Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
Nat Commun ; 15(1): 7128, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164298

RESUMO

Recent advances in mass spectrometry-based peptidomics have catalyzed the identification and quantification of thousands of endogenous peptides across diverse biological systems. However, the vast peptidomic landscape generated by proteolytic processing poses several challenges for downstream analyses and limits the comparability of clinical samples. Here, we present an algorithm that aggregates peptides into peptide clusters, reducing the dimensionality of peptidomics data, improving the definition of protease cut sites, enhancing inter-sample comparability, and enabling the implementation of large-scale data analysis methods akin to those employed in other omics fields. We showcase the algorithm by performing large-scale quantitative analysis of wound fluid peptidomes of highly defined porcine wound infections and human clinical non-healing wounds. This revealed signature phenotype-specific peptide regions and proteolytic activity at the earliest stages of bacterial colonization. We validated the method on the urinary peptidome of type 1 diabetics which revealed potential subgroups and improved classification accuracy.


Assuntos
Algoritmos , Espectrometria de Massas , Peptídeos , Proteólise , Proteômica , Animais , Humanos , Peptídeos/metabolismo , Suínos , Proteômica/métodos , Espectrometria de Massas/métodos , Diabetes Mellitus Tipo 1/metabolismo , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/metabolismo , Análise por Conglomerados
2.
Adv Mater ; 36(35): e2405659, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38943427

RESUMO

The disorder of the macrophage phenotype and the hostile by-product of lactate evoked by pathogenic infection in hypoxic deep wound inevitably lead to the stagnant skin regeneration. In this study, hydrogen sulfide (H2S)-evolving alternately catalytic bio-heterojunction enzyme (AC-BioHJzyme) consisting of CuFe2S3 and lactate oxidase (LOD) named as CuFe2S3@LOD is developed. AC-BioHJzyme exhibits circular enzyme-mimetic antibacterial (EMA) activity and macrophage re-rousing capability, which can be activated by near-infrared-II (NIR-II) light. In this system, LOD exhausts lactate derived from bacterial anaerobic respiration and generated hydrogen peroxide (H2O2), which provides an abundant stock for the peroxidase-mimetic activity to convert the produced H2O2 into germicidal •OH. The GPx-mimetic activity endows AC-BioHJzyme with a glutathione consumption property to block the antioxidant systems in bacterial metabolism, while the O2 provided by the CAT-mimetic activity can generate 1O2 under the NIR-II irradiation. Synchronously, the H2S gas liberated from CuFe2S3@LOD under the infectious micromilieu allows the reduction of Fe(III)/Cu(II) to Fe(II)/Cu(І), resulting in sustained circular EMA activity. In vitro and in vivo assays indicate that the CuFe2S3@LOD AC-BioHJzyme significantly facilitates the infectious cutaneous regeneration by killing bacteria, facilitating epithelialization/collagen deposition, promoting angiogenesis, and reprogramming macrophages. This study provides a countermeasure for deep infectious wound healing via circular enzyme-mimetic antibiosis and macrophage re-rousing.


Assuntos
Antibacterianos , Sulfeto de Hidrogênio , Macrófagos , Cicatrização , Animais , Camundongos , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/química , Sulfeto de Hidrogênio/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Cicatrização/efeitos dos fármacos , Células RAW 264.7 , Peróxido de Hidrogênio/metabolismo , Cobre/química , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/metabolismo , Infecção dos Ferimentos/microbiologia , Regeneração/efeitos dos fármacos , Oxirredutases/metabolismo , Oxigenases de Função Mista
3.
ACS Biomater Sci Eng ; 10(6): 3792-3805, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38814749

RESUMO

Most antimicrobials treat wound infections by an oxidation effect, which is induced by the generation of reactive oxygen species (ROS). However, the potential harm of the prolonged high level of ROS should not be ignored. In this study, we presented a novel cascade-reaction nanoparticle, Ir@Cu/Zn-MOF, to effectively regulate the ROS level throughout the healing progress of the infected wound. The nanoparticles consisted of a copper/zinc-modified metal-organic framework (Cu/Zn-MOF) serving as the external structure and an inner core composed of Ir-PVP NPs, which were achieved through a process known as "bionic mineralization". The released Cu2+ and Zn2+ from the shell structure contributed to the production of ROS, which acted as antimicrobial agents during the initial stage. With the disintegration of the shell, the Ir-PVP NP core was gradually released, exhibiting the property of multiple antioxidant enzyme activities, thereby playing an important role in clearing excessive ROS and alleviating oxidative stress. In a full-layer infected rat wound model, Ir@Cu/Zn-MOF nanoparticles presented exciting performance in promoting wound healing by clearing the bacteria and accelerating neovascularization as well as collagen deposition. This study provided a promising alternative for the repair of infected wounds.


Assuntos
Cobre , Estruturas Metalorgânicas , Nanopartículas , Espécies Reativas de Oxigênio , Cicatrização , Zinco , Espécies Reativas de Oxigênio/metabolismo , Cicatrização/efeitos dos fármacos , Animais , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Cobre/química , Cobre/farmacologia , Zinco/química , Nanopartículas/química , Nanopartículas/uso terapêutico , Ratos , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/patologia , Infecção dos Ferimentos/metabolismo , Ratos Sprague-Dawley , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/uso terapêutico , Masculino , Staphylococcus aureus/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química
4.
Surgery ; 176(1): 154-161, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38599982

RESUMO

BACKGROUND: Infections are commonly seen in wounds. The overall infection rate is 1.8% to 4.2%. Improper infection management can lead to serious conditions and may progress to life-threatening sepsis. Because there is a need for assistance in predicting wound infection before obvious clinical symptoms, the measurement of cytokines in wound tissue fluids has attracted our attention for determining the overall status of wound infection. Our intent was to assess the potential biomarkers in the diagnosis of wound infection. METHODS: We collected 146 tissue fluids (acute: 59, chronic: 61, and normal: 26) for analysis of biomarkers using a human cytokine array. Serum C-reactive protein was also measured from 104 patients. The sensitivity and specificity of significant wound cytokines and serum C-reactive protein for the diagnosis of wound infection were evaluated. RESULTS: Among biomarkers examined, serum C-reactive protein and tissue C-reactive protein were highly expressed in acute infection wounds, whereas monocyte chemoattractant protein-1 was significantly expressed in chronic infection wounds. Because the expression of wound biomarkers varied in different types of wounds, relationships among them were studied. A high correlation between tissue C-reactive protein and interleukin-8 (R2 = 0.7) and a moderate correlation between systemic and local C-reactive protein (R2 = 0.47) were observed. In addition, tissue monocyte chemoattractant protein-1 had better sensitivity (74%) and specificity (65%) in the diagnosis of wound infection. Moreover, combined serum C-reactive protein with monocyte chemoattractant protein-1 examination provided a higher area under the curve in the receiver operator characteristic curve (0.75). CONCLUSION: We found that tissue monocyte chemoattractant protein-1 is a superior diagnostic marker for assistance with the diagnosis of wound infection.


Assuntos
Biomarcadores , Proteína C-Reativa , Quimiocina CCL2 , Sensibilidade e Especificidade , Humanos , Quimiocina CCL2/análise , Quimiocina CCL2/metabolismo , Quimiocina CCL2/sangue , Proteína C-Reativa/análise , Proteína C-Reativa/metabolismo , Biomarcadores/metabolismo , Biomarcadores/análise , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Infecção dos Ferimentos/diagnóstico , Infecção dos Ferimentos/metabolismo , Idoso de 80 Anos ou mais , Interleucina-8/análise , Interleucina-8/metabolismo , Curva ROC , Líquidos Corporais/química , Líquidos Corporais/metabolismo
5.
Adv Healthc Mater ; 13(16): e2303548, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38507709

RESUMO

Diabetic wounds are susceptible to bacterial infections, largely linked to high blood glucose levels (hyperglycemia). To treat such wounds, enzymes like glucose oxidase (GOx) can be combined with nanozymes (nanomaterials mimic enzymes) to use glucose effectively for purposes. However, there is still room for improvement in these systems, particularly in terms of process simplification, enzyme activity regulation, and treatment effects. Herein, the approach utilizes GOx to directly facilitate the biomineralized growth of osmium (Os) nanozyme (GOx-OsNCs), leading to dual-active centers and remarkable triple enzyme activities. Initially, GOx-OsNCs use vicinal dual-active centers, enabling a self-cascaded mechanism that significantly enhances glucose sensing performance compared to step-by-step reactions, surpassing the capabilities of other metal sources such as gold and platinum. In addition, GOx-OsNCs are integrated into a glucose-sensing gel, enabling instantaneous visual feedback. In the treatment of infected diabetic wounds, GOx-OsNCs exhibit multifaceted benefits by lowering blood glucose levels and exhibiting antibacterial properties through the generation of hydroxyl free radicals, thereby expediting healing by fostering a favorable microenvironment. Furthermore, the catalase-like activity of GOx-OsNCs aids in reducing oxidative stress, inflammation, and hypoxia, culminating in improved healing outcomes. Overall, this synergistic enzyme-nanozyme blend is user-friendly and holds considerable promise for diverse applications.


Assuntos
Glucose Oxidase , Osmio , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Animais , Osmio/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/uso terapêutico , Cicatrização/efeitos dos fármacos , Camundongos , Glicemia/metabolismo , Diabetes Mellitus Experimental , Humanos , Glucose/metabolismo , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/metabolismo
6.
Iran Biomed J ; 27(5): 257-68, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37873638

RESUMO

Background: Anaerobes are the causative agents of many wound infections. B. fragilis is the most prevalent endogenous anaerobic bacterium causes a wide range of diseases, including wound infections. This study aimed to assess the antibacterial effect of mouse adipocyte derived-mesenchymal stem cell (AD-MSCs) encapsulated in collagen-fibrin (CF) hydrogel scaffolds on B. fragilis wound infection in an animal model. Methods: Stem cells were extracted from mouse adipose tissue and confirmed by surface markers using flow cytometry analysis. The possibility of differentiation of stem cells into osteoblast and adipocyte cells was also assessed. The extracted stem cells were encapsulated in the CF scaffold. B. fragilis wound infection was induced in rats, and then following 24 h, collagen and fibrin-encapsulated mesenchymal stem cells (MSCs) were applied to dress the wound. One week later, a standard colony count test monitored the bacterial load in the infected rats. Results: MSCs were characterized as positive for CD44, CD90, and CD105 markers and negative for CD34, which were able to differentiate into osteoblast and adipocyte cells. AD-MSCs encapsulated with collagen and fibrin scaffolds showed ameliorating effects on B. fragilis wound infection. Additionally, AD-MSCs with a collagen scaffold (54 CFU/g) indicated a greater effect on wound infection than AD-MSCs with a fibrin scaffold (97 CFU/g). The combined CF scaffold demonstrated the highest reduction in colony count (the bacteria load down to 29 CFU/g) in the wound infection. Conclusion: Our findings reveal that the use of collagen and fibrin scaffold in combination with mouse AD-MSCs is a promising alternative treatment for B. fragilis.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Células-Tronco Mesenquimais , Infecção dos Ferimentos , Camundongos , Ratos , Animais , Bacteroides fragilis , Fibrina/metabolismo , Hidrogéis , Composição de Bases , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Colágeno/metabolismo , Diferenciação Celular , Infecção dos Ferimentos/metabolismo , Anti-Infecciosos/metabolismo , Alicerces Teciduais
7.
Colloids Surf B Biointerfaces ; 222: 113113, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36566688

RESUMO

Owing to their tolerance to antibiotics, bacterial biofilms continue to pose a threat to mankind and are leading cause for non-healing of burn wounds. Within the biofilm matrix, antibiotics become functionally inactive due to restricted penetration and enzymatic degradation leading to rise of antimicrobial resistance. The objective of present investigation was to develop and characterize levofloxacin (LFX) loaded clove oil nanoscale emulgel (LFX-NE gel) and evaluate its in vivo therapeutic efficacy in Pseudomonas aeruginosa biofilm infected burn wound in mice. The optimized emulgel was found to possess good texture profile and showed shear thinning behavior. In vitro release study demonstrated complete drug release in 8 h and emulgel was found to be stable for 3 months at 25 °C and 40 °C. In vivo study revealed biofilm dispersal, complete wound closure, re-epithelialization and collagen deposition by LFX-NE gel in comparison to various control groups. LFX-NE gel was able to clear the infection within 7 days of treatment and promote wound healing as well. Therefore, administration of LFX-incorporated NE gel could be a beneficial treatment strategy for P. aeruginosa biofilm-infected burn wounds.


Assuntos
Queimaduras , Infecções por Pseudomonas , Infecção dos Ferimentos , Camundongos , Animais , Levofloxacino/farmacologia , Pseudomonas aeruginosa , Óleo de Cravo/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/metabolismo , Infecção dos Ferimentos/microbiologia , Queimaduras/tratamento farmacológico , Queimaduras/microbiologia , Cicatrização , Infecções por Pseudomonas/tratamento farmacológico
8.
ACS Appl Mater Interfaces ; 14(9): 11144-11155, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35195389

RESUMO

Bacterial infections are a common problem associated with wound treatment that imposes a significant burden on healthcare systems and patients. As a result, healthcare providers urgently need new treatment strategies to protect people. Hydrogel biomaterials with inherent antimicrobial properties offer an attractive and viable solution to this issue. Here, for the first time, we have developed a new efficient synthetic strategy to prepare cationic hydrogels (PHCI) with intrinsically efficient antimicrobial properties by chemically cross-linking trans-1,4-cyclohexanediamine with 1,3-dibromo-2-propanol using a condensation reaction without the use of toxic cross-linking agents. As expected, the prepared PHCI hydrogel possessed an inherent antibacterial ability that can adsorb and kill Staphylococcus aureus and Escherichia coli electrostatically. Notably, in vivo experiments on normal and diabetic rat models confirmed that the PHCI hydrogel can quickly stop bleeding, efficiently kill bacteria, promote the conversion of macrophages from the proinflammatory M1 phenotype to the repaired M2 phenotype, and accelerate collagen deposition and blood vessel formation, thereby achieving rapid wound healing. Overall, this work presents an effective antibacterial dressing that might provide a facile but effective approach for clinical wound management.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Hidrogéis/química , Hidrogéis/farmacologia , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/tratamento farmacológico , Animais , Antibacterianos/uso terapêutico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Escherichia coli/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Hemostáticos/química , Hemostáticos/farmacologia , Hemostáticos/uso terapêutico , Hidrogéis/uso terapêutico , Masculino , Camundongos , Ratos Sprague-Dawley , Staphylococcus aureus/efeitos dos fármacos , Infecção dos Ferimentos/complicações , Infecção dos Ferimentos/metabolismo , Infecção dos Ferimentos/patologia
9.
ACS Appl Mater Interfaces ; 13(50): 59720-59730, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34889592

RESUMO

The combination of photodynamic therapy (PDT) and chemodynamic therapy (CDT) has been continuously explored in the antibacterial aspect and has achieved more effective antibacterial effect than a single therapy. We design a pH-responsive O2 and H2O2 self-supplying zeolitic imidazolate framework-67 (ZIF-67) nanosystem for PDT/CDT of wound infection. Under the acidic inflammatory conditions, ZIF-67 can degrade to produce Co2+ and release CaO2 and graphene quantum dots (GQDs). The exposed CaO2 reacted with water to generate H2O2 and O2. The self-supplied O2 alleviates hypoxia at the site of inflammation and enhances external light-initiated GQD-mediated PDT, while H2O2 was catalyzed by endogenous Co2+ to produce hydroxyl radicals for Co2+-triggered CDT. In vitro and in vivo experiments confirm that CaO2/GQDs@ZIF-67 has a combined PDT/CDT effect. The antibacterial mechanism indicates that bacteria post-treated with CaO2/GQDs@ZIF-67 may be sterilized by reactive oxygen species-mediated oxidative stress and the leakage of bacterial contents. The experiments also find that CaO2/GQDs@ZIF-67 may activate the immune response and enhance the therapeutic effect by activating the cyclic GMP-AMP synthase-stimulator of interferon genes signaling pathway.


Assuntos
Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Peróxido de Hidrogênio/farmacologia , Imidazóis/farmacologia , Oxigênio/farmacologia , Fotoquimioterapia , Infecção dos Ferimentos/tratamento farmacológico , Zeolitas/farmacologia , Antibacterianos/química , Materiais Biocompatíveis/química , Escherichia coli/efeitos dos fármacos , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Imidazóis/química , Teste de Materiais , Testes de Sensibilidade Microbiana , Estrutura Molecular , Nanopartículas/química , Oxigênio/química , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Infecção dos Ferimentos/metabolismo , Zeolitas/química
10.
Int Immunopharmacol ; 100: 108094, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34508942

RESUMO

This work evaluated the immunomodulatory and anti-infective effects of Cratylia mollis lectin (Cramoll) in a model of wound infection induced by S. aureus. Swiss mice were divided into 3 groups (n = 12/group): non-inoculated (Control group); inoculated with S. aureus (Sa group); inoculated with S. aureus and treated with Cramoll (Sa + Cramoll group). In each animal, one lesion (64 mm2) was induced on the back and contaminated with S. aureus (~4.0 × 106 CFU/wound). The treatment with Cramoll (5 µg/animal/day) started 1-day post-infection (dpi) and extended for 10 days. Clinical parameters (wound size, inflammatory aspects, etc.) were daily recorded; while cytokines levels, bacterial load and histological aspects were determined in the cutaneous tissue at 4th dpi or 11th dpi. The mice infected with S. aureus exhibited a delay in wound contraction and the highest inflammatory scores. These effects were impaired by the treatment with Cramoll which reduced the release of key inflammatory mediators (TNF-α, NO, VEGF) and the bacterial load at wound tissue. Histological evaluations showed a restauration of skin structures in the animals treated with Cramoll. Taken together, these results provide more insights about the healing and immunomodulatory properties of Cramoll and suggest this lectin as a lead compound for treatment of wound infection.


Assuntos
Antibacterianos/farmacologia , Fabaceae , Agentes de Imunomodulação/farmacologia , Lectinas de Plantas/farmacologia , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/efeitos dos fármacos , Infecção dos Ferimentos/prevenção & controle , Animais , Antibacterianos/isolamento & purificação , Carga Bacteriana , Modelos Animais de Doenças , Fabaceae/química , Interações Hospedeiro-Patógeno , Agentes de Imunomodulação/isolamento & purificação , Camundongos , Óxido Nítrico/metabolismo , Lectinas de Plantas/isolamento & purificação , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/imunologia , Infecção dos Ferimentos/metabolismo , Infecção dos Ferimentos/microbiologia
11.
J Cell Biol ; 220(8)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34047769

RESUMO

Neutrophil recruitment to tissue damage is essential for host defense but can also impede tissue repair. The cues that differentially regulate neutrophil responses to tissue damage and infection remain unclear. Here, we report that the paracrine factor myeloid-derived growth factor (MYDGF) is induced by tissue damage and regulates neutrophil motility to damaged, but not infected, tissues in zebrafish larvae. Depletion of MYDGF impairs wound healing, and this phenotype is rescued by depleting neutrophils. Live imaging and photoconversion reveal impaired neutrophil reverse migration and inflammation resolution in mydgf mutants. We found that persistent neutrophil inflammation in tissues of mydgf mutants was dependent on the HIF-1α pathway. Taken together, our data suggest that MYDGF is a damage signal that regulates neutrophil interstitial motility and inflammation through a HIF-1α pathway in response to tissue damage.


Assuntos
Nadadeiras de Animais/metabolismo , Movimento Celular , Inflamação/metabolismo , Interleucinas/metabolismo , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Cicatrização , Infecção dos Ferimentos/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Nadadeiras de Animais/lesões , Nadadeiras de Animais/microbiologia , Nadadeiras de Animais/patologia , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/genética , Inflamação/microbiologia , Interleucinas/genética , Macrófagos/metabolismo , Macrófagos/microbiologia , Microscopia de Fluorescência , Neutrófilos/microbiologia , Comunicação Parácrina , Pseudomonas aeruginosa/patogenicidade , Transdução de Sinais , Fatores de Tempo , Infecção dos Ferimentos/genética , Infecção dos Ferimentos/microbiologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
12.
Am J Pathol ; 191(6): 1049-1063, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33689792

RESUMO

Tissue injury elicits an inflammatory response that facilitates host defense. Resolution of inflammation promotes the transition to tissue repair and is governed, in part, by specialized pro-resolving mediators (SPM). The complete structures of a novel series of cysteinyl-SPM (cys-SPM) were recently elucidated, and proved to stimulate tissue regeneration in planaria and resolve acute inflammation in mice. Their functions in mammalian tissue repair are of interest. Here, nine structurally distinct cys-SPM were screened and PCTR1 uniquely enhanced human keratinocyte migration with efficacy similar to epidermal growth factor. In skin wounds of mice, PCTR1 accelerated closure. Wound infection increased PCTR1 that coincided with decreased bacterial burden. Addition of PCTR1 reduced wound bacteria levels and decreased inflammatory monocytes/macrophages, which was coupled with increased expression of genes involved in host defense and tissue repair. These results suggest that PCTR1 is a novel regulator of host defense and tissue repair, which could inform new approaches for therapeutic management of delayed tissue repair and infection.


Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Mediadores da Inflamação/metabolismo , Pele/metabolismo , Cicatrização/fisiologia , Infecção dos Ferimentos/metabolismo , Animais , Movimento Celular/fisiologia , Humanos , Queratinócitos/metabolismo , Camundongos
13.
Adv Wound Care (New Rochelle) ; 10(2): 91-102, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32496982

RESUMO

Significance: The prevalence of chronic wounds is increasing worldwide. The most recent estimates suggest that up to 2% of the population in the industrialized countries is affected. Recent Advances: During the past few decades, bacterial biofilms have been elucidated as one of the primary reasons why chronic wounds fail to heal. Critical Issues: There is a lack of direct causation and evidence of the role that biofilms play in persistent wounds, which complicates research on new treatment options, since it is still unknown which factors dominate. For this reason, several different in vitro wound models that mimic the biofilm infections observed in chronic wounds and other chronic infections have been created. These different models are, among other purposes, used to test a variety of wound care products. However, chronic wounds are highly complex, and several different factors must be taken into consideration along with the infection, including physiochemical and human-supplemented factors. Furthermore, the limitations of using in vitro models, such as the lack of a responsive immune system should always be given due consideration. Future Directions: Present understandings of all the elements and interactions that take place within chronic wounds are incomplete. As our insight of in vivo chronic wounds continues to expand, so too must the in vitro models used to mimic these infections evolve and adapt to new knowledge.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Candida/fisiologia , Candidíase/metabolismo , Fibroblastos/efeitos dos fármacos , Bactérias Gram-Positivas/fisiologia , Infecções por Bactérias Gram-Positivas/metabolismo , Queratinócitos/efeitos dos fármacos , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/fisiologia , Infecção dos Ferimentos/metabolismo , Candidíase/microbiologia , Células Cultivadas , Doença Crônica , Fibroblastos/metabolismo , Fibroblastos/microbiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Queratinócitos/metabolismo , Queratinócitos/microbiologia , Infecções por Pseudomonas/microbiologia , Pele/citologia , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/microbiologia
14.
Carbohydr Polym ; 247: 116692, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32829820

RESUMO

The development of minimally invasive surgery has created a demand for ideal medical adhesives exhibiting biocompatibility, biodegradability, antimicrobial activity, and strong adhesion to tissues in wet environments. However, as clinically approved surgical tissue glues suffer from poor adhesion activation, limited adhesion strength, and toxicity, novel tissue glues are highly sought after. Herein, a mussel-inspired injectable hydrogel was prepared from catechol- and methacrylate-modified chitosan/gelatin and shown to exhibit biocompatibility, inherent antimicrobial activity, and good adhesion to wet tissues. Moreover, as this gel could be applied onto tissue surfaces and cured in situ within seconds of body contact by a biocompatible and multifunctional redox initiator (H2O2-ascorbic acid), it was concluded to be a promising surgical sealant and wound dressing (even for infected wounds) accelerating wound healing.


Assuntos
Antibacterianos/química , Quitosana/química , Gelatina/química , Hidrogéis/química , Procedimentos Cirúrgicos sem Sutura/métodos , Adesivos Teciduais/química , Infecção dos Ferimentos/tratamento farmacológico , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/química , Ácido Ascórbico/farmacologia , Bivalves/química , Temperatura Corporal , Catecóis/química , Quitosana/administração & dosagem , Quitosana/farmacologia , Gelatina/administração & dosagem , Gelatina/farmacologia , Hidrogéis/administração & dosagem , Hidrogéis/farmacologia , Peróxido de Hidrogênio/administração & dosagem , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/farmacologia , Injeções , Metacrilatos/química , Camundongos , Células NIH 3T3 , Pseudomonas aeruginosa/efeitos dos fármacos , Ratos Sprague-Dawley , Staphylococcus aureus/citologia , Staphylococcus aureus/efeitos dos fármacos , Adesivos Teciduais/administração & dosagem , Adesivos Teciduais/farmacologia , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/metabolismo , Infecção dos Ferimentos/patologia
15.
Int J Biol Macromol ; 164: 2358-2369, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32791277

RESUMO

This study was conducted to design and evaluate a wound dressing based on a polycaprolactone (PCL) nanofiber coated with gamma oryzanol (GO) and chitosan (CS) in mice model. All the dressings were prepared by electrospinning method, and their morphology and physical properties were investigated. The mice were divided into five groups and treated with I) PCL-sole (PCL), III) PCL-mupirocin (PCL-M), IV) PCL-GO, IV) PCL-CS, and V) PCL-CS-GO. Wound area, total bacterial count, histopathological parameters, and expressions of IL-1ß, TNF-α, IL-10, MMP-9, EGF, and VEGF were assessed. The fibers were randomly distributed in PCL group, but loading CS and GO increased the complexity and placing on the dressings. PCLs loaded with GO and CS showed lower viscosity, surface tension, and fiber diameter and higher conductivity and water contact angle compared to unloaded PCLs (P < 0.05). The treatment with PCLs loaded with mupirocin, CS, and GO significantly reduced wound area and total bacterial count (P < 0.05). Loading PCLs with mupirocin, CS, and GO decreased the expressions of IL-1ß, TNF-α, MMP-9, but increased the expressions of IL-10 and VEGF compared to the unloaded PCL group (P < 0.05). The most optimal responses to wound healing and physical parameters belonged to the PCL-CS-GO group.


Assuntos
Bandagens , Quitosana/química , Nanofibras/química , Fenilpropionatos/química , Poliésteres/química , Cicatrização , Infecção dos Ferimentos/terapia , Animais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Infecção dos Ferimentos/metabolismo , Infecção dos Ferimentos/patologia
16.
Sci Rep ; 10(1): 11900, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681099

RESUMO

Trauma is one of the leading causes of death in people under the age of 49 and complications due to wound infection are the primary cause of death in the first few days after injury. The ESKAPE pathogens are a group of bacteria that are a leading cause of hospital-acquired infections and a major concern in terms of antibiotic resistance. Here, we demonstrate a novel and highly accurate approach for the rapid identification of ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) directly from infected wounds in 3D in vitro skin models. Wounded skin models were inoculated with bacteria and left to incubate. Bacterial proteins were identified within minutes, directly from the wound, by liquid extraction surface analysis mass spectrometry. This approach was able to distinguish closely related strains and, unlike genomic approaches, can be modified to provide dynamic information about pathogen behaviour at the wound site. In addition, since human skin proteins were also identified, this method offers the opportunity to analyse both host and pathogen biomarkers during wound infection in near real-time.


Assuntos
Proteínas de Bactérias/metabolismo , Modelos Biológicos , Pele/patologia , Infecção dos Ferimentos/metabolismo , Infecção dos Ferimentos/microbiologia , Proteínas Hemolisinas/metabolismo , Humanos , Espectrometria de Massas , Staphylococcus aureus/metabolismo
17.
PLoS Pathog ; 16(6): e1008511, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32555671

RESUMO

The clinical importance of microbiomes to the chronicity of wounds is widely appreciated, yet little is understood about patient-specific processes shaping wound microbiome composition. Here, a two-cohort microbiome-genome wide association study is presented through which patient genomic loci associated with chronic wound microbiome diversity were identified. Further investigation revealed that alternative TLN2 and ZNF521 genotypes explained significant inter-patient variation in relative abundance of two key pathogens, Pseudomonas aeruginosa and Staphylococcus epidermidis. Wound diversity was lowest in Pseudomonas aeruginosa infected wounds, and decreasing wound diversity had a significant negative linear relationship with healing rate. In addition to microbiome characteristics, age, diabetic status, and genetic ancestry all significantly influenced healing. Using structural equation modeling to identify common variance among SNPs, six loci were sufficient to explain 53% of variation in wound microbiome diversity, which was a 10% increase over traditional multiple regression. Focusing on TLN2, genotype at rs8031916 explained expression differences of alternative transcripts that differ in inclusion of important focal adhesion binding domains. Such differences are hypothesized to relate to wound microbiomes and healing through effects on bacterial exploitation of focal adhesions and/or cellular migration. Related, other associated loci were functionally enriched, often with roles in cytoskeletal dynamics. This study, being the first to identify patient genetic determinants for wound microbiomes and healing, implicates genetic variation determining cellular adhesion phenotypes as important drivers of infection type. The identification of predictive biomarkers for chronic wound microbiomes may serve as risk factors and guide treatment by informing patient-specific tendencies of infection.


Assuntos
Microbiota , Polimorfismo de Nucleotídeo Único , Infecções por Pseudomonas , Pseudomonas aeruginosa , Infecções Estafilocócicas , Staphylococcus epidermidis , Cicatrização/genética , Infecção dos Ferimentos , Animais , Doença Crônica , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Talina/genética , Talina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Infecção dos Ferimentos/genética , Infecção dos Ferimentos/metabolismo , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/patologia
18.
Biomed Pharmacother ; 128: 110120, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32460189

RESUMO

BACKGROUND: Salvia officinalis L. (Lamiaceae) is known to have antibacterial properties possibly conducive to the healing process of infected wounds. PURPOSE: The present study aimed to evaluate the effects of an ointment containing Salvia officinalis essential oil (SOO) on an infected wound model. METHODS: Essential oil hydrodistillated from the dried leaves of the plant was analyzed by GC-FID and GC-MS. After creating two full-thickness cutaneous wounds, mice were classified into four groups, control, and animals treated with 2 % mupirocin® (standard positive drug), and 2 % and 4 % (w/w) of SOO. In order to evaluate the effects of SOO on the wound healing phases, the expression levels of interleukin-6 (IL-6), interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), cyclin-D1, Bcl-2, fibroblast growth factor-2 (FGF-2) and vascular endothelial growth factors (VEGF) were analyzed using qRT-PCR. Immunohistochemistry analysis, tissue total antioxidant capacity (TAC) and malondialdehyde (MDA) were further assessed in all groups. RESULTS: Concerning essential oil, the main compounds were found to be cis-thujone (26.8 %), camphor (16.4 %), trans-thujone (14.1 %) and 1,8-cineole (10.8 %). Our findings showed that the topical application of SOO was able to shorten the inflammatory phase and accelerate the cellular proliferation, re-vascularization, collagen deposition and re-epithelialization in comparison to the control group (p < 0.05). Moreover, increased mRNA levels of FGF-2 and VEGF, and up-regulation of cyclin-D1 and Bcl-2 were observed following the topical application of SOO compared to the control group (p < 0.05). The expression levels of IL-6, IL-1ß and TNF-α were reduced in animals treated with SOO on days 3, 7 and 14 (p < 0.05). CONCLUSIONS: Administration of SOO increased the TAC level and reduced the MDA content and levels of IL-1ß and TNF-α. It is concluded that SOO is able to accelerate the wound healing process by regulating the expression of pro-inflammatory cytokines, growth factors, and antioxidant properties.


Assuntos
Antibacterianos/administração & dosagem , Óleos Voláteis/administração & dosagem , Óleos de Plantas/administração & dosagem , Infecções por Pseudomonas/tratamento farmacológico , Salvia officinalis , Infecções Estafilocócicas/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/tratamento farmacológico , Administração Cutânea , Animais , Antibacterianos/isolamento & purificação , Ciclina D1/genética , Ciclina D1/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Óleos Voláteis/isolamento & purificação , Óleos de Plantas/isolamento & purificação , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Salvia officinalis/química , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Infecção dos Ferimentos/metabolismo , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/patologia
19.
Wound Repair Regen ; 28(4): 480-492, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32304258

RESUMO

Current wound scaffold dressing constructs can facilitate wound healing but do not exhibit antibacterial activity, resulting in high infection rates. We aimed to endow wound scaffold dressing with anti-infective ability by polyhexamethylenebiguanide (PHMB). We prepared PHMB hydrogel at varying concentrations (0.25%, 0.5%, 1%, 2%) and assessed release and cytotoxicity. PHMB hydrogel was added to the wound scaffold dressing to generate a PHMB hydrogel-modified wound scaffold dressing. Wound healing and infection prevention were evaluated using a full-thickness skin defect model in rats. In vitro, the hydrogel PHMB release time positively correlated with PHMB concentration, with 1% allowing sufficiently long release time to encompass the high-incidence period (3-5 days) of infection following wound scaffold dressing implantation. Implantation of 1% PHMB hydrogel into the skin did not cause adverse responses. in vitro cytotoxicity assays showed the PHMB hydrogel-modified wound scaffold dressing did not significantly affect proliferation of fibroblasts or vascular endothelial cells, 99.90% vs 99.84% for fibroblasts and 100.21% vs 99.28% for vascular endothelial cells at 21 days. Transplantation of PHMB hydrogel-modified wound scaffold dressing/unmodified wound scaffold dressing on the non-infected wounds of rats yielded no significant difference in relative vascularization rate, 47.40 vs 50.87 per view at 21 days, whereas bacterial content of the wound tissue in the PHMB hydrogel-modified wound scaffold dressing group was significantly lower than the unmodified wound scaffold dressing group, (1.80 ± 0.35) × 103 vs (9.34 ± 0.45) × 103 at 14 days. Prevalence of persistent wound infection in the rats receiving PHMB hydrogel-modified wound scaffold dressing transplantation onto infected wounds was significantly lower than the unmodified wound scaffold dressing group, 30% vs 100%. PHMB hydrogel-modified wound scaffold dressing exhibited suitable antibacterial ability, and its biological activity did not significantly differ from that of the unmodified wound scaffold dressing, thereby allowing it to effectively prevent infection following wound scaffold dressing implantation.


Assuntos
Anti-Infecciosos Locais/farmacologia , Biguanidas/farmacologia , Células Endoteliais/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Hidrogéis , Pele Artificial , Pele/efeitos dos fármacos , Acinetobacter baumannii/efeitos dos fármacos , Animais , Bandagens , Desinfetantes/farmacologia , Cobaias , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Coelhos , Ratos , Staphylococcus aureus/efeitos dos fármacos , Infecção dos Ferimentos/metabolismo , Infecção dos Ferimentos/patologia , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia
20.
Curr Drug Targets ; 21(13): 1301-1312, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116189

RESUMO

Wound research is an evolving science trying to unfold the complex untold mechanisms behind the wound healing cascade. In particular, interest is growing regarding the role of microorganisms in both acute and chronic wound healing. Microbial burden plays an important role in the persistence of chronic wounds, ultimately resulting in delayed wound healing. It is therefore important for clinicians to understand the evolution of infection science and its various etiologies. Therefore, to understand the role of bacterial biofilm in chronic wound pathogenesis, various in vitro and in vivo models are required to investigate biofilms in wound-like settings. Infection models should be refined comprising an important signet of biofilms. These models are eminent for translational research to obtain data for designing an improved wound care formulation. However, all the existing models possess limitations and do not fit properly in the model frame for developing wound care agents. Among various impediments, one of the major drawbacks of such models is that the wound they possess does not mimic the wound a human develops. Therefore, a novel wound infection model is required which can imitate the human wounds. This review article mainly discusses various in vitro and in vivo models showing microbial colonization, their advantages and challenges. Apart from these models, there are also present ex vivo wound infection models, but this review mainly focused on various in vitro and in vivo models available for studying wound infection in controlled conditions. This information might be useful in designing an ideal wound infection model for developing an effective wound healing formulation.


Assuntos
Desenvolvimento de Medicamentos , Infecção dos Ferimentos/microbiologia , Animais , Anti-Infecciosos/administração & dosagem , Biofilmes/efeitos dos fármacos , Humanos , Técnicas In Vitro , Modelos Biológicos , Cicatrização , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...