Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evolution ; 69(4): 1069-76, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25756600

RESUMO

Evolutionary transitions from parasitism toward beneficial or mutualistic associations may encompass a change from horizontal transmission to (strict) vertical transmission. Parasites with both vertical and horizontal transmission are amendable to study factors driving such transitions. In a long-term experiment, microcosm populations of the protozoan Paramecium caudatum and its bacterial parasite Holospora undulata were exposed to three growth treatments, manipulating vertical transmission opportunities over ca. 800 host generations. In inoculation tests, horizontal transmission propagules produced by parasites from a "high-growth" treatment, with elevated host division rates increasing levels of parasite vertical transmission, showed a near-complete loss of infectivity. A similar reduction was observed for parasites from a treatment alternating between high growth and low growth (i.e., low levels of population turn-over). Parasites from a low-growth treatment had the highest infectivity on all host genotypes tested. Our results complement previous findings of reduced investment in horizontal transmission and increased vertical transmissibility of high-growth parasites. We explain the loss of horizontal transmissibility by epidemiological feedbacks and resistance evolution, reducing the frequency of susceptible hosts in the population and thereby decreasing the selective advantage of horizontal transmission. This illustrates how environmental conditions may push parasites with a mixed transmission mode toward becoming vertically transmitted nonvirulent symbionts.


Assuntos
Evolução Biológica , Holosporaceae/patogenicidade , Interações Hospedeiro-Patógeno/genética , Paramecium caudatum/microbiologia , Seleção Genética , Genótipo , Paramecium caudatum/genética , Fenótipo
2.
Ecol Lett ; 15(3): 186-92, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22221658

RESUMO

Epidemiology in host meta-populations depends on parasite ability to disperse between, establish and persist in distinct sub-populations of hosts. We studied the genetic factors determining the short-term establishment, and long-term maintenance, of pathogens introduced by infected hosts (i.e. carriers) into recipient populations. We used experimental populations of the freshwater ciliate Paramecium caudatum and its bacterial parasite Holospora undulata. Parasite short-term spread (approximately one horizontal transmission cycle) was affected mainly by carrier genotype, and its interactions with parasite and recipient genotypes. By contrast, parasite longer term spread (2-3 horizontal transmission cycles) was mostly determined by parasite isolate. Importantly, measures of parasite short-term success (reproductive number, R) were not good predictors for longer term prevalence, probably because of the specific interactions between host and parasite genotypes. Analogous to variation in vectorial capacity and super-spreader occurrence, two crucial components of epidemiology, we show that carrier genotype can also affect disease spread within meta-populations.


Assuntos
Holosporaceae/patogenicidade , Interações Hospedeiro-Patógeno/genética , Paramecium caudatum/genética , Paramecium caudatum/microbiologia , Infecções Bacterianas/transmissão , Água Doce/parasitologia , Genótipo
3.
J Evol Biol ; 23(6): 1195-205, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20406349

RESUMO

Sign and magnitude of local adaptation in host-parasite systems may vary with ecological, epidemiological or genetic parameters. To investigate the role of host genetic background, we established long-term experimental populations of different genotypes of the protozoan Paramecium caudatum, infected with the bacterial parasite Holospora undulata. We observed the evolution of an overall pattern of parasite local maladaptation for infectivity, indicating a general coevolutionary disadvantage of this parasite. Maladaptation extended to host populations with the same genetic background, similar to extending from the local to a higher regional level in natural populations. Patterns for virulence were qualitatively similar, but with less statistical support. A nonsignificant correlation with levels of (mal)adaptation for infectivity suggests independent evolution of these traits. Our results indicate similar (co)evolutionary trajectories in populations with different genetic backgrounds. Nonetheless, the correlated clines of genetic distance and parasite performance illustrate how genetic background can shape spatial gradients of local adaptation.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Holosporaceae/fisiologia , Interações Hospedeiro-Patógeno , Paramecium caudatum/microbiologia , Animais , Holosporaceae/patogenicidade , Paramecium caudatum/fisiologia , Virulência
4.
Evolution ; 64(7): 2126-38, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20163449

RESUMO

In parasites with mixed modes of transmission, ecological conditions may determine the relative importance of vertical and horizontal transmission for parasite fitness. This may lead to differential selection pressure on the efficiency of the two modes of transmission and on parasite virulence. In populations with high birth rates, increased opportunities for vertical transmission may select for higher vertical transmissibility and possibly lower virulence. We tested this idea in experimental populations of the protozoan Paramecium caudatum and its bacterial parasite Holospora undulata. Serial dilution produced constant host population growth and frequent vertical transmission. Consistent with predictions, evolved parasites from this "high-growth" treatment had higher fidelity of vertical transmission and lower virulence than parasites from host populations constantly kept near their carrying capacity ("low-growth treatment"). High-growth parasites also produced fewer, but more infectious horizontal transmission stages, suggesting the compensation of trade-offs between vertical and horizontal transmission components in this treatment. These results illustrate how environmentally driven changes in host demography can promote evolutionary divergence of parasite life history and transmission strategies.


Assuntos
Evolução Biológica , Transmissão de Doença Infecciosa , Holosporaceae/fisiologia , Paramecium caudatum/crescimento & desenvolvimento , Paramecium caudatum/microbiologia , Seleção Genética , Análise de Variância , Holosporaceae/patogenicidade , Dinâmica Populacional , Virulência
5.
BMC Evol Biol ; 9: 65, 2009 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-19320981

RESUMO

BACKGROUND: Ecological factors play an important role in the evolution of parasite exploitation strategies. A common prediction is that, as shorter host life span reduces future opportunities of transmission, parasites compensate with an evolutionary shift towards earlier transmission. They may grow more rapidly within the host, have a shorter latency time and, consequently, be more virulent. Thus, increased extrinsic (i.e., not caused by the parasite) host mortality leads to the evolution of more virulent parasites. To test these predictions, we performed a serial transfer experiment, using the protozoan Paramecium caudatum and its bacterial parasite Holospora undulata. We simulated variation in host life span by killing hosts after 11 (early killing) or 14 (late killing) days post inoculation; after killing, parasite transmission stages were collected and used for a new infection cycle. RESULTS: After 13 cycles (approximately 300 generations), parasites from the early-killing treatment were less infectious, but had shorter latency time and higher virulence than those from the late-killing treatment. Overall, shorter latency time was associated with higher parasite loads and thus presumably with more rapid within-host replication. CONCLUSION: The analysis of the means of the two treatments is thus consistent with theory, and suggests that evolution is constrained by trade-offs between virulence, transmission and within-host growth. In contrast, we found little evidence for such trade-offs across parasite selection lines within treatments; thus, to some extent, these traits may evolve independently. This study illustrates how environmental variation (experienced by the host) can lead to the evolution of distinct parasite strategies.


Assuntos
Evolução Biológica , Holosporaceae/patogenicidade , Interações Hospedeiro-Parasita , Longevidade , Paramecium caudatum/parasitologia , Animais , Virulência
6.
Proc Biol Sci ; 273(1589): 1031-8, 2006 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-16627290

RESUMO

Transmission of parasites to new hosts crucially depends on the timing of production of transmission stages and their capacity to start an infection. These parameters may be influenced by genetic factors, but also by the environment. We tested the effects of temperature and host genotype on infection probability and latency in experimental populations of the ciliate Paramecium caudatum, after exposure to infectious forms of its bacterial parasite Holospora undulata. Temperature had a significant effect on the expression of genetic variation for transmission and maintenance of infection. Overall, low temperature (10 degrees C) increased levels of (multiple) infection, but arrested parasite development; higher temperatures (23 and 30 degrees C) accelerated the onset of production of infectious forms, but limited transmission success. Viability of infectious forms declined rapidly at 23 and 30 degrees C, thereby narrowing the time window for transmission. Thus, environmental conditions can generate trade-offs between transmission relevant parameters and alter levels of multiple infection or parasite-mediated selection, which may affect evolutionary trajectories of parasite life history or virulence.


Assuntos
Holosporaceae/patogenicidade , Micronúcleo Germinativo/parasitologia , Paramecium caudatum/parasitologia , Temperatura , Animais , Variação Genética , Holosporaceae/fisiologia , Interações Hospedeiro-Parasita , Transmissão Vertical de Doenças Infecciosas
7.
Cryobiology ; 52(1): 161-5, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16426600

RESUMO

We investigated cryopreservation of horizontal transmission stages of Holospora undulata, a micronucleus-specific bacterial parasite of Paramecium caudatum. Unlike in previous studies on related Holospora species, protocols using glycerol as cryoprotectant failed entirely. In contrast, freezing with dimethyl sulfoxide (Me2SO) conserved infectiousness of nearly all replicate inocula, although infection success was considerably lower than that of fresh inocula. Infection probability was enhanced by increasing the Me2SO concentration from 5 to 10%, and by freezing at -196 degrees C rather than -80 degrees C. Prolonged storage of up to 3 months had no significant effect on the viability of the inocula.


Assuntos
Criopreservação/métodos , Holosporaceae/fisiologia , Paramecium caudatum/fisiologia , Parasitos/patogenicidade , Animais , Crioprotetores/metabolismo , Crioprotetores/farmacologia , Dimetil Sulfóxido/metabolismo , Dimetil Sulfóxido/farmacologia , Congelamento , Glicerol/metabolismo , Glicerol/farmacologia , Holosporaceae/patogenicidade , Viabilidade Microbiana/efeitos dos fármacos , Paramecium caudatum/patogenicidade , Parasitos/metabolismo , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...