RESUMO
INTRODUCTION: X-linked hypophosphatemia is an orphan disease of genetic origin and multisystem involvement. It is characterized by a mutation of the PHEX gene which results in excess FGF23 production, with abnormal renal and intestinal phosphorus metabolism, hypophosphatemia and osteomalacia secondary to chronic renal excretion of phosphate. Clinical manifestations include hypophosphatemic rickets leading to growth abnormalities and osteomalacia, myopathy, bone pain and dental abscesses. The transition of these patients to adult life continues to pose challenges to health systems, medical practitioners, patients and families. For this reason, the aim of this consensus is to provide a set of recommendations to facilitate this process and ensure adequate management and follow-up, as well as the quality of life for patients with X-linked hypophosphatemia as they transition to adult life. MATERIALS AND METHODS: Eight Latin American experts on the subject participated in the consensus and two of them were appointed as coordinators. The consensus work was done in accordance with the nominal group technique in 6 phases: (1) question standardization, (2) definition of the maximum number of choices, (3) production of individual solutions or answers, (4) individual question review, (5) analysis and synthesis of the information and (6) synchronic meetings for clarification and voting. An agreement was determined to exist with 80% votes in favor in three voting cycles. RESULTS AND DISCUSSION: Transition to adult life in patients with hypophosphatemia is a complex process that requires a comprehensive approach, taking into consideration medical interventions and associated care, but also the psychosocial components of adult life and the participation of multiple stakeholders to ensure a successful process. The consensus proposes a total of 33 recommendations based on the evidence and the knowledge and experience of the experts. The goal of the recommendations is to optimize the management of these patients during their transition to adulthood, bearing in mind the need for multidisciplinary management, as well as the most relevant medical and psychosocial factors in the region.
Assuntos
Raquitismo Hipofosfatêmico Familiar , Hipofosfatemia , Osteomalacia , Adulto , Humanos , Raquitismo Hipofosfatêmico Familiar/genética , Osteomalacia/genética , Osteomalacia/metabolismo , Consenso , Qualidade de Vida , Hipofosfatemia/genética , Hipofosfatemia/metabolismo , Fatores de Crescimento de Fibroblastos/genéticaRESUMO
Hypophosphatemia due to isolated renal phosphate wasting is a genetically heterogeneous disease. Two new genes linked to two different forms of hereditary hypophosphatemias have recently been described. Autosomal recessive form of hypophosphatemic rickets was mapped to chromosome 4q21 and identified homozygous mutations in dentin matrix protein 1 (DMP1) gene, which encodes a non-collagenous bone matrix protein. Intact plasma levels of the phosphaturic protein FGF23 (fibroblast growth factor 23) were clearly elevated in some of the affected individuals, providing a possible explanation for the phosphaturia and inappropriately normal 1,25(OH)2D levels, and suggesting that DMP1 may regulate FGF23 expression. Hereditary hypophosphatemic rickets with hypercalciuria is another rare disorder of autosomal recessive inheritance. Affected individuals present with hypercalciuria due to increased serum 1,25-dihydroxyvitamin D levels and increased intestinal calcium absorption. The disease was mapped to a 1.6 Mbp region on chromosome 9q34, which contains SLC34A3, the gene encoding the renal sodium-phosphate cotransporter NaPi-IIc. This was the first demonstration that NaPi-IIc has a key role in the regulation of phosphate homeostasis. Thus, DMP1 and NaPi-IIc add two new members to the bone-kidney axis proposed since it was discovered that the first phosphatonin, FGF23, was of osteoblastic/osteocyte origin. This provides a mechanism for the skeleton to communicate with the kidney to coordinate the mineralization of extracelular matrix and the renal handling of phosphate.
Assuntos
Proteínas da Matriz Extracelular/genética , Hipofosfatemia/genética , Fosfoproteínas/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética , Fator de Crescimento de Fibroblastos 23 , Humanos , MutaçãoRESUMO
The PHEX gene (phosphate-regulating gene with homologies to endopeptidases on the X chromosome) encodes a protein (PHEX) with structural homologies to members of the M13 family of zinc metallo-endopeptidases. Mutations in the PHEX gene are responsible for X-linked hypophosphataemia in humans. However, the mechanism by which loss of PHEX function results in the disease phenotype, and the endogenous PHEX substrate(s) remain unknown. In order to study PHEX substrate specificity, combinatorial fluorescent-quenched peptide libraries containing o -aminobenzoic acid (Abz) and 2,4-dinitrophenyl (Dnp) as the donor-acceptor pair were synthesized and tested as PHEX substrates. PHEX showed a strict requirement for acidic amino acid residues (aspartate or glutamate) in S(1)' subsite, with a strong preference for aspartate. Subsites S(2)', S(1) and S(2) exhibited less defined specificity requirements, but the presence of leucine, proline or glycine in P(2)', or valine, isoleucine or histidine in P(1) precluded hydrolysis of the substrate by the enzyme. The peptide Abz-GFSDYK(Dnp)-OH, which contains the most favourable residues in the P(2) to P(2)' positions, was hydrolysed by PHEX at the N-terminus of aspartate with a k(cat)/ K(m) of 167 mM(-1) x s(-1). In addition, using quenched fluorescence peptides derived from fibroblast growth factor-23 and matrix extracellular phosphoglycoprotein sequences flanked by Abz and N -(2,4-dinitrophenyl)ethylenediamine, we showed that these physiologically relevant proteins are potential PHEX substrates. Finally, our results clearly indicate that PHEX does not have neprilysin-like substrate specificity.