Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genesis ; 61(1-2): e23509, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36622051

RESUMO

Craniofacial anomalies (CFAs) are a diverse group of disorders affecting the shapes of the face and the head. Malformation of the cranial base in humans leads CFAs, such as midfacial hypoplasia and craniosynostosis. These patients have significant burdens associated with breathing, speaking, and chewing. Invasive surgical intervention is the current primary option to correct these structural deficiencies. Understanding molecular cellular mechanism for craniofacial development would provide novel therapeutic options for CFAs. In this study, we found that enhanced bone morphogenetic protein (BMP) signaling in cranial neural crest cells (NCCs) (P0-Cre;caBmpr1a mice) causes premature fusion of intersphenoid synchondrosis (ISS) resulting in leading to short snouts and hypertelorism. Histological analyses revealed reduction of proliferation and higher cell death in ISS at postnatal day 3. We demonstrated to prevent the premature fusion of ISS in P0-Cre;caBmpr1a mice by injecting a p53 inhibitor Pifithrin-α to the pregnant mother from E15.5 to E18.5, resulting in rescue from short snouts and hypertelorism. We further demonstrated to prevent premature fusion of cranial sutures in P0-Cre;caBmpr1a mice by injecting Pifithrin-α through E8.5 to E18.5. These results suggested that enhanced BMP-p53-induced cell death in cranial NCCs causes premature fusion of ISS and sutures in time-dependent manner.


Assuntos
Anormalidades Craniofaciais , Base do Crânio , Proteínas Morfogenéticas Ósseas/metabolismo , Crista Neural/metabolismo , Crista Neural/patologia , Proliferação de Células , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo , Masculino , Feminino , Animais , Camundongos , Animais Recém-Nascidos , Transdução de Sinais , Apoptose , Condrócitos/metabolismo , Proteínas Smad/metabolismo , Ligação Proteica , Anormalidades Craniofaciais/metabolismo , Anormalidades Craniofaciais/patologia , Gravidez , Base do Crânio/anormalidades , Base do Crânio/metabolismo , Base do Crânio/patologia , Hipertelorismo/metabolismo , Hipertelorismo/patologia
2.
G3 (Bethesda) ; 12(2)2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34897432

RESUMO

Roberts syndrome (RBS) is a multispectrum developmental disorder characterized by severe limb, craniofacial, and organ abnormalities and often intellectual disabilities. The genetic basis of RBS is rooted in loss-of-function mutations in the essential N-acetyltransferase ESCO2 which is conserved from yeast (Eco1/Ctf7) to humans. ESCO2/Eco1 regulate many cellular processes that impact chromatin structure, chromosome transmission, gene expression, and repair of the genome. The etiology of RBS remains contentious with current models that include transcriptional dysregulation or mitotic failure. Here, we report evidence that supports an emerging model rooted in defective DNA damage responses. First, the results reveal that redox stress is elevated in both eco1 and cohesion factor Saccharomyces cerevisiae mutant cells. Second, we provide evidence that Eco1 and cohesion factors are required for the repair of oxidative DNA damage such that ECO1 and cohesin gene mutations result in reduced cell viability and hyperactivation of DNA damage checkpoints that occur in response to oxidative stress. Moreover, we show that mutation of ECO1 is solely sufficient to induce endogenous redox stress and sensitizes mutant cells to exogenous genotoxic challenges. Remarkably, antioxidant treatment desensitizes eco1 mutant cells to a range of DNA damaging agents, raising the possibility that modulating the cellular redox state may represent an important avenue of treatment for RBS and tumors that bear ESCO2 mutations.


Assuntos
Ectromelia , Hipertelorismo , Proteínas de Saccharomyces cerevisiae , Acetiltransferases/genética , Acetiltransferases/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromátides , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Anormalidades Craniofaciais , Ectromelia/genética , Ectromelia/metabolismo , Ectromelia/patologia , Humanos , Hipertelorismo/genética , Hipertelorismo/metabolismo , Hipertelorismo/patologia , Proteínas Nucleares/genética , Oxirredução , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Cardiovasc Res ; 117(9): 2092-2107, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32898233

RESUMO

AIMS: Several inherited arrhythmic diseases have been linked to single gene mutations in cardiac ion channels and interacting proteins. However, the mechanisms underlying most arrhythmias, are thought to involve altered regulation of the expression of multiple effectors. In this study, we aimed to examine the role of a transcription factor (TF) belonging to the Iroquois homeobox family, IRX5, in cardiac electrical function. METHODS AND RESULTS: Using human cardiac tissues, transcriptomic correlative analyses between IRX5 and genes involved in cardiac electrical activity showed that in human ventricular compartment, IRX5 expression strongly correlated to the expression of major actors of cardiac conduction, including the sodium channel, Nav1.5, and Connexin 40 (Cx40). We then generated human-induced pluripotent stem cells (hiPSCs) derived from two Hamamy syndrome-affected patients carrying distinct homozygous loss-of-function mutations in IRX5 gene. Cardiomyocytes derived from these hiPSCs showed impaired cardiac gene expression programme, including misregulation in the control of Nav1.5 and Cx40 expression. In accordance with the prolonged QRS interval observed in Hamamy syndrome patients, a slower ventricular action potential depolarization due to sodium current reduction was observed on electrophysiological analyses performed on patient-derived cardiomyocytes, confirming the functional role of IRX5 in electrical conduction. Finally, a cardiac TF complex was newly identified, composed by IRX5 and GATA4, in which IRX5 potentiated GATA4-induction of SCN5A expression. CONCLUSION: Altogether, this work unveils a key role for IRX5 in the regulation of human ventricular depolarization and cardiac electrical conduction, providing therefore new insights into our understanding of cardiac diseases.


Assuntos
Potenciais de Ação , Arritmias Cardíacas/genética , Doenças Ósseas/genética , Ventrículos do Coração/metabolismo , Proteínas de Homeodomínio/genética , Hipertelorismo/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Deficiência Intelectual/genética , Mutação com Perda de Função , Miócitos Cardíacos/metabolismo , Miopia/genética , Fatores de Transcrição/genética , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Doenças Ósseas/metabolismo , Doenças Ósseas/fisiopatologia , Células Cultivadas , Conexinas/genética , Conexinas/metabolismo , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Frequência Cardíaca , Proteínas de Homeodomínio/metabolismo , Humanos , Hipertelorismo/metabolismo , Hipertelorismo/fisiopatologia , Deficiência Intelectual/metabolismo , Deficiência Intelectual/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Miopia/metabolismo , Miopia/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , Proteína alfa-5 de Junções Comunicantes
4.
PLoS Genet ; 16(12): e1009219, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33382686

RESUMO

Roberts syndrome (RBS) is a rare developmental disorder that can include craniofacial abnormalities, limb malformations, missing digits, intellectual disabilities, stillbirth, and early mortality. The genetic basis for RBS is linked to autosomal recessive loss-of-function mutation of the establishment of cohesion (ESCO) 2 acetyltransferase. ESCO2 is an essential gene that targets the DNA-binding cohesin complex. ESCO2 acetylates alternate subunits of cohesin to orchestrate vital cellular processes that include sister chromatid cohesion, chromosome condensation, transcription, and DNA repair. Although significant advances were made over the last 20 years in our understanding of ESCO2 and cohesin biology, the molecular etiology of RBS remains ambiguous. In this review, we highlight current models of RBS and reflect on data that suggests a novel role for macromolecular damage in the molecular etiology of RBS.


Assuntos
Acetiltransferases/genética , Proteínas Cromossômicas não Histona/genética , Anormalidades Craniofaciais/genética , Dano ao DNA , Ectromelia/genética , Hipertelorismo/genética , Acetiltransferases/metabolismo , Animais , Proteínas Cromossômicas não Histona/metabolismo , Anormalidades Craniofaciais/metabolismo , Ectromelia/metabolismo , Instabilidade Genômica , Humanos , Hipertelorismo/metabolismo
5.
Sci Rep ; 10(1): 7408, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366894

RESUMO

ANKH mutations are associated with calcium pyrophosphate deposition disease and craniometaphyseal dysplasia. This study investigated the effects of these ANKH mutants on cellular localisation and associated biochemistry. We generated four ANKH overexpression-plasmids containing either calcium pyrophosphate deposition disease or craniometaphyseal dysplasia linked mutations: P5L, E490del and S375del, G389R. They were transfected into CH-8 articular chondrocytes and HEK293 cells. The ANKH mutants dynamic differential localisations were imaged and we investigated the interactions with the autophagy marker LC3. Extracellular inorganic pyrophosphate, mineralization, ENPP1 activity expression of ENPP1, TNAP and PIT-1 were measured. P5L delayed cell membrane localisation but once recruited into the membrane it increased extracellular inorganic pyrophosphate, mineralization, and ENPP1 activity. E490del remained mostly cytoplasmic, forming punctate co-localisations with LC3, increased mineralization, ENPP1 and ENPP1 activity with an initial but unsustained increase in TNAP and PIT-1. S375del trended to decrease extracellular inorganic pyrophosphate, increase mineralization. G389R delayed cell membrane localisation, trended to decrease extracellular inorganic pyrophosphate, increased mineralization and co-localised with LC3. Our results demonstrate a link between pathological localisation of ANKH mutants with different degrees in mineralization. Furthermore, mutant ANKH functions are related to synthesis of defective proteins, inorganic pyrophosphate transport, ENPP1 activity and expression of ENPP1, TNAP and PIT-1.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Condrocalcinose/genética , Anormalidades Craniofaciais/genética , Hiperostose/genética , Hipertelorismo/genética , Mutação , Proteínas de Transporte de Fosfato/genética , Fosfatase Alcalina , Autofagia , Doenças do Desenvolvimento Ósseo/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Condrocalcinose/metabolismo , Condrócitos/metabolismo , Anormalidades Craniofaciais/metabolismo , Difosfatos/metabolismo , Células HEK293 , Humanos , Hiperostose/metabolismo , Hipertelorismo/metabolismo , Microscopia Confocal , Proteínas de Transporte de Fosfato/metabolismo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Domínios Proteicos , Pirofosfatases/genética , Pirofosfatases/metabolismo , Fator de Transcrição Pit-1/genética , Fator de Transcrição Pit-1/metabolismo
6.
FEBS J ; 284(14): 2183-2193, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28548391

RESUMO

Mutations of human MID1 are associated with X-linked Opitz G Syndrome (XLOS), which is characterized by midline birth defects. XLOS-observed mutations within the MID1 B-box1 domain are associated with cleft lip/palate, wide-spaced eyes and hyperspadias. Three of the four XLOS-observed mutations in the B-box1 domain results in unfolding but the structural and functional effects of the P151L mutation is not characterized. Here, we demonstrate that the P151L mutation does not disrupt the overall tertiary structure of the B-box1 domain and the adjacent domains. In fact, MID1 E3 ligase activity is slightly enhanced. However, the P151L mutation disrupted the ability of MID1 to catalyze the poly-ubiquitination of alpha4, a novel regulator of PP2A. This observation is consistent with results observed with the other three structure-destabilizing B-box1 mutations in targeting alpha4 but not PP2A. Alpha4 is shown to bind and sequester the catalytic subunit of PP2A and protect it from MID1-mediated ubiquitination and as a result, an increase in alpha4 can contribute to an increase in PP2A, playing a greater role in midline development during embryogenesis.


Assuntos
Fissura Palatina/genética , Fissura Palatina/metabolismo , Esôfago/anormalidades , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Hipertelorismo/genética , Hipertelorismo/metabolismo , Hipospadia/genética , Hipospadia/metabolismo , Proteínas dos Microtúbulos/química , Proteínas dos Microtúbulos/metabolismo , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Fissura Palatina/patologia , Esôfago/metabolismo , Esôfago/patologia , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Hipertelorismo/patologia , Hipospadia/patologia , Proteínas dos Microtúbulos/genética , Proteínas dos Microtúbulos/ultraestrutura , Modelos Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/ultraestrutura , Domínios Proteicos , Proteína Fosfatase 2/metabolismo , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Fatores de Transcrição/genética , Fatores de Transcrição/ultraestrutura , Ubiquitina-Proteína Ligases , Ubiquitinação
7.
Oncotarget ; 7(42): 67934-67947, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27636994

RESUMO

Replication fork-associated factors promote genome integrity and protect against cancer. Mutations in the DDX11 helicase and the ESCO2 acetyltransferase also cause related developmental disorders classified as cohesinopathies. Here we generated vertebrate model cell lines of these disorders and cohesinopathies-related genes. We found that vertebrate DDX11 and Tim-Tipin are individually needed to compensate for ESCO2 loss in chromosome segregation, with DDX11 also playing complementary roles with ESCO2 in centromeric cohesion. Our study reveals that overt centromeric cohesion loss does not necessarily precede chromosome missegregation, while both these problems correlate with, and possibly originate from, inner-centromere defects involving reduced phosphorylation of histone H3T3 (pH3T3) in the region. Interestingly, the mitotic pH3T3 mark was defective in all analyzed replication-related mutants with functions in cohesion. The results pinpoint mitotic pH3T3 as a postreplicative chromatin mark that is sensitive to replication stress and conducts with different kinetics to robust centromeric cohesion and correct chromosome segregation.


Assuntos
Centrômero/genética , Cromatina/genética , Segregação de Cromossomos , Replicação do DNA/genética , Acetiltransferases/genética , Acetiltransferases/metabolismo , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Centrômero/metabolismo , Galinhas , Cromátides/genética , Cromátides/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/metabolismo , Anormalidades Craniofaciais/patologia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Ectromelia/genética , Ectromelia/metabolismo , Ectromelia/patologia , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Histonas/genética , Histonas/metabolismo , Humanos , Hipertelorismo/genética , Hipertelorismo/metabolismo , Hipertelorismo/patologia , Mitose/genética
8.
Clin Chim Acta ; 456: 122-127, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26820766

RESUMO

BACKGROUND: Craniometaphyseal dysplasia (CMD) is a rare genetic disorder that is characterized by progressive sclerosis of the craniofacial bones and metaphyseal widening of long bones, and biochemical indexes were mostly normal. To further the understanding of the disease from a biochemical perspective, we reported a CMD case with obviously abnormal biochemical indexes. CASE REPORT: A 1-year-old boy was referred to our clinic. Biochemical test showed obviously increased alkaline phosphatase (ALP) and parathyroid hormone (PTH), mild hypocalcemia and hypophosphatemia. Moreover, significant elevated receptor activator of nuclear factor kappa-B ligand (RANKL) level, but normal ß-C-terminal telopeptide of type I collagen (ß-CTX) concentration were revealed. He was initially suspected of rickets, because the radiological examination also showed broadened epiphysis in his long bones. Supplementation with calcium and calcitriol alleviated biochemical abnormality. However, the patient gradually developed osteosclerosis which was inconformity with rickets. Considering that he was also presented with facial paralysis and nasal obstruction symptom, the diagnosis of craniometaphyseal dysplasia was suspected, and then was confirmed by the mutation analysis of ANKH of the proband and his family, which showed a de novo heterozygous mutation (C1124-1126delCCT) on exon 9. CONCLUSIONS: Our study revealed that obvious biochemical abnormality and rickets-like features might present as uncommon characteristics in CMD patients, and the calcium and calcitriol supplementation could alleviate biochemical abnormalities. Furthermore, although early osteoclast differentiation factor was excited in CMD patient, activity of osteoclast was still inert.


Assuntos
Doenças do Desenvolvimento Ósseo/complicações , Doenças do Desenvolvimento Ósseo/metabolismo , Anormalidades Craniofaciais/complicações , Anormalidades Craniofaciais/metabolismo , Hiperostose/complicações , Hiperostose/metabolismo , Hipertelorismo/complicações , Hipertelorismo/metabolismo , Raquitismo/complicações , Fosfatase Alcalina/metabolismo , Doenças do Desenvolvimento Ósseo/genética , Anormalidades Craniofaciais/genética , Éxons/genética , Feminino , Heterozigoto , Humanos , Hiperostose/genética , Hipertelorismo/genética , Hipocalcemia/complicações , Hipofosfatemia/complicações , Lactente , Masculino , Mutação , Hormônio Paratireóideo/metabolismo , Linhagem , Proteínas de Transporte de Fosfato/genética
9.
BMC Genomics ; 17: 25, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26729373

RESUMO

BACKGROUND: Roberts syndrome (RBS) is a human developmental disorder caused by mutations in the cohesin acetyltransferase ESCO2. We previously reported that mTORC1 signaling was depressed and overall translation was reduced in RBS cells and zebrafish models for RBS. Treatment of RBS cells and zebrafish RBS models with L-leucine partially rescued mTOR function and protein synthesis, correlating with increased cell division and improved development. RESULTS: In this study, we use RBS cells to model mTORC1 repression and analyze transcription and translation with ribosome profiling to determine gene-level effects of L-leucine. L-leucine treatment partially rescued translational efficiency of ribosomal subunits, translation initiation factors, snoRNA production, and mitochondrial function in RBS cells, consistent with these processes being mTORC1 controlled. In contrast, other genes are differentially expressed independent of L-leucine treatment, including imprinted genes such as H19 and GTL2, miRNAs regulated by GTL2, HOX genes, and genes in nucleolar associated domains. CONCLUSIONS: Our study distinguishes between gene expression changes in RBS cells that are TOR dependent and those that are independent. Some of the TOR independent gene expression changes likely reflect the architectural role of cohesin in chromatin looping and gene expression. This study reveals the dramatic rescue effects of L-leucine stimulation of mTORC1 in RBS cells and supports that normal gene expression and translation requires ESCO2 function.


Assuntos
Acetiltransferases/genética , Proteínas Cromossômicas não Histona/genética , Anormalidades Craniofaciais/genética , Ectromelia/genética , Hipertelorismo/genética , Serina-Treonina Quinases TOR/genética , Transcrição Gênica , Animais , Anormalidades Craniofaciais/metabolismo , Modelos Animais de Doenças , Ectromelia/metabolismo , Humanos , Hipertelorismo/metabolismo , Leucina/metabolismo , Mutação , Biossíntese de Proteínas , Ribossomos/metabolismo , Serina-Treonina Quinases TOR/biossíntese , Peixe-Zebra
10.
Hum Mol Genet ; 25(3): 546-57, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26647308

RESUMO

De novo disruptions of the neural transcription factor FOXP1 are a recently discovered, rare cause of sporadic intellectual disability (ID). We report three new cases of FOXP1-related disorder identified through clinical whole-exome sequencing. Detailed phenotypic assessment confirmed that global developmental delay, autistic features, speech/language deficits, hypotonia and mild dysmorphic features are core features of the disorder. We expand the phenotypic spectrum to include sensory integration disorder and hypertelorism. Notably, the etiological variants in these cases include two missense variants within the DNA-binding domain of FOXP1. Only one such variant has been reported previously. The third patient carries a stop-gain variant. We performed functional characterization of the three missense variants alongside our stop-gain and two previously described truncating/frameshift variants. All variants severely disrupted multiple aspects of protein function. Strikingly, the missense variants had similarly severe effects on protein function as the truncating/frameshift variants. Our findings indicate that a loss of transcriptional repression activity of FOXP1 underlies the neurodevelopmental phenotype in FOXP1-related disorder. Interestingly, the three novel variants retained the ability to interact with wild-type FOXP1, suggesting these variants could exert a dominant-negative effect by interfering with the normal FOXP1 protein. These variants also retained the ability to interact with FOXP2, a paralogous transcription factor disrupted in rare cases of speech and language disorder. Thus, speech/language deficits in these individuals might be worsened through deleterious effects on FOXP2 function. Our findings highlight that de novo FOXP1 variants are a cause of sporadic ID and emphasize the importance of this transcription factor in neurodevelopment.


Assuntos
Deficiências do Desenvolvimento/genética , Fatores de Transcrição Forkhead/genética , Hipertelorismo/genética , Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/genética , Mutação de Sentido Incorreto , Proteínas Repressoras/genética , Adolescente , Sequência de Bases , Criança , DNA/genética , DNA/metabolismo , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Exoma , Feminino , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hipertelorismo/metabolismo , Hipertelorismo/patologia , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Transtornos do Desenvolvimento da Linguagem/metabolismo , Transtornos do Desenvolvimento da Linguagem/patologia , Masculino , Dados de Sequência Molecular , Linhagem , Ligação Proteica , Proteínas Repressoras/metabolismo , Transdução de Sinais , Transcrição Gênica
11.
Wiley Interdiscip Rev Dev Biol ; 4(5): 489-504, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25847322

RESUMO

Cohesin is a chromosome-associated protein complex that plays many important roles in chromosome function. Genetic screens in yeast originally identified cohesin as a key regulator of chromosome segregation. Subsequently, work by various groups has identified cohesin as critical for additional processes such as DNA damage repair, insulator function, gene regulation, and chromosome condensation. Mutations in the genes encoding cohesin and its accessory factors result in a group of developmental and intellectual impairment diseases termed 'cohesinopathies.' How mutations in cohesin genes cause disease is not well understood as precocious chromosome segregation is not a common feature in cells derived from patients with these syndromes. In this review, the latest findings concerning cohesin's function in the organization of chromosome structure and gene regulation are discussed. We propose that the cohesinopathies are caused by changes in gene expression that can negatively impact translation. The similarities and differences between cohesinopathies and ribosomopathies, diseases caused by defects in ribosome biogenesis, are discussed. The contribution of cohesin and its accessory proteins to gene expression programs that support translation suggests that cohesin provides a means of coupling chromosome structure with the translational output of cells.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Anormalidades Craniofaciais/genética , Síndrome de Cornélia de Lange/genética , Ectromelia/genética , Hipertelorismo/genética , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Anormalidades Craniofaciais/etiologia , Anormalidades Craniofaciais/metabolismo , Síndrome de Cornélia de Lange/etiologia , Síndrome de Cornélia de Lange/metabolismo , Ectromelia/etiologia , Ectromelia/metabolismo , Humanos , Hipertelorismo/etiologia , Hipertelorismo/metabolismo , Biossíntese de Proteínas , Coesinas
12.
PLoS One ; 9(9): e107428, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25207814

RESUMO

MID1 is a microtubule-associated protein that belongs to the TRIM family. MID1 functions as an ubiquitin E3 ligase, and recently was shown to catalyze the polyubiquitination of, alpha4, a protein regulator of protein phosphatase 2A (PP2A). It has been hypothesized that MID1 regulates PP2A, requiring the intermediary interaction with alpha4. Here we report that MID1 catalyzes the in vitro ubiquitination of the catalytic subunit of PP2A (PP2Ac) in the absence of alpha4. In the presence of alpha4, the level of PP2Ac ubiquitination is reduced. Using the MID1 RING-Bbox1-Bbox2 (RB1B2) construct containing the E3 ligase domains, we investigate the functional effects of mutations within the Bbox domains that are identified in patients with X-linked Opitz G syndrome (XLOS). The RB1B2 proteins harboring the C142S, C145T, A130V/T mutations within the Bbox1 domain and C195F mutation within the Bbox2 domain maintain auto-polyubiquitination activity. Qualitatively, the RB1B2 proteins containing these mutations are able to catalyze the ubiquitination of PP2Ac. In contrast, the RB1B2 proteins with mutations within the Bbox1 domain are unable to catalyze the polyubiquitination of alpha4. These results suggest that unregulated alpha4 may be the direct consequence of these natural mutations in the Bbox1 domain of MID1, and hence alpha4 could play a greater role to account for the increased amount of PP2A observed in XLOS-derived fibroblasts.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas dos Microtúbulos/genética , Proteínas Nucleares/genética , Proteína Fosfatase 2/genética , Proteínas Recombinantes de Fusão/genética , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Fissura Palatina/genética , Fissura Palatina/metabolismo , Fissura Palatina/patologia , Esôfago/anormalidades , Esôfago/metabolismo , Esôfago/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Hipertelorismo/genética , Hipertelorismo/metabolismo , Hipertelorismo/patologia , Hipospadia/genética , Hipospadia/metabolismo , Hipospadia/patologia , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas dos Microtúbulos/química , Proteínas dos Microtúbulos/metabolismo , Modelos Moleculares , Chaperonas Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteína Fosfatase 2/química , Proteína Fosfatase 2/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
13.
Methods Mol Biol ; 1170: 229-66, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24906316

RESUMO

Mitosis and meiosis are essential processes that occur during development. Throughout these processes, cohesion is required to keep the sister chromatids together until their separation at anaphase. Cohesion is created by multiprotein subunit complexes called cohesins. Although the subunits differ slightly in mitosis and meiosis, the canonical cohesin complex is composed of four subunits that are quite diverse. The cohesin complexes are also important for DNA repair, gene expression, development, and genome integrity. Here we provide an overview of the roles of cohesins during these different events as well as their roles in human health and disease, including the cohesinopathies. Although the exact roles and mechanisms of these proteins are still being elucidated, this review serves as a guide for the current knowledge of cohesins.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Meiose , Mitose , Animais , Proteínas de Ciclo Celular/análise , Proteínas de Ciclo Celular/genética , Cromátides/genética , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/análise , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/metabolismo , Anormalidades Craniofaciais/patologia , Síndrome de Cornélia de Lange/genética , Síndrome de Cornélia de Lange/metabolismo , Síndrome de Cornélia de Lange/patologia , Ectromelia/genética , Ectromelia/metabolismo , Ectromelia/patologia , Humanos , Hipertelorismo/genética , Hipertelorismo/metabolismo , Hipertelorismo/patologia , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Talassemia alfa/genética , Talassemia alfa/metabolismo , Talassemia alfa/patologia , Coesinas
14.
Proc Natl Acad Sci U S A ; 110(48): 19525-30, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24218572

RESUMO

Cyclin-dependent kinases (CDKs) regulate a variety of fundamental cellular processes. CDK10 stands out as one of the last orphan CDKs for which no activating cyclin has been identified and no kinase activity revealed. Previous work has shown that CDK10 silencing increases ETS2 (v-ets erythroblastosis virus E26 oncogene homolog 2)-driven activation of the MAPK pathway, which confers tamoxifen resistance to breast cancer cells. The precise mechanisms by which CDK10 modulates ETS2 activity, and more generally the functions of CDK10, remain elusive. Here we demonstrate that CDK10 is a cyclin-dependent kinase by identifying cyclin M as an activating cyclin. Cyclin M, an orphan cyclin, is the product of FAM58A, whose mutations cause STAR syndrome, a human developmental anomaly whose features include toe syndactyly, telecanthus, and anogenital and renal malformations. We show that STAR syndrome-associated cyclin M mutants are unable to interact with CDK10. Cyclin M silencing phenocopies CDK10 silencing in increasing c-Raf and in conferring tamoxifen resistance to breast cancer cells. CDK10/cyclin M phosphorylates ETS2 in vitro, and in cells it positively controls ETS2 degradation by the proteasome. ETS2 protein levels are increased in cells derived from a STAR patient, and this increase is attributable to decreased cyclin M levels. Altogether, our results reveal an additional regulatory mechanism for ETS2, which plays key roles in cancer and development. They also shed light on the molecular mechanisms underlying STAR syndrome.


Assuntos
Canal Anal/anormalidades , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Hipertelorismo/genética , Rim/anormalidades , Proteólise , Proteína Proto-Oncogênica c-ets-2/metabolismo , Sindactilia/genética , Dedos do Pé/anormalidades , Anormalidades Urogenitais/genética , Canal Anal/metabolismo , Western Blotting , Linhagem Celular Tumoral , Quinases Ciclina-Dependentes/deficiência , Ciclinas/genética , Células HEK293 , Humanos , Hipertelorismo/metabolismo , Imunoprecipitação , Rim/metabolismo , Células MCF-7 , Complexo de Endopeptidases do Proteassoma/metabolismo , Sindactilia/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Anormalidades Urogenitais/metabolismo
15.
PLoS Genet ; 9(10): e1003857, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098154

RESUMO

Roberts syndrome (RBS) is a human disease characterized by defects in limb and craniofacial development and growth and mental retardation. RBS is caused by mutations in ESCO2, a gene which encodes an acetyltransferase for the cohesin complex. While the essential role of the cohesin complex in chromosome segregation has been well characterized, it plays additional roles in DNA damage repair, chromosome condensation, and gene expression. The developmental phenotypes of Roberts syndrome and other cohesinopathies suggest that gene expression is impaired during embryogenesis. It was previously reported that ribosomal RNA production and protein translation were impaired in immortalized RBS cells. It was speculated that cohesin binding at the rDNA was important for nucleolar form and function. We have explored the hypothesis that reduced ribosome function contributes to RBS in zebrafish models and human cells. Two key pathways that sense cellular stress are the p53 and mTOR pathways. We report that mTOR signaling is inhibited in human RBS cells based on the reduced phosphorylation of the downstream effectors S6K1, S6 and 4EBP1, and this correlates with p53 activation. Nucleoli, the sites of ribosome production, are highly fragmented in RBS cells. We tested the effect of inhibiting p53 or stimulating mTOR in RBS cells. The rescue provided by mTOR activation was more significant, with activation rescuing both cell division and cell death. To study this cohesinopathy in a whole animal model we used ESCO2-mutant and morphant zebrafish embryos, which have developmental defects mimicking RBS. Consistent with RBS patient cells, the ESCO2 mutant embryos show p53 activation and inhibition of the TOR pathway. Stimulation of the TOR pathway with L-leucine rescued many developmental defects of ESCO2-mutant embryos. Our data support the idea that RBS can be attributed in part to defects in ribosome biogenesis, and stimulation of the TOR pathway has therapeutic potential.


Assuntos
Acetiltransferases/genética , Proteínas Cromossômicas não Histona/genética , Anormalidades Craniofaciais/genética , Ectromelia/genética , Hipertelorismo/genética , Leucina/genética , Complexos Multiproteicos/genética , Serina-Treonina Quinases TOR/genética , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Anormalidades Craniofaciais/metabolismo , Ectromelia/metabolismo , Desenvolvimento Embrionário , Humanos , Hipertelorismo/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/metabolismo , RNA Ribossômico/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/embriologia , Coesinas
17.
Nucleus ; 3(6): 520-5, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23138777

RESUMO

Chromosome cohesion, mediated by the cohesin complex, is essential for the process of chromosome segregation. Mutations in cohesin and its regulators are associated with a group of human diseases known as the cohesinopathies. These diseases are characterized by defects in head, face, limb, and heart development, mental retardation, and poor growth. The developmental features of the diseases are not well explained by defects in chromosome segregation, but instead are consistent with changes in gene expression during embryogenesis. Thus a central question to understanding the cohesinopathies is how mutations in cohesin lead to changes in gene expression. One of the prevailing models is that cohesin binding to promoters and enhancers directly regulates transcription. I propose that in addition cohesin may influence gene expression via translational mechanisms. If true, cohesinopathies may be related in etiology to another group of human diseases known as ribosomopathies, diseases caused by defects in ribosome biogenesis. By considering this possibility we can more fully evaluate causes and treatments for the cohesinopathies.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Anormalidades Craniofaciais/metabolismo , Síndrome de Cornélia de Lange/metabolismo , Ectromelia/metabolismo , Hipertelorismo/metabolismo , Biossíntese de Proteínas/fisiologia , Acetiltransferases/genética , Acetiltransferases/metabolismo , Proteínas de Ciclo Celular/genética , Nucléolo Celular/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , Cromossomos/metabolismo , Anormalidades Craniofaciais/etiologia , Anormalidades Craniofaciais/genética , Síndrome de Cornélia de Lange/etiologia , Síndrome de Cornélia de Lange/genética , Ectromelia/etiologia , Ectromelia/genética , Humanos , Hipertelorismo/etiologia , Hipertelorismo/genética , Mutação , Ribossomos/metabolismo , Coesinas
18.
Dev Growth Differ ; 54(5): 588-604, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22694322

RESUMO

Roberts syndrome and SC phocomelia (RBS/SC) are genetic autosomal recessive syndromes caused by establishment of cohesion 1 homolog 2 ( ESCO 2) mutation. RBS/SC appear to have a variety of clinical features, even with the same mutation of the ESCO2 gene. Here, we established and genetically characterized a medaka model of RBS/SC by reverse genetics. The RBS/SC model was screened from a mutant medaka library produced by the Targeting Induced Local Lesions in Genomes method. The medaka mutant carrying the homozygous mutation at R80S in the conserved region of ESCO2 exhibited clinical variety (i.e. developmental arrest with craniofacial and chromosomal abnormalities and embryonic lethality) as characterized in RBS/SC. Moreover, widespread apoptosis and downregulation of some gene expression, including notch1a, were detected in the R80S mutant. The R80S mutant is the animal model for RBS/SC and a valuable resource that provides the opportunity to extend knowledge of ESCO2. Downregulation of some gene expression in the R80S mutant is an important clue explaining non-correlation between genotype and phenotype in RBS/SC.


Assuntos
Acetiltransferases/genética , Anormalidades Craniofaciais/genética , Modelos Animais de Doenças , Ectromelia/genética , Hipertelorismo/genética , Oryzias , Acetiltransferases/metabolismo , Animais , Apoptose/genética , Clonagem Molecular , Anormalidades Craniofaciais/metabolismo , Ectromelia/metabolismo , Genótipo , Hipertelorismo/metabolismo , Oryzias/genética , Oryzias/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único , Receptor Notch1/biossíntese , Genética Reversa
19.
PLoS Genet ; 8(6): e1002749, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22719263

RESUMO

Cohesin is a protein complex known for its essential role in chromosome segregation. However, cohesin and associated factors have additional functions in transcription, DNA damage repair, and chromosome condensation. The human cohesinopathy diseases are thought to stem not from defects in chromosome segregation but from gene expression. The role of cohesin in gene expression is not well understood. We used budding yeast strains bearing mutations analogous to the human cohesinopathy disease alleles under control of their native promoter to study gene expression. These mutations do not significantly affect chromosome segregation. Transcriptional profiling reveals that many targets of the transcriptional activator Gcn4 are induced in the eco1-W216G mutant background. The upregulation of Gcn4 was observed in many cohesin mutants, and this observation suggested protein translation was reduced. We demonstrate that the cohesinopathy mutations eco1-W216G and smc1-Q843Δ are associated with defects in ribosome biogenesis and a reduction in the actively translating fraction of ribosomes, eiF2α-phosphorylation, and (35)S-methionine incorporation, all of which indicate a deficit in protein translation. Metabolic labeling shows that the eco1-W216G and smc1-Q843Δ mutants produce less ribosomal RNA, which is expected to constrain ribosome biogenesis. Further analysis shows that the production of rRNA from an individual repeat is reduced while copy number remains unchanged. Similar defects in rRNA production and protein translation are observed in a human Roberts syndrome cell line. In addition, cohesion is defective specifically at the rDNA locus in the eco1-W216G mutant, as has been previously reported for Roberts syndrome. Collectively, our data suggest that cohesin proteins normally facilitate production of ribosomal RNA and protein translation, and this is one way they can influence gene expression. Reduced translational capacity could contribute to the human cohesinopathies.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Anormalidades Craniofaciais , Ectromelia , Hipertelorismo , Biossíntese de Proteínas/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Acetiltransferases/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/metabolismo , Ectromelia/genética , Ectromelia/metabolismo , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Hipertelorismo/genética , Hipertelorismo/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Polirribossomos/genética , RNA Ribossômico/biossíntese , RNA Ribossômico/genética , Ribossomos/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Coesinas
20.
Nucleus ; 3(4): 330-4, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22614755

RESUMO

Cohesin and cohesin regulatory proteins function in an essential pathway enabling proper cohesion and segregation of sister chromatids. Additionally, these proteins are involved in double-strand break (DSB) repair and transcriptional regulation. Mutations in Establishment of cohesion 1 homolog 2 (Esco2), an evolutionary conserved cohesin acetyltransferase, are the cause of Roberts syndrome (RBS), a human congenital disorder. To explore the mechanism by which the deficiency in Esco2 affects cohesin's functions, we generated a mouse harboring a conditional Esco2 allele. To our surprise and in marked contrast to RBS, mouse Esco2 turns out to be a cell viability factor, the absence of which results in severe chromosome segregation defects and apoptosis. We found that the acetylation of the cohesin subunit Smc3 is significantly reduced in Esco2-deficient cells resulting in a marked reduction of Sororin recruitment to several, but not all cohesin bound loci. Here, we provide evidence that Esco2 is also required for DSB repair, which is consistent with previous studies in RBS cells.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Acetiltransferases/deficiência , Acetiltransferases/genética , Animais , Anormalidades Craniofaciais/metabolismo , Anormalidades Craniofaciais/patologia , Ectromelia/metabolismo , Ectromelia/patologia , Humanos , Hipertelorismo/metabolismo , Hipertelorismo/patologia , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...