Assuntos
Animais , Hipercinese/genética , Mutação/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Peixe-Zebra/metabolismo
10.
BMJ Case Rep ; 13(12)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33323420

RESUMO

Hyperekplexia is an exaggerated startle to external stimuli associated with a generalised increase in tone seen in neonates with both sporadic and genetic predisposition. This is an uncommon neurological entity that is misdiagnosed as seizure. A 28-days-old infant was admitted to us with characteristic intermittent generalised tonic spasm being treated as a seizure disorder. The infant had characteristic stiffening episode, exaggerated startle and non-habituation on tapping the nose. Hyperekplexia was suspected and confirmed by genetic testing (mutation in the ß subunit of glycine was found). Initial improvement was seen with the use of clonazepam, which was not sustained. At the age of 4.5 years, the child is still having neurobehavioural issues like hyperactivity and sensory hyper-responsiveness. Usually, hyperekplexia is benign in nature. We report a case of hyperekplexia with non-sense mutation in the ß subunit of GlyR gene having abnormal neurodevelopmental findings at 4.5 years.


Assuntos
Hiperecplexia/diagnóstico , Hiperecplexia/genética , Mutação de Sentido Incorreto/genética , Receptores de Glicina/genética , Anticonvulsivantes/uso terapêutico , Pré-Escolar , Clonazepam/uso terapêutico , Diagnóstico Diferencial , Erros de Diagnóstico , Humanos , Hiperecplexia/fisiopatologia , Hipercinese/genética , Hipercinese/fisiopatologia , Recém-Nascido , Masculino , Reflexo Anormal/genética , Reflexo de Sobressalto/genética
11.
J Neurochem ; 155(5): 522-537, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32910473

RESUMO

Restless legs syndrome is a sleep-related sensorimotor neurological disease affecting up to 10% of the population. Genetic analyses have identified Myeloid Ecotropic viral Integration Site 1 (MEIS1), a transcriptional regulator, to be associated with not only the restless legs syndrome but also self-reported symptoms of insomnia and sleep. This study is to determine if Meis1 deficiency in mice can lead to restless legs syndrome-like phenotypes, and if it is the case, what the underlying mechanisms are. We used two genetic model systems, Caenorhabditis elegans and mice. Egg retention assay and fluorescent reporters were used with C. elegans. For mice, we performed behavioral tests, serum and brain iron detection, qRT-PCR, western blot, immunohistochemistry, and in vitro brain-slice recording. Our results showed that with C. elegans, the function of dop-3, an orthologue of DRD2, was diminished after the knockdown of unc-62, an ortholog of MEIS1. Additionally, unc-62 knockdown led to enhanced transcription of the orthologue of tyrosine hydroxylase, cat-2. Meis1 knockout mice were hyperactive and had a rest-phase-specific increased probability of waking. Moreover, Meis1 knockout mice had increased serum ferritin and altered striatal dopaminergic and cholinergic systems. Specifically, Meis1 knockout mice showed an increased mRNA level but decreased protein level of tyrosine hydroxylase in the striatum. Furthermore, Meis1 knockout mice had increased striatal dopamine turnover and decreased spontaneous firing regularity of striatal cholinergic interneurons. Our data suggest that Meis1 knockout mice have restless legs syndrome-like motor restlessness and changes in serum ferritin levels. The symptoms may be related to dysfunctional dopaminergic and cholinergic systems.


Assuntos
Atividade Motora/fisiologia , Proteína Meis1/deficiência , Proteína Meis1/genética , Síndrome das Pernas Inquietas/genética , Síndrome das Pernas Inquietas/metabolismo , Animais , Caenorhabditis elegans , Hipercinese/genética , Hipercinese/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
12.
Int J Mol Sci ; 21(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867296

RESUMO

Stromal interaction molecule (STIM) proteins play a crucial role in store-operated calcium entry (SOCE) as endoplasmic reticulum Ca2+ sensors. In neurons, STIM2 was shown to have distinct functions from STIM1. However, its role in brain activity and behavior was not fully elucidated. The present study analyzed behavior in zebrafish (Danio rerio) that lacked stim2a. The mutant animals had no morphological abnormalities and were fertile. RNA-sequencing revealed alterations of the expression of transcription factor genes and several members of the calcium toolkit. Neuronal Ca2+ activity was measured in vivo in neurons that expressed the GCaMP5G sensor. Optic tectum neurons in stim2a-/- fish had more frequent Ca2+ signal oscillations compared with neurons in wildtype (WT) fish. We detected an increase in activity during the visual-motor response test, an increase in thigmotaxis in the open field test, and the disruption of phototaxis in the dark/light preference test in stim2a-/- mutants compared with WT. Both groups of animals reacted to glutamate and pentylenetetrazol with an increase in activity during the visual-motor response test, with no major differences between groups. Altogether, our results suggest that the hyperactive-like phenotype of stim2a-/- mutant zebrafish is caused by the dysregulation of Ca2+ homeostasis and signaling.


Assuntos
Cálcio/metabolismo , Hipercinese/genética , Neurônios/metabolismo , Molécula 2 de Interação Estromal/genética , Fatores de Transcrição/genética , Animais , Sinalização do Cálcio , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Ácido Glutâmico/farmacologia , Hipercinese/metabolismo , Larva/genética , Pentilenotetrazol/farmacologia , Fenótipo , Fototaxia/efeitos dos fármacos , Análise de Sequência de RNA , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
13.
Hum Mol Genet ; 29(14): 2408-2419, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32588892

RESUMO

Cyclin-dependent kinase-like 5 (CDKL5), a serine-threonine kinase encoded by an X-linked gene, is highly expressed in the mammalian forebrain. Mutations in this gene cause CDKL5 deficiency disorder, a neurodevelopmental encephalopathy characterized by early-onset seizures, motor dysfunction, and intellectual disability. We previously found that mice lacking CDKL5 exhibit hyperlocomotion and increased impulsivity, resembling the core symptoms in attention-deficit hyperactivity disorder (ADHD). Here, we report the potential neural mechanisms and treatment for hyperlocomotion induced by CDKL5 deficiency. Our results showed that loss of CDKL5 decreases the proportion of phosphorylated dopamine transporter (DAT) in the rostral striatum, leading to increased levels of extracellular dopamine and hyperlocomotion. Administration of methylphenidate (MPH), a DAT inhibitor clinically effective to improve symptoms in ADHD, significantly alleviated the hyperlocomotion phenotype in Cdkl5 null mice. In addition, the improved behavioral effects of MPH were accompanied by a region-specific restoration of phosphorylated dopamine- and cAMP-regulated phosphoprotein Mr 32 kDa, a key signaling protein for striatal motor output. Finally, mice carrying a Cdkl5 deletion selectively in DAT-expressing dopaminergic neurons, but not dopamine receptive neurons, recapitulated the hyperlocomotion phenotype found in Cdkl5 null mice. Our findings suggest that CDKL5 is essential to control locomotor behavior by regulating region-specific dopamine content and phosphorylation of dopamine signaling proteins in the striatum. The direct, as well as indirect, target proteins regulated by CDKL5 may play a key role in movement control and the therapeutic development for hyperactivity disorders.


Assuntos
Síndromes Epilépticas/genética , Hipercinese/genética , Proteínas Serina-Treonina Quinases/genética , Espasmos Infantis/genética , Animais , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Síndromes Epilépticas/patologia , Transtornos Neurológicos da Marcha/genética , Transtornos Neurológicos da Marcha/metabolismo , Transtornos Neurológicos da Marcha/patologia , Humanos , Hipercinese/metabolismo , Hipercinese/patologia , Metilfenidato/metabolismo , Camundongos , Camundongos Knockout , Espasmos Infantis/patologia
14.
J Med Invest ; 67(1.2): 51-61, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32378618

RESUMO

Spontaneously Running Tokushima Shikoku (SPORTS) rat is a hyperactive rat strain. However, the causative mutation of this phenotype has not yet been identified. To investigate the molecular basis for the unique phenotype of SPORTS rats, we examined gene-expression profiles by microarray analyses. Among adenylate kinase isozymes that maintain the homeostasis of cellular adenine nucleotide composition in the cell, only adenylate kinase 1 is highly up-regulated in both exercised and sedentary SPORTS rats compared with wild-type (WT) rats, 5.5-fold and 3.3-fold, respectively. Further comparative analyses revealed that genes involved in glucose metabolism were up-regulated in skeletal muscle tissue of exercised SPORTS rats compared with sedentary mutants, whereas genes related to extracellular matrix or region were down-regulated compared with WT rats. In brain tissue of sedentary SPORTS rats, genes associated with defense and catecholamine metabolism were highly expressed compared with WT rats. These findings suggest that genetic mutation(s) in SPORTS rat remodels metabolic demands through differentially regulating gene expression regardless of exercise. Therefore, the SPORTS rats are useful animal model not only for further examining the effects of exercise on metabolism but also for deeply studying the molecular basis how mutation affect the psychological motivation with spontaneous voluntary exercise phenotype. J. Med. Invest. 67 : 51-61, February, 2020.


Assuntos
Hipercinese/genética , Condicionamento Físico Animal , Transcriptoma , Adenilato Quinase/genética , Animais , Masculino , Transportadores de Ácidos Monocarboxílicos/genética , Músculo Esquelético/metabolismo , Mutação , Fenótipo , Ratos , Ratos Wistar
15.
Glia ; 68(10): 2040-2056, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32187401

RESUMO

Fused in sarcoma (FUS) is a predominantly nuclear multifunctional RNA/DNA-binding protein that regulates multiple aspects of gene expression. FUS mutations are associated with familial amyotrophic lateral sclerosis (fALS) and frontotemporal lobe degeneration (FTLD) in humans. At the molecular level, the mutated FUS protein is reduced in the nucleus but accumulates in cytoplasmic granules. Oligodendrocytes (OL) carrying clinically relevant FUS mutations contribute to non-cell autonomous motor neuron disease progression, consistent with an extrinsic mechanism of disease mediated by OL. Knocking out FUS globally or in neurons lead to behavioral abnormalities that are similar to those present in FTLD. In this study, we sought to investigate whether an extrinsic mechanism mediated by loss of FUS function in OL contributes to the behavioral phenotype. We have generated a novel conditional knockout (cKO) in which Fus is selectively depleted in OL (FusOL cKO). The FusOL cKO mice show increased novelty-induced motor activity and enhanced exploratory behavior, which are reminiscent of some manifestations of FTLD. The phenotypes are associated with greater myelin thickness, higher number of myelinated small diameter axons without an increase in the number of mature OL. The expression of the rate-limiting enzyme of cholesterol biosynthesis (HMGCR) is increased in white matter tracts of the FusOL cKO and results in higher cholesterol content. In addition, phosphorylation of Akt, an important regulator of myelination is increased in the FusOL cKO. Collectively, this work has uncovered a novel role of oligodendrocytic Fus in regulating myelin deposition through activation of Akt and cholesterol biosynthesis.


Assuntos
Colesterol/metabolismo , Hipercinese/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína FUS de Ligação a RNA/deficiência , Animais , Colesterol/genética , Hipercinese/genética , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Bainha de Mielina/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteína FUS de Ligação a RNA/genética
16.
Behav Genet ; 50(3): 152-160, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32048109

RESUMO

Fragile X syndrome (FXS) is a heritable mental retardation disease caused by unstable trinucleotide repeat sequences in FMR1. FXS is characterized by delayed development, hyperactivity, and autism behavior. Zebrafish is an excellent model to study FXS and the underlying function of fmr1. However, at present, fmr1 function is mainly studied via morpholinos or generated mutants using targeting induced local lesions in genomes. However, both of these methods generate off-target effects, making them suboptimal techniques for studying FXS. In this study, CRISPR/Cas9 technology was used to generate two zebrafish fmr1 mutant lines. High-throughput behavior analysis, qRT-PCR, and alcian blue staining experiments were employed to investigate fmr1 function. The fmr1 mutant line showed abnormal behavior, learning memory defects, and impaired craniofacial cartilage development. These features are similar to the human FXS phenotype, indicating that the fmr1 mutant generated in this study can be used as a new model for studying the molecular pathology of FXS. It also provides a suitable model for high-throughput screening of small molecule drugs for FXS therapeutics.


Assuntos
Anormalidades Craniofaciais/genética , Síndrome do Cromossomo X Frágil/genética , Hipercinese/genética , Transtornos da Memória/genética , Proteínas de Ligação a RNA/genética , Proteínas de Peixe-Zebra/genética , Animais , Desenvolvimento Ósseo/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Modelos Animais de Doenças , Feminino , Síndrome do Cromossomo X Frágil/fisiopatologia , Larva/genética , Masculino , Mutação , Proteínas de Ligação a RNA/fisiologia , Peixe-Zebra , Proteínas de Peixe-Zebra/fisiologia
18.
Neuropsychobiology ; 78(4): 182-188, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31266022

RESUMO

Significant evidence from various sources suggests that structural alterations in mitochondrial function may play a role in both the pathogenesis of mood disorders and the therapeutic effects of available treatments. PGC-1α is a distinct transcriptional regulator designed to mediate the synchronous release of neurotransmitter in the brain and thereby to coordinate a number of gene expression pathways to promote mitochondrial biogenesis and oxidative phosphorylation. The role of PGC-1α in the context of affective disorder phenotypes and treatments has been suggested but not studied in depth. To further investigate the possible involvement of PGC-1α in affective disorders, we generated conditional PGC-1α null mice through transgenic expression of cre recombinase under the control of a Dlx5/6 promoter; cre-mediated excision events were limited to γ-amino-butyric-acid (GABA)-ergic specific neurons. We tested these mice in a battery of behavioral tests related to affective change including spontaneous activity, elevated plus maze, forced swim test, and tail suspension test. Results demonstrated that mice lacking PGC-1α in GABAergic neurons exhibited increased activity across tests that might be related to a mania-like phenotype. These results suggest possible relevance of PGC-1α to affective change, which corresponds with data connecting mitochondrial function and affective disorders and their treatment.


Assuntos
Transtorno Bipolar/genética , Hipercinese/genética , Atividade Motora/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Animais , Transtorno Bipolar/metabolismo , Modelos Animais de Doenças , Neurônios GABAérgicos/metabolismo , Regulação da Expressão Gênica , Hipercinese/metabolismo , Camundongos , Camundongos Knockout , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Regiões Promotoras Genéticas
19.
Sci Rep ; 9(1): 3041, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816216

RESUMO

Autism spectrum disorders (ASD) form a heterogeneous, neurodevelopmental syndrome characterized by deficits in social interactions and repetitive behavior/restricted interests. Dysregulation of mTOR signaling has been implicated in the pathogenesis of certain types of ASD, and inhibition of mTOR by rapamycin has been demonstrated to be an effective therapeutics for impaired social interaction in Tsc1+/-, Tsc2+/-, Pten-/- mice and valproic acid-induced ASD animal models. However, it is still unknown if dysregulation of mTOR signaling is responsible for the ASD-related deficit caused by other genes mutations. Contactin associated protein-like 2 (CNTNAP2) is the first widely replicated autism-predisposition gene. Mice deficient in Cntnap2 (Cntnap2-/- mice) show core ASD-like phenotypes, and have been demonstrated as a validated model for ASD-relevant drug discovery. In this study, we found hyperactive Akt-mTOR signaling in the hippocampus of Cntnap2-/- mice with RNA sequencing followed with biochemical analysis. Treatment with Akt inhibitor LY294002 or mTOR inhibitor rapamycin rescued the social deficit, but had no effect on hyperactivity and repetitive behavior/restricted behavior in Cntnap2-/- mice. We further showed that the effect of LY294002 and rapamycin on social behaviors is reversible. Our results thus identified hyperactive Akt-mTOR signaling pathway as a therapeutic target for abnormal social behavior in patients with dysfunction of CNTNAP2.


Assuntos
Transtorno do Espectro Autista/tratamento farmacológico , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Comportamento Social , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Cromonas/administração & dosagem , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Hipercinese/genética , Masculino , Camundongos , Camundongos Knockout , Morfolinas/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirolimo/administração & dosagem , Comportamento Estereotipado/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...