Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 893
Filtrar
1.
J Med Case Rep ; 18(1): 278, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38872171

RESUMO

BACKGROUND: Homozygous mutations in the APOA5 gene constitute a rare cause of monogenic hypertriglyceridemia, or familial chylomicronemia syndrome (FCS). We searched PubMed and identified 16 cases of homozygous mutations in the APOA5 gene. Severe hypertriglyceridemia related to monogenic mutations in triglyceride-regulating genes can cause recurrent acute pancreatitis. Standard therapeutic approaches for managing this condition typically include dietary interventions, fibrates, and omega-3-fatty acids. A novel therapeutic approach, antisense oligonucleotide volanesorsen is approved for use in patients with FCS. CASE PRESENTATION: We report a case of a 25-years old Afghani male presenting with acute pancreatitis due to severe hypertriglyceridemia up to 29.8 mmol/L caused by homozygosity in APOA5 (c.427delC, p.Arg143Alafs*57). A low-fat diet enriched with medium-chain TG (MCT) oil and fibrate therapy did not prevent recurrent relapses, and volanesorsen was initiated. Volanesorsen resulted in almost normalized triglyceride levels. No further relapses of acute pancreatitis occurred. Patient reported an improve life quality due to alleviated chronic abdominal pain and headaches. CONCLUSIONS: Our case reports a rare yet potentially life-threatening condition-monogenic hypertriglyceridemia-induced acute pancreatitis. The implementation of the antisense drug volanesorsen resulted in improved triglyceride levels, alleviated symptoms, and enhanced the quality of life.


Assuntos
Apolipoproteína A-V , Homozigoto , Hipertrigliceridemia , Pancreatite , Recidiva , Humanos , Masculino , Adulto , Pancreatite/genética , Apolipoproteína A-V/genética , Hipertrigliceridemia/genética , Mutação , Oligonucleotídeos/uso terapêutico , Hiperlipoproteinemia Tipo I/genética , Hiperlipoproteinemia Tipo I/complicações , Dieta com Restrição de Gorduras , Triglicerídeos/sangue
2.
Hipertens. riesgo vasc ; 41(2): 132-134, abr.-jun2024. tab
Artigo em Espanhol | IBECS | ID: ibc-232398

RESUMO

La hipertrigliceridemia engloba un conjunto de trastornos lipídicos comunes en la práctica clínica, generalmente definidos como una concentración superior a 150mg/dL en ayunas. Existen diversas clasificaciones de la gravedad de la hipertrigliceridemia en función de sus valores séricos, considerándose por norma general moderada cuando los niveles son inferiores a 500mg/dL y severa cuando son mayores de 1.000mg/dL. Su importancia radica en su asociación con otras alteraciones del perfil lipídico, contribuyendo al aumento del riesgo cardiovascular y de pancreatitis aguda, fundamentalmente con concentraciones superiores a 500mg/dL.(AU)


Hypertriglyceridemia encompasses a set of lipid disorders common in clinical practice, generally defined as a fasting concentration above 150mg/dL. There are various classifications of the severity of hypertriglyceridaemia based on serum values, with levels generally considered moderate when below 500mg/dL and severe when above 1000mg/dL. Its importance lies in its association with other alterations in the lipid profile, contributing to increased cardiovascular risk and increased risk of acute pancreatitis, mainly with concentrations above 500mg/dL.(AU)


Assuntos
Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Hipertrigliceridemia/genética , Genética , Hiperlipidemias , Prevalência , Pacientes Internados , Exame Físico
3.
Sci Rep ; 14(1): 12430, 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816541

RESUMO

Dietary trans 10, cis 12-conjugated linoleic acid (t10c12-CLA) is a potential candidate in anti-obesity trials. A transgenic mouse was previously successfully established to determine the anti-obesity properties of t10c12-CLA in male mice that could produce endogenous t10c12-CLA. To test whether there is a different impact of t10c12-CLA on lipid metabolism in both sexes, this study investigated the adiposity and metabolic profiles of female Pai mice that exhibited a dose-dependent expression of foreign Pai gene and a shift of t10c12-CLA content in tested tissues. Compared to their gender-match wild-type littermates, Pai mice had no fat reduction but exhibited enhanced lipolysis and thermogenesis by phosphorylated hormone-sensitive lipase and up-regulating uncoupling proteins in brown adipose tissue. Simultaneously, Pai mice showed hepatic steatosis and hypertriglyceridemia by decreasing gene expression involved in lipid and glucose metabolism. Further investigations revealed that t10c10-CLA induced excessive prostaglandin E2, adrenaline, corticosterone, glucagon and inflammatory factors in a dose-dependent manner, resulting in less heat release and oxygen consumption in Pai mice. Moreover, fibroblast growth factor 21 overproduction only in monoallelic Pai/wt mice indicates that it was sensitive to low doses of t10c12-CLA. These results suggest that chronic t10c12-CLA has system-wide effects on female health via synergistic actions of various hormones.


Assuntos
Corticosterona , Dinoprostona , Epinefrina , Fatores de Crescimento de Fibroblastos , Glucagon , Ácidos Linoleicos Conjugados , Camundongos Transgênicos , Animais , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Camundongos , Ácidos Linoleicos Conjugados/farmacologia , Ácidos Linoleicos Conjugados/metabolismo , Corticosterona/metabolismo , Dinoprostona/metabolismo , Glucagon/metabolismo , Epinefrina/metabolismo , Termogênese/efeitos dos fármacos , Termogênese/genética , Masculino , Metabolismo dos Lipídeos/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/genética , Lipólise/efeitos dos fármacos , Hipertrigliceridemia/metabolismo , Hipertrigliceridemia/genética , Adiposidade/efeitos dos fármacos
4.
Curr Opin Cardiol ; 39(3): 154-161, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38456469

RESUMO

PURPOSE OF REVIEW: Genetic testing is increasingly becoming a common consideration in the clinical approach of dyslipidemia patients. Advances in research in last decade and increased recognition of genetics in biological pathways modulating blood lipid levels created a gap between theoretical knowledge and its applicability in clinical practice. Therefore, it is very important to define the clinical justification of genetic testing in dyslipidemia patients. RECENT FINDINGS: Clinical indications for genetic testing for most dyslipidemias are not precisely defined and there are no clearly established guideline recommendations. In patients with severe low-density lipoprotein cholesterol (LDL-C) levels, the genetic analysis can be used to guide diagnostic and therapeutic approach, while in severe hypertriglyceridemia (HTG), clinicians can rely on triglyceride level rather than a genotype along the treatment pathway. Genetic testing increases diagnostic accuracy and risk stratification, access and adherence to specialty therapies, and cost-effectiveness of cascade testing. A shared decision-making model between the provider and the patient is essential as patient values, preferences and clinical characteristics play a very strong role. SUMMARY: Genetic testing for lipid disorders is currently underutilized in clinical practice. However, it should be selectively used, according to the type of dyslipidemia and when the benefits overcome costs.


Assuntos
Dislipidemias , Hipertrigliceridemia , Humanos , Dislipidemias/diagnóstico , Dislipidemias/genética , LDL-Colesterol , Lipídeos , Hipertrigliceridemia/diagnóstico , Hipertrigliceridemia/genética , Testes Genéticos
5.
Hipertens Riesgo Vasc ; 41(2): 132-134, 2024.
Artigo em Espanhol | MEDLINE | ID: mdl-38472008

RESUMO

Hypertriglyceridemia encompasses a set of lipid disorders common in clinical practice, generally defined as a fasting concentration above 150mg/dL. There are various classifications of the severity of hypertriglyceridaemia based on serum values, with levels generally considered moderate when below 500mg/dL and severe when above 1000mg/dL. Its importance lies in its association with other alterations in the lipid profile, contributing to increased cardiovascular risk and increased risk of acute pancreatitis, mainly with concentrations above 500mg/dL.


Assuntos
Hipertrigliceridemia , Pancreatite , Humanos , Pancreatite/genética , Pancreatite/complicações , Doença Aguda , Triglicerídeos , Hipertrigliceridemia/genética , Hipertrigliceridemia/complicações
6.
Atherosclerosis ; 392: 117489, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38448342

RESUMO

BACKGROUND AND AIMS: Multifactorial chylomicronemia syndrome (MCS) is a severe form of hypertriglyceridemia (hyperTG) associated with an increased risk of acute pancreatitis (AP). Severe hyperTG is mainly polygenic in nature, either caused by the presence of heterozygous pathogenic variants (PVs) in TG-related metabolism genes or by accumulation of common variants in hyperTG susceptibility genes. This study aims to determine if the risk of AP is similar amongst MCS patients with different molecular causes of severe hyperTG. METHODS: This study included 114 MCS patients who underwent genetic testing for PVs in TG-related metabolism genes and 16 single nucleotide polymorphisms (SNPs) in hyperTG susceptibility genes. A weighted TG-polygenic risk score (TG-PRS) was calculated. A TG-PRS score ≥ 90th percentile was used to define a high TG-PRS. RESULTS: Overall, 66.7% of patients had severe hyperTG of polygenic origin. MCS patients with only a PV and those with both a PV and high TG-PRS were more prone to have maximal TG concentration ≥ 40 mmol/L (OR 5.33 (1.55-18.36); p = 0.008 and OR 5.33 (1.28-22.25); p = 0.02), as well as higher prevalence of AP (OR 3.64 (0.89-14.92); p = 0.07 and OR 11.90 (2.54-55.85); p = 0.002) compared to MCS patients with high TG-PRS alone. CONCLUSIONS: This is the first study to show that MCS caused by a high TG-PRS and a PV is associated with higher risk of AP, similar to what is seen in the monogenic form of severe hyperTG. This suggests that determining the molecular cause of severe hyperTG could be useful to stratify the risk of pancreatitis in MCS.


Assuntos
Predisposição Genética para Doença , Hipertrigliceridemia , Pancreatite , Polimorfismo de Nucleotídeo Único , Humanos , Pancreatite/genética , Masculino , Feminino , Pessoa de Meia-Idade , Hipertrigliceridemia/genética , Hipertrigliceridemia/complicações , Hipertrigliceridemia/sangue , Fatores de Risco , Adulto , Medição de Risco , Hiperlipoproteinemia Tipo I/genética , Hiperlipoproteinemia Tipo I/complicações , Hiperlipoproteinemia Tipo I/sangue , Hiperlipoproteinemia Tipo I/diagnóstico , Índice de Gravidade de Doença , Herança Multifatorial , Triglicerídeos/sangue , Fenótipo , Doença Aguda , Idoso
7.
Genes (Basel) ; 15(2)2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38397180

RESUMO

Hypertriglyceridemia is an exceptionally complex metabolic disorder characterized by elevated plasma triglycerides associated with an increased risk of acute pancreatitis and cardiovascular diseases such as coronary artery disease. Its phenotype expression is widely heterogeneous and heavily influenced by conditions as obesity, alcohol consumption, or metabolic syndromes. Looking into the genetic underpinnings of hypertriglyceridemia, this review focuses on the genetic variants in LPL, APOA5, APOC2, GPIHBP1 and LMF1 triglyceride-regulating genes reportedly associated with abnormal genetic transcription and the translation of proteins participating in triglyceride-rich lipoprotein metabolism. Hypertriglyceridemia resulting from such genetic abnormalities can be categorized as monogenic or polygenic. Monogenic hypertriglyceridemia, also known as familial chylomicronemia syndrome, is caused by homozygous or compound heterozygous pathogenic variants in the five canonical genes. Polygenic hypertriglyceridemia, also known as multifactorial chylomicronemia syndrome in extreme cases of hypertriglyceridemia, is caused by heterozygous pathogenic genetic variants with variable penetrance affecting the canonical genes, and a set of common non-pathogenic genetic variants (polymorphisms, using the former nomenclature) with well-established association with elevated triglyceride levels. We further address recent progress in triglyceride-lowering treatments. Understanding the genetic basis of hypertriglyceridemia opens new translational opportunities in the scope of genetic screening and the development of novel therapies.


Assuntos
Hipertrigliceridemia , Pancreatite , Humanos , Lipase Lipoproteica/genética , Doença Aguda , Pancreatite/genética , Hipertrigliceridemia/genética , Hipertrigliceridemia/complicações , Triglicerídeos/genética
8.
Genes (Basel) ; 15(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38397183

RESUMO

Miniature Schnauzers are predisposed to primary hypertriglyceridemia (HTG). In this study, we performed whole genome sequencing (WGS) of eight Miniature Schnauzers with primary HTG and screened for risk variants in six HTG candidate genes: LPL, APOC2, APOA5, GPIHBP1, LMF1, and APOE. Variants were filtered to identify those present in ≥2 Miniature Schnauzers with primary HTG and uncommon (<10% allele frequency) in a WGS variant database including 613 dogs from 61 other breeds. Three variants passed filtering: an APOE TATA box deletion, an LMF1 intronic SNP, and a GPIHBP1 missense variant. The APOE and GPIHBP1 variants were genotyped in a cohort of 108 Miniature Schnauzers, including 68 with primary HTG and 40 controls. A multivariable regression model, including age and sex, did not identify an effect of APOE (estimate = 0.18, std. error = 0.14; p = 0.20) or GPIHBP1 genotypes (estimate = -0.26, std. error = 0.42; p = 0.54) on triglyceride concentration. In conclusion, we did not identify a monogenic cause for primary HTG in Miniature Schnauzers in the six genes evaluated. However, if HTG in Miniature Schnauzers is a complex disease resulting from the cumulative effects of multiple variants and environment, the identified variants cannot be ruled out as contributing factors.


Assuntos
Hipertrigliceridemia , Humanos , Cães , Animais , Hipertrigliceridemia/genética , Hipertrigliceridemia/veterinária , Genótipo , Triglicerídeos/genética , Análise de Sequência , Apolipoproteínas E/genética
9.
Endocr J ; 71(5): 447-460, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38346769

RESUMO

Severe hypertriglyceridemia is a pathological condition caused by genetic factors alone or in combination with environmental factors, sometimes leading to acute pancreatitis (AP). In this study, exome sequencing and biochemical analyses were performed in 4 patients with hypertriglyceridemia complicated by obesity or diabetes with a history of AP or decreased post-heparin LPL mass. In a patient with a history of AP, SNP rs199953320 resulting in LMF1 nonsense mutation and APOE rs7412 causing apolipoprotein E2 were both found in heterozygous form. Three patients were homozygous for APOA5 rs2075291, and one was heterozygous. ELISA and Western blot analysis of the serum revealed the existence of apolipoprotein A-V in the lipoprotein-free fraction regardless of the presence or absence of rs2075291; furthermore, the molecular weight of apolipoprotein A-V was different depending on the class of lipoprotein or lipoprotein-free fraction. Lipidomics analysis showed increased serum levels of sphingomyelin and many classes of glycerophospholipid; however, when individual patients were compared, the degree of increase in each class of phospholipid among cases did not coincide with the increases seen in total cholesterol and triglycerides. Moreover, phosphatidylcholine, lysophosphatidylinositol, and sphingomyelin levels tended to be higher in patients who experienced AP than those who did not, suggesting that these phospholipids may contribute to the onset of AP. In summary, this study revealed a new disease-causing gene mutation in LMF1, confirmed an association between overlapping of multiple gene mutations and severe hypertriglyceridemia, and suggested that some classes of phospholipid may be involved in the pathogenesis of AP.


Assuntos
Apolipoproteína A-V , Hipertrigliceridemia , Lipase Lipoproteica , Pancreatite , Humanos , Pancreatite/genética , Pancreatite/sangue , Lipase Lipoproteica/genética , Lipase Lipoproteica/sangue , Hipertrigliceridemia/genética , Hipertrigliceridemia/complicações , Hipertrigliceridemia/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Apolipoproteína A-V/genética , Apolipoproteínas E/genética , Polimorfismo de Nucleotídeo Único , Sequenciamento do Exoma , Obesidade/complicações , Obesidade/genética , Obesidade/sangue , Doença Aguda , Triglicerídeos/sangue , Proteínas de Membrana
10.
Lipids Health Dis ; 23(1): 44, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331899

RESUMO

BACKGROUND AND AIMS: To study the role of gene mutations in the development of severe hypertriglyceridemia (HTG) in patients with hyperlipidemic acute pancreatitis (HLAP), especially different apolipoprotein A5 (APOA5) mutations. METHODS: Whole-exome sequencing was performed on 163 patients with HLAP and 30 patients with biliary acute pancreatitis (BAP). The pathogenicity of mutations was then assessed by combining clinical information, predictions of bioinformatics programs, information from multiple gene databases, and residue location and conservation. The pathogenic mutations of APOA5 were visualized using the software. RESULTS: 1. Compared with BAP patients, pathogenic mutations of APOA5 were frequent in HLAP patients; among them, the heterozygous mutation of p.G185C was the most common. 2. All six pathogenic mutations of APOA5 identified in this study (p.S35N, p.D167V, p.G185C, p.K188I, p.R223C, and p.H182fs) were positively correlated with severe HTG; they were all in the important domains of apolipoprotein A-V (apoA-V). Residue 223 is strictly conserved in multiple mammals and is located in the lipoprotein lipase (LPL)-binding domain (Pro215-Phe261). When Arg 223 is mutated to Cys 223, the positive charge of this residue is reduced, which is potentially destructive to the binding function of apoA-V to LPL. 3. Four new APOA5 mutations were identified, namely c.563A > T, c.667C > T, c.788G > A, and c.544_545 insGGTGC. CONCLUSIONS: The pathogenic mutations of APOA5 were specific to the patients with HLAP and severe HTG in China, and identifying such mutations had clinical significance in elucidating the etiology and subsequent treatment.


Assuntos
Hipertrigliceridemia , Pancreatite , Humanos , Apolipoproteína A-V/genética , Apolipoproteínas A/genética , Apolipoproteínas A/metabolismo , Doença Aguda , Pancreatite/genética , Lipase Lipoproteica/genética , Hipertrigliceridemia/complicações , Hipertrigliceridemia/genética , Mutação
11.
Am J Med Genet A ; 194(6): e63533, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38234231

RESUMO

Morbidity and mortality rates in patients with autosomal recessive, congenital generalized lipodystrophy type 4 (CGL4), an ultra-rare disorder, remain unclear. We report on 30 females and 16 males from 10 countries with biallelic null variants in CAVIN1 gene (mean age, 12 years; range, 2 months to 41 years). Hypertriglyceridemia was seen in 79% (34/43), hepatic steatosis in 82% (27/33) but diabetes mellitus in only 21% (8/44). Myopathy with elevated serum creatine kinase levels (346-3325 IU/L) affected all of them (38/38). 39% had scoliosis (10/26) and 57% had atlantoaxial instability (8/14). Cardiac arrhythmias were detected in 57% (20/35) and 46% had ventricular tachycardia (16/35). Congenital pyloric stenosis was diagnosed in 39% (18/46), 9 had esophageal dysmotility and 19 had intestinal dysmotility. Four patients suffered from intestinal perforations. Seven patients died at mean age of 17 years (range: 2 months to 39 years). The cause of death in four patients was cardiac arrhythmia and sudden death, while others died of prematurity, gastrointestinal perforation, and infected foot ulcers leading to sepsis. Our study highlights high prevalence of myopathy, metabolic abnormalities, cardiac, and gastrointestinal problems in patients with CGL4. CGL4 patients are at high risk of early death mainly caused by cardiac arrhythmias.


Assuntos
Lipodistrofia Generalizada Congênita , Proteínas de Ligação a RNA , Humanos , Masculino , Feminino , Lipodistrofia Generalizada Congênita/genética , Lipodistrofia Generalizada Congênita/complicações , Lipodistrofia Generalizada Congênita/patologia , Adolescente , Criança , Lactente , Pré-Escolar , Adulto , Adulto Jovem , Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Hipertrigliceridemia/genética , Hipertrigliceridemia/complicações , Hipertrigliceridemia/patologia
12.
Mol Ther ; 32(1): 59-73, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37974401

RESUMO

GPIHBP1 plays an important role in the hydrolysis of triglyceride (TG) lipoproteins by lipoprotein lipases (LPLs). However, Gpihbp1 knockout mice did not develop hypertriglyceridemia (HTG) during the suckling period but developed severe HTG after weaning on a chow diet. It has been postulated that LPL expression in the liver of suckling mice may be involved. To determine whether hepatic LPL expression could correct severe HTG in Gpihbp1 deficiency, liver-targeted LPL expression was achieved via intravenous administration of the adeno-associated virus (AAV)-human LPL gene, and the effects of AAV-LPL on HTG and HTG-related acute pancreatitis (HTG-AP) were observed. Suckling Gpihbp1-/- mice with high hepatic LPL expression did not develop HTG, whereas Gpihbp1-/- rat pups without hepatic LPL expression developed severe HTG. AAV-mediated liver-targeted LPL expression dose-dependently decreased plasma TG levels in Gpihbp1-/- mice and rats, increased post-heparin plasma LPL mass and activity, decreased mortality in Gpihbp1-/- rat pups, and reduced the susceptibility and severity of both Gpihbp1-/- animals to HTG-AP. However, the muscle expression of AAV-LPL had no significant effect on HTG. Targeted expression of LPL in the liver showed no obvious adverse reactions. Thus, liver-targeted LPL expression may be a new therapeutic approach for HTG-AP caused by GPIHBP1 deficiency.


Assuntos
Hipertrigliceridemia , Pancreatite , Receptores de Lipoproteínas , Animais , Humanos , Camundongos , Ratos , Doença Aguda , Dependovirus/genética , Dependovirus/metabolismo , Hipertrigliceridemia/genética , Hipertrigliceridemia/terapia , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Fígado/metabolismo , Pancreatite/genética , Pancreatite/terapia , Pancreatite/metabolismo , Receptores de Lipoproteínas/genética , Receptores de Lipoproteínas/metabolismo , Triglicerídeos/metabolismo
13.
J Clin Lipidol ; 18(1): e80-e89, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37981531

RESUMO

BACKGROUND: Severe hypertriglyceridemia can be caused by pathogenic variants in genes encoding proteins involved in the metabolism of triglyceride-rich lipoproteins. A key protein in this respect is lipoprotein lipase (LPL) which hydrolyzes triglycerides in these lipoproteins. Another important protein is glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) which transports LPL to the luminal side of the endothelial cells. OBJECTIVE: Our objective was to identify a genetic cause of hypertriglyceridemia in 459 consecutive unrelated subjects with levels of serum triglycerides ≥20 mmol/l. These patients had been referred for molecular genetic testing from 1998 to 2021. In addition, we wanted to study whether GPIHBP1 autoantibodies also were a cause of hypertriglyceridemia. METHODS: Molecular genetic analyses of the genes encoding LPL, GPIHBP1, apolipoprotein C2, lipase maturation factor 1 and apolipoprotein A5 as well as apolipoprotein E genotyping, were performed in all 459 patients. Serum was obtained from 132 of the patients for measurement of GPIHBP1 autoantibodies approximately nine years after molecular genetic testing was performed. RESULTS: A monogenic cause was found in four of the 459 (0.9%) patients, and nine (2.0%) patients had dyslipoproteinemia due to homozygosity for apolipoprotein E2. One of the 132 (0.8%) patients had GPIHBP1 autoantibody syndrome. CONCLUSION: Only 0.9% of the patients had monogenic hypertriglyceridemia, and only 0.8% had GPIHBP1 autoantibody syndrome. The latter figure is most likely an underestimate because serum samples were obtained approximately nine years after hypertriglyceridemia was first identified. There is a need to implement measurement of GPIHBP1 autoantibodies in clinical medicine to secure that proper therapeutic actions are taken.


Assuntos
Hipertrigliceridemia , Receptores de Lipoproteínas , Humanos , Autoanticorpos , Células Endoteliais , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Lipoproteínas , Hipertrigliceridemia/genética , Triglicerídeos/metabolismo , Biologia Molecular , Apolipoproteínas
14.
Curr Opin Lipidol ; 35(2): 66-77, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117614

RESUMO

PURPOSE OF REVIEW: While biallelic rare APOA5 pathogenic loss-of-function (LOF) variants cause familial chylomicronemia syndrome, heterozygosity for such variants is associated with highly variable triglyceride phenotypes ranging from normal to severe hypertriglyceridemia, often in the same individual at different time points. Here we provide an updated overview of rare APOA5 variants in hypertriglyceridemia. RECENT FINDINGS: Currently, most variants in APOA5 that are considered to be pathogenic according to guidelines of the American College of Medical Genetics and Genomics are those resulting in premature termination codons. There are minimal high quality functional data on the impact of most rare APOA5 missense variants; many are considered as variants of unknown or uncertain significance. Furthermore, particular common polymorphisms of APOA5 , such as p.Ser19Trp and p.Gly185Cys in Caucasian and Asian populations, respectively, are statistically overrepresented in hypertriglyceridemia cohorts and are sometimes misattributed as being causal for chylomicronemia, when they are merely risk alleles for hypertriglyceridemia. SUMMARY: Both biallelic and monoallelic LOF variants in APOA5 are associated with severe hypertriglyceridemia, although the biochemical phenotype in the monoallelic state is highly variable and is often exacerbated by secondary factors. Currently, with few exceptions, the principal definitive mechanism for APOA5 pathogenicity is through premature truncation. The pathogenic mechanisms of most missense variants in APOA5 remain unclear and require additional functional experiments or family studies.


Assuntos
Hiperlipoproteinemia Tipo I , Hipertrigliceridemia , Humanos , Apolipoproteína A-V/genética , Variação Genética , Heterozigoto , Hiperlipoproteinemia Tipo I/genética , Hipertrigliceridemia/genética , Hipertrigliceridemia/patologia , Polimorfismo Genético , Triglicerídeos/genética
15.
BMC Med Genomics ; 16(1): 281, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940981

RESUMO

BACKGROUND: Elevated triglyceride (TG) levels are a heritable and modifiable risk factor for cardiovascular disease and have well-established associations with common genetic variation captured in a polygenic risk score (PRS). In young adulthood, the 22q11.2 microdeletion conveys a 2-fold increased risk for mild-moderate hypertriglyceridemia. This study aimed to assess the role of the TG-PRS in individuals with this elevated baseline risk for mild-moderate hypertriglyceridemia. METHODS: We studied a deeply phenotyped cohort of adults (n = 157, median age 34 years) with a 22q11.2 microdeletion and available genome sequencing, lipid level, and other clinical data. The association between a previously developed TG-PRS and TG levels was assessed using a multivariable regression model adjusting for effects of sex, BMI, and other covariates. We also constructed receiver operating characteristic (ROC) curves using logistic regression models to assess the ability of TG-PRS and significant clinical variables to predict mild-moderate hypertriglyceridemia status. RESULTS: The TG-PRS was a significant predictor of TG-levels (p = 1.52E-04), along with male sex and BMI, in a multivariable model (pmodel = 7.26E-05). The effect of TG-PRS appeared to be slightly stronger in individuals with obesity (BMI ≥ 30) (beta = 0.4617) than without (beta = 0.1778), in a model unadjusted for other covariates (p-interaction = 0.045). Among ROC curves constructed, the inclusion of TG-PRS, sex, and BMI as predictor variables produced the greatest area under the curve (0.749) for classifying those with mild-moderate hypertriglyceridemia, achieving an optimal sensitivity and specificity of 0.746 and 0.707, respectively. CONCLUSIONS: These results demonstrate that in addition to significant effects of sex and BMI, genome-wide common variation captured in a PRS also contributes to the variable expression of the 22q11.2 microdeletion with respect to elevated TG levels.


Assuntos
Doenças Cardiovasculares , Hipertrigliceridemia , Adulto , Humanos , Masculino , Adulto Jovem , Fatores de Risco , Obesidade , Hipertrigliceridemia/genética , Triglicerídeos , Estudo de Associação Genômica Ampla
16.
J Clin Lipidol ; 17(6): 808-817, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37858495

RESUMO

BACKGROUND: Lipoprotein lipase (LPL) deficiency, the most common familial chylomicronemia syndrome (FCS), is a rare autosomal recessive disease characterized by chylomicronemia and severe hypertriglyceridemia (HTG), with limited clinical and genetic characterization. OBJECTIVE: To describe the manifestations and management of 19 pediatric patients with LPL-FCS. METHODS: LPL-FCS patients from 2014 to 2022 were divided into low-fat (LF), very-low-fat (VLF) and medium-chain-triglyceride (MCT) groups. Their clinical data were evaluated to investigate the effect of different diets. The genotype-phenotype relationship was assessed. Linear regression comparing long-chain triglyceride (LCT) intake and TG levels was analyzed. RESULTS: Nine novel LPL variants were identified in 19 LPL-FCS pediatric patients. At baseline, eruptive xanthomas occurred in 3/19 patients, acute pancreatitis in 2/19, splenomegaly in 6/19 and hepatomegaly in 3/19. The median triglyceride (TG) level (30.3 mmol/L) was markedly increased. The MCT group and VLF group with LCT intakes <20 en% (energy percentage) had considerably lower TG levels than the LF group (both p<0.05). The LF group presented with severe HTG and significantly decreased TG levels after restricting LCT intakes to <20 en% (p<0.05). Six infants decreased TG levels to <10 mmol/L by keeping LCT intake <10 en%. TG levels and LCT intake were positively correlated in both patients under 2 years (r=0.84) and those aged 2-9 years (r=0.89). No genotype-phenotype relationship was observed. CONCLUSIONS: This study broadens the clinical and genetic spectra of LPL-FCS. The primary therapy for LPL-FCS pediatric patients is restricting dietary LCTs to <10 en% or <20 en% depending on different ages. MCTs potentially provide extra energy.


Assuntos
Hiperlipoproteinemia Tipo I , Hipertrigliceridemia , Pancreatite , Lactente , Humanos , Criança , Hiperlipoproteinemia Tipo I/terapia , Hiperlipoproteinemia Tipo I/tratamento farmacológico , Doença Aguda , Perfil Genético , Pancreatite/genética , Hipertrigliceridemia/genética , Triglicerídeos , China , Lipase Lipoproteica/genética
17.
J Clin Invest ; 133(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37824203

RESUMO

Why apolipoprotein AV (APOA5) deficiency causes hypertriglyceridemia has remained unclear, but we have suspected that the underlying cause is reduced amounts of lipoprotein lipase (LPL) in capillaries. By routine immunohistochemistry, we observed reduced LPL staining of heart and brown adipose tissue (BAT) capillaries in Apoa5-/- mice. Also, after an intravenous injection of LPL-, CD31-, and GPIHBP1-specific mAbs, the binding of LPL Abs to heart and BAT capillaries (relative to CD31 or GPIHBP1 Abs) was reduced in Apoa5-/- mice. LPL levels in the postheparin plasma were also lower in Apoa5-/- mice. We suspected that a recent biochemical observation - that APOA5 binds to the ANGPTL3/8 complex and suppresses its capacity to inhibit LPL catalytic activity - could be related to the low intracapillary LPL levels in Apoa5-/- mice. We showed that an ANGPTL3/8-specific mAb (IBA490) and APOA5 normalized plasma triglyceride (TG) levels and intracapillary LPL levels in Apoa5-/- mice. We also showed that ANGPTL3/8 detached LPL from heparan sulfate proteoglycans and GPIHBP1 on the surface of cells and that the LPL detachment was blocked by IBA490 and APOA5. Our studies explain the hypertriglyceridemia in Apoa5-/- mice and further illuminate the molecular mechanisms that regulate plasma TG metabolism.


Assuntos
Apolipoproteína A-V , Hipertrigliceridemia , Receptores de Lipoproteínas , Animais , Camundongos , Capilares/metabolismo , Hipertrigliceridemia/genética , Hipertrigliceridemia/metabolismo , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Receptores de Lipoproteínas/genética , Receptores de Lipoproteínas/metabolismo , Triglicerídeos/sangue , Apolipoproteína A-V/genética
18.
Pharmacol Ther ; 251: 108544, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37848164

RESUMO

Severe hypertriglyceridemia (sHTG), defined as a triglyceride (TG) concentration ≥ 500 mg/dL (≥ 5.7 mmol/L) is an important risk factor for acute pancreatitis. Although lifestyle, some medications, and certain conditions such as diabetes may lead to HTG, sHTG results from a combination of major and minor genetic defects in proteins that regulate TG lipolysis. Familial chylomicronemia syndrome (FCS) is a rare disorder caused by complete loss of function in lipoprotein lipase (LPL) or LPL activating proteins due to two homozygous recessive traits or compound heterozygous traits. Multifactorial chylomicronemia syndrome (MCS) and sHTG are due to the accumulation of rare heterozygous variants and polygenic defects that predispose individuals to sHTG phenotypes. Until recently, treatment of sHTG focused on lifestyle interventions, control of secondary factors, and nonselective pharmacotherapies that had modest TG-lowering efficacy and no corresponding reductions in atherosclerotic cardiovascular disease events. Genetic discoveries have allowed for the development of novel pathway-specific therapeutics targeting LPL modulating proteins. New targets directed towards inhibition of apolipoprotein C-III (apoC-III), angiopoietin-like protein 3 (ANGPTL3), angiopoietin-like protein 4 (ANGPTL4), and fibroblast growth factor-21 (FGF21) offer far more efficacy in treating the various phenotypes of sHTG and opportunities to reduce the risk of acute pancreatitis and atherosclerotic cardiovascular disease events.


Assuntos
Doenças Cardiovasculares , Hiperlipoproteinemia Tipo I , Hipertrigliceridemia , Pancreatite , Humanos , Doença Aguda , Pancreatite/genética , Pancreatite/terapia , Pancreatite/complicações , Hiperlipoproteinemia Tipo I/tratamento farmacológico , Hiperlipoproteinemia Tipo I/genética , Hipertrigliceridemia/tratamento farmacológico , Hipertrigliceridemia/genética , Proteína 3 Semelhante a Angiopoietina
19.
Curr Atheroscler Rep ; 25(10): 701-709, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37642858

RESUMO

PURPOSE OF REVIEW: To provide an insight into the new pharmacological options for the treatment of severe hypertriglyceridemia (sHTG). RECENT FINDINGS: sHTG is difficult to treat. The majority of the traditional pharmacological agents available have limited success in both robustly decreasing triglyceride levels and/or in reducing the incidence of acute pancreatitis (AP), the most severe complication of sHTG. Therapeutic options with novel mechanisms of action have been developed, such as antisense oligonucleotides (ASO) and small interfering RNA (siRNA) targeting APOC3 and ANGPTL3. The review discusses also 2 abandoned drugs for sHTG treatment, evinacumab and vupanorsen. The ASO targeting APOC3, volanesorsen, is approved for use in patients with familial chylomicronemia syndrome (FCS) in Europe. Olezarsen, an N-acetylgalactosamine (GalNAc)-conjugated ASO with the same target, seems to have a better safety and efficacy profile. siRNA targeting APOC3 and ANGPTL3, namely ARO-APOC3 and ARO-ANG3, are also promising for the treatment of sHTG. However, the ultimate clinical goal of any sHTG treatment, the decrease in the risk of AP, has not been definitively achieved till now by any pharmacotherapy, either approved or in development.


Assuntos
Hipertrigliceridemia , Pancreatite , Humanos , Doença Aguda , Pancreatite/tratamento farmacológico , Triglicerídeos , Oligonucleotídeos Antissenso/uso terapêutico , Hipertrigliceridemia/tratamento farmacológico , Hipertrigliceridemia/genética , Apolipoproteína C-III/genética , RNA Interferente Pequeno/uso terapêutico , Proteína 3 Semelhante a Angiopoietina
20.
J Clin Lipidol ; 17(5): 659-665, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37586912

RESUMO

BACKGROUND: Biallelic pathogenic variants in APOA5 are an infrequent cause of familial chylomicronemia syndrome characterized by severe, refractory hypertriglyceridemia (HTG), and fasting plasma triglyceride (TG) >10 mmol/L (>875 mg/dL). The TG phenotype of heterozygous individuals with one copy of a pathogenic APOA5 variant is less familiar. We evaluated the longitudinal TG phenotype of individuals with a single pathogenic APOA5 variant allele. METHODS: Medically stable outpatients from Ontario, Canada were selected for study based on having: 1) a rare pathogenic APOA5 variant in a single allele; and 2) at least three serial fasting TG measurements obtained over >1.5 years of follow-up. RESULTS: Seven patients were followed for a mean of 5.3 ± 3.7 years. Fasting TG levels varied widely both within and between patients. Three patients displayed at least one normal TG measurement (<2.0 mmol/L or <175 mg/dL). All patients displayed mild-to-moderate HTG (2 to 9.9 mmol/L or 175 to 875 mg/dL) at multiple time points. Five patients displayed at least one severe HTG measurement. 10%, 54%, and 36% of all TG measurements were in normal, mild-to-moderate, and severe HTG ranges, respectively. CONCLUSIONS: Heterozygosity for pathogenic variants in APOA5 is associated with highly variable TG phenotypes both within and between patients. Heterozygosity confers susceptibility to elevated TG levels, with secondary factors likely modulating the phenotypic severity.


Assuntos
Hiperlipoproteinemia Tipo I , Hipertrigliceridemia , Humanos , Triglicerídeos , Apolipoproteína A-V/genética , Heterozigoto , Hiperlipoproteinemia Tipo I/genética , Fenótipo , Hipertrigliceridemia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...