Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(2): e0263729, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35139132

RESUMO

Due to the limited storage space of spacecraft and downlink bandwidth in the data delivery during planetary exploration, an efficient way for image compression onboard is essential to reduce the volume of acquired data. Applicable for planetary images, this study proposes a perceptual adaptive quantization technique based on Convolutional Neural Network (CNN) and High Efficiency Video Coding (HEVC). This technique is used for bitrate reduction while maintaining the subjective visual quality. The proposed algorithm adaptively determines the Coding Tree Unit (CTU) level Quantization Parameter (QP) values in HEVC intra-coding using the high-level features extracted by CNN. A modified model based on the residual network is exploited to extract the saliency map for a given image automatically. Furthermore, based on the saliency map, a CTU level QP adjustment technique combining global saliency contrast and local saliency perception is exploited to realize a flexible and adaptive bit allocation. Several quantitative performance metrics that efficiently correlate with human perception are used for evaluating image quality. The experimental results reveal that the proposed algorithm achieves better visual quality along with a maximum of 7.17% reduction in the bitrate as compared to the standard HEVC coding.


Assuntos
Compressão de Dados/métodos , Imagens de Satélites , Percepção Visual/fisiologia , Algoritmos , Humanos , Limite de Detecção , Redes Neurais de Computação , Planetas , Imagens de Satélites/métodos , Imagens de Satélites/normas , Astronave , Gravação em Vídeo/métodos , Gravação em Vídeo/normas
2.
PLoS One ; 16(10): e0259283, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34714878

RESUMO

This exploration primarily aims to jointly apply the local FCN (fully convolution neural network) and YOLO-v5 (You Only Look Once-v5) to the detection of small targets in remote sensing images. Firstly, the application effects of R-CNN (Region-Convolutional Neural Network), FRCN (Fast Region-Convolutional Neural Network), and R-FCN (Region-Based-Fully Convolutional Network) in image feature extraction are analyzed after introducing the relevant region proposal network. Secondly, YOLO-v5 algorithm is established on the basis of YOLO algorithm. Besides, the multi-scale anchor mechanism of Faster R-CNN is utilized to improve the detection ability of YOLO-v5 algorithm for small targets in the image in the process of image detection, and realize the high adaptability of YOLO-v5 algorithm to different sizes of images. Finally, the proposed detection method YOLO-v5 algorithm + R-FCN is compared with other algorithms in NWPU VHR-10 data set and Vaihingen data set. The experimental results show that the YOLO-v5 + R-FCN detection method has the optimal detection ability among many algorithms, especially for small targets in remote sensing images such as tennis courts, vehicles, and storage tanks. Moreover, the YOLO-v5 + R-FCN detection method can achieve high recall rates for different types of small targets. Furthermore, due to the deeper network architecture, the YOL v5 + R-FCN detection method has a stronger ability to extract the characteristics of image targets in the detection of remote sensing images. Meanwhile, it can achieve more accurate feature recognition and detection performance for the densely arranged target images in remote sensing images. This research can provide reference for the application of remote sensing technology in China, and promote the application of satellites for target detection tasks in related fields.


Assuntos
Redes Neurais de Computação , Reconhecimento Automatizado de Padrão/métodos , Imagens de Satélites/métodos , Reconhecimento Automatizado de Padrão/normas , Imagens de Satélites/normas
3.
PLoS One ; 15(8): e0235171, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32797112

RESUMO

Pavement crack analysis, which deals with crack detection and crack growth detection, is a crucial task for modern Pavement Management Systems (PMS). This paper proposed a novel approach that uses historical crack data as reference for automatic pavement crack analysis. At first, a multi-scale localization method, which including GPS based coarse localization, image-level localization, and metric localization has been presented to establish image correspondences between historical and query crack images. Then historical crack pixels can be mapped onto the query crack image, and these mapped crack pixels are seen as high-quality seed points for crack analysis. Finally, crack analysis is accomplished by applying Region Growing Method (RGM) to further detect newly grown cracks. The proposed method has been tested with the actual pavement images collected in different time. The F-measure for crack growth is 88.9%, which demonstrates the proposed method has an ability to greatly simplify and enhances crack analysis result.


Assuntos
Controle de Qualidade , Imagens de Satélites/métodos , Algoritmos , Materiais de Construção/normas , Ciência dos Materiais/normas , Imagens de Satélites/normas , Meios de Transporte/normas
4.
Sci Rep ; 9(1): 17656, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776370

RESUMO

Recent technological advances in remote sensing sensors and platforms, such as high-resolution satellite imagers or unmanned aerial vehicles (UAV), facilitate the availability of fine-grained earth observation data. Such data reveal vegetation canopies in high spatial detail. Efficient methods are needed to fully harness this unpreceded source of information for vegetation mapping. Deep learning algorithms such as Convolutional Neural Networks (CNN) are currently paving new avenues in the field of image analysis and computer vision. Using multiple datasets, we test a CNN-based segmentation approach (U-net) in combination with training data directly derived from visual interpretation of UAV-based high-resolution RGB imagery for fine-grained mapping of vegetation species and communities. We demonstrate that this approach indeed accurately segments and maps vegetation species and communities (at least 84% accuracy). The fact that we only used RGB imagery suggests that plant identification at very high spatial resolutions is facilitated through spatial patterns rather than spectral information. Accordingly, the presented approach is compatible with low-cost UAV systems that are easy to operate and thus applicable to a wide range of users.


Assuntos
Coleta de Dados/métodos , Redes Neurais de Computação , Plantas , Imagens de Satélites/métodos , Algoritmos , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Fenômenos Fisiológicos Vegetais , Tecnologia de Sensoriamento Remoto/métodos , Tecnologia de Sensoriamento Remoto/normas , Imagens de Satélites/normas
5.
Proc Natl Acad Sci U S A ; 116(44): 22393-22398, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31611384

RESUMO

Photosynthesis of the Amazon rainforest plays an important role in the regional and global carbon cycles, but, despite considerable in situ and space-based observations, it has been intensely debated whether there is a dry-season increase in greenness and photosynthesis of the moist tropical Amazonian forests. Solar-induced chlorophyll fluorescence (SIF), which is emitted by chlorophyll, has a strong positive linear relationship with photosynthesis at the canopy scale. Recent advancements have allowed us to observe SIF globally with Earth observation satellites. Here we show that forest SIF did not decrease in the early dry season and increased substantially in the late dry season and early part of wet season, using SIF data from the Tropospheric Monitoring Instrument (TROPOMI), which has unprecedented spatial resolution and near-daily global coverage. Using in situ CO2 eddy flux data, we also show that cloud cover rarely affects photosynthesis at TROPOMI's midday overpass, a time when the forest canopy is most often light-saturated. The observed dry-season increases of forest SIF are not strongly affected by sun-sensor geometry, which was attributed as creating a pseudo dry-season green-up in the surface reflectance data. Our results provide strong evidence that greenness, SIF, and photosynthesis of the tropical Amazonian forest increase during the dry season.


Assuntos
Clorofila/química , Floresta Úmida , Imagens de Satélites/métodos , Estações do Ano , Luz Solar , Absorção de Radiação , Brasil , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Clorofila/efeitos da radiação , Fluorescência , Fotossíntese , Imagens de Satélites/normas
6.
Neural Netw ; 105: 346-355, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29933156

RESUMO

Environmental sustainability research is dependent on accurate land cover information. Even with the increased number of satellite systems and sensors acquiring data with improved spectral, spatial, radiometric and temporal characteristics and the new data distribution policy, most existing land cover datasets are derived from a pixel-based, single-date multi-spectral remotely sensed image with an unacceptable accuracy. One major bottleneck for accuracy improvement is how to develop an accurate and effective image classification protocol. By incorporating and utilizing multi-spectral, multi-temporal and spatial information in remote sensing images and considering the inherit spatial and sequential interdependence among neighboring pixels, we propose a new patch-based recurrent neural network (PB-RNN) system tailored for classifying multi-temporal remote sensing data. The system is designed by incorporating distinctive characteristics of multi-temporal remote sensing data. In particular, it uses multi-temporal-spectral-spatial samples and deals with pixels contaminated by clouds/shadow present in multi-temporal data series. Using a Florida Everglades ecosystem study site covering an area of 771 square kilometers, the proposed PB-RNN system has achieved a significant improvement in the classification accuracy over a pixel-based recurrent neural network (RNN) system, a pixel-based single-image neural network (NN) system, a pixel-based multi-image NN system, a patch-based single-image NN system, and a patch-based multi-image NN system. For example, the proposed system achieves 97.21% classification accuracy while the pixel-based single-image NN system achieves 64.74%. By utilizing methods like the proposed PB-RNN one, we believe that much more accurate land cover datasets can be produced over large areas.


Assuntos
Redes Neurais de Computação , Imagens de Satélites/métodos , Aprendizado de Máquina , Reconhecimento Automatizado de Padrão/métodos , Reconhecimento Automatizado de Padrão/normas , Imagens de Satélites/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...