Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 67(9): 3570-3575, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28840814

RESUMO

Members of the genus Trichonympha are among the most well-known, recognizable and widely distributed parabasalian symbionts of lower termites and the wood-eating cockroach species of the genus Cryptocercus. Nevertheless, the species diversity of this genus is largely unknown. Molecular data have shown that the superficial morphological similarities traditionally used to identify species are inadequate, and have challenged the view that the same species of the genus Trichonympha can occur in many different host species. Ambiguities in the literature, uncertainty in identification of both symbiont and host, and incomplete samplings are limiting our understanding of the systematics, ecology and evolution of this taxon. Here we describe four closely related novel species of the genus Trichonympha collected from South American and Australian lower termites: Trichonympha hueyi sp. nov. from Rugitermes laticollis, Trichonympha deweyi sp. nov. from Glyptotermes brevicornis, Trichonympha louiei sp. nov. from Calcaritermes temnocephalus and Trichonympha webbyae sp. nov. from Rugitermes bicolor. We provide molecular barcodes to identify both the symbionts and their hosts, and infer the phylogeny of the genus Trichonympha based on small subunit rRNA gene sequences. The analysis confirms the considerable divergence of symbionts of members of the genus Cryptocercus, and shows that the two clades of the genus Trichonympha harboured by termites reflect only in part the phylogeny of their hosts.


Assuntos
Sistema Digestório/microbiologia , Hypermastigia/classificação , Isópteros/microbiologia , Filogenia , Animais , Austrália , Composição de Bases , Equador , Hypermastigia/genética , Hypermastigia/isolamento & purificação , Peru , RNA de Protozoário/genética , RNA Ribossômico/genética , Análise de Sequência de DNA , Simbiose
2.
Int J Syst Evol Microbiol ; 63(Pt 10): 3873-3876, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23918788

RESUMO

Historically, symbiotic protists in termite hindguts have been considered to be the same species if they are morphologically similar, even if they are found in different host species. For example, the first-described hindgut and hypermastigote parabasalian, Trichonympha agilis (Leidy, 1877) has since been documented in six species of Reticulitermes, in addition to the original discovery in Reticulitermes flavipes. Here we revisit one of these, Reticulitermes virginicus, using molecular phylogenetic analysis from single-cell isolates and show that the Trichonympha in R. virginicus is distinct from isolates in the type host and describe this novel species as Trichonympha burlesquei n. sp. We also show the molecular diversity of Trichonympha from the type host R. flavipes is greater than supposed, itself probably representing more than one species. All of this is consistent with recent data suggesting a major underestimate of termite symbiont diversity.


Assuntos
Hypermastigia/classificação , Isópteros/microbiologia , Filogenia , Simbiose , Animais , Código de Barras de DNA Taxonômico , DNA de Protozoário , Sistema Digestório/microbiologia , Hypermastigia/isolamento & purificação , Dados de Sequência Molecular
3.
PLoS One ; 8(3): e58728, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23536818

RESUMO

To aid in their digestion of wood, lower termites are known to harbour a diverse community of prokaryotes as well as parabasalid and oxymonad protist symbionts. One of the best-studied lower termite gut communities is that of Zootermopsis angusticollis which has been known for almost 100 years to possess 3 species of Trichonympha (T. campanula, T. collaris, and T. sphaerica), 1 species of Trichomitopsis (T. termopsidis), as well as smaller flagellates. We have re-assessed this community by sequencing the small subunit (SSU) rRNA gene and the internal transcribed spacer (ITS) region from a large number of single Trichonympha and Trichomitopsis cells for which morphology was also documented. Based on phylogenetic clustering and sequence divergence, we identify 3 new species: Trichonympha postcylindrica, Trichomitopsis minor, and Trichomitopsis parvus spp. nov. Once identified by sequencing, the morphology of the isolated cells for all 3 new species was re-examined and found to be distinct from the previously described species: Trichonympha postcylindrica can be morphologically distinguished from the other Trichonympha species by an extension on its posterior end, whereas Trichomitopsis minor and T. parvus are smaller than T. termopsidis but similar in size to each other and cannot be distinguished based on morphology using light microscopy. Given that Z. angusticollis has one of the best characterized hindgut communities, the near doubling of the number of the largest and most easily identifiable symbiont species suggests that the diversity of hindgut symbionts is substantially underestimated in other termites as well. Accurate descriptions of the diversity of these microbial communities are essential for understanding hindgut ecology and disentangling the interactions among the symbionts, and molecular barcoding should be a priority for these systems.


Assuntos
Código de Barras de DNA Taxonômico , DNA Espaçador Ribossômico/genética , Hypermastigia/classificação , Hypermastigia/genética , Isópteros/parasitologia , RNA Ribossômico/genética , Animais , Biodiversidade , Dados de Sequência Molecular , Filogenia , Infecções por Protozoários/parasitologia , Análise de Célula Única
4.
J Eukaryot Microbiol ; 60(3): 313-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23384430

RESUMO

An important and undervalued challenge in characterizing symbiotic protists is the accurate identification of their host species. Here, we use DNA barcoding to resolve one confusing case involving parabasalian symbionts in the hindgut of the Hawaiian lowland tree termite, Incisitermes immigrans, which is host to several parabasalians, including the type species for the genus Coronympha, C. clevelandii. We collected I. immigrans from its type locality (Hawaii), confirmed its identity by DNA barcoding, and characterized the phylogenetic position of two symbionts, C. clevelandii and Trichonympha subquasilla. These data show that previous molecular surveys of "I. immigrans" are, in fact, mainly derived from the Caribbean termite I. schwarzi, and perhaps also another related species. These results emphasize the need for host barcoding, clarify the relationship between morphologically distinct Coronympha species, and also suggest some interesting distribution patterns of nonendemic termite species and their symbionts.


Assuntos
Hypermastigia/fisiologia , Isópteros/parasitologia , Parabasalídeos/fisiologia , Animais , Hypermastigia/classificação , Hypermastigia/genética , Parabasalídeos/classificação , Parabasalídeos/genética , Filogenia , RNA Ribossômico/genética , Simbiose
5.
Environ Microbiol ; 14(12): 3259-70, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23116209

RESUMO

Termite gut flagellates are colonized by host-specific lineages of ectosymbiotic and endosymbiotic bacteria. Previous studies have shown that flagellates of the genus Trichonympha may harbour more than one type of symbiont. Using a comprehensive approach that combined cloning of SSU rRNA genes with fluorescence in situ hybridization and electron microscopy, we investigated the phylogeny and subcellular locations of the symbionts in a variety of Trichonympha species from different termites. The flagellates in Trichonympha Cluster I were the only species associated with 'Endomicrobia', which were located in the posterior part of the cell, confirming previous results. Trichonympha species of Cluster II from the termite genus Incisitermes (family Kalotermitidae) lacked 'Endomicrobia' and were associated with endosymbiotic Actinobacteria, which is highly unusual. The endosymbionts, for which we suggest the name 'Candidatus Ancillula trichonymphae', represent a novel, deep-branching lineage in the Micrococcineae that consists exclusively of clones from termite guts. They preferentially colonized the anterior part of the flagellate host and were highly abundant in all species of Trichonympha Cluster II except Trichonympha globulosa. Here, they were outnumbered by a Desulfovibrio species associated with the cytoplasmic lamellae at the anterior cell pole. Such symbionts are present in both Trichonympha clusters, but not in all species. Unlike the intracellular location reported for the Desulfovibrio symbionts of Trichonympha agilis (Cluster I), the Desulfovibrio symbionts of T. globulosa (Cluster II) were situated in deep invaginations of the plasma membrane that were clearly connected to the exterior of the host cell.


Assuntos
Actinobacteria/classificação , Desulfovibrio/classificação , Trato Gastrointestinal/microbiologia , Hypermastigia/classificação , Isópteros/microbiologia , Simbiose , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Actinobacteria/ultraestrutura , Animais , Clonagem Molecular , Desulfovibrio/genética , Desulfovibrio/isolamento & purificação , Desulfovibrio/ultraestrutura , Genes de RNAr , Hypermastigia/isolamento & purificação , Hypermastigia/fisiologia , Hypermastigia/ultraestrutura , Filogenia , Especificidade da Espécie , Simbiose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...