Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 86(7): 3736-45, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22278224

RESUMO

Proteolytic activation of the fusion protein of the highly pathogenic Nipah virus (NiV F) is a prerequisite for the production of infectious particles and for virus spread via cell-to-cell fusion. Unlike other paramyxoviral fusion proteins, functional NiV F activation requires endocytosis and pH-dependent cleavage at a monobasic cleavage site by endosomal proteases. Using prototype Vero cells, cathepsin L was previously identified to be a cleavage enzyme. Compared to Vero cells, MDCK cells showed substantially higher F cleavage rates in both NiV-infected and NiV F-transfected cells. Surprisingly, this could not be explained either by an increased F endocytosis rate or by elevated cathepsin L activities. On the contrary, MDCK cells did not display any detectable cathepsin L activity. Though we could confirm cathepsin L to be responsible for F activation in Vero cells, inhibitor studies revealed that in MDCK cells, cathepsin B was required for F-protein cleavage and productive replication of pathogenic NiV. Supporting the idea of an efficient F cleavage in early and recycling endosomes of MDCK cells, endocytosed F proteins and cathepsin B colocalized markedly with the endosomal marker proteins early endosomal antigen 1 (EEA-1), Rab4, and Rab11, while NiV F trafficking through late endosomal compartments was not needed for F activation. In summary, this study shows for the first time that endosomal cathepsin B can play a functional role in the activation of highly pathogenic NiV.


Assuntos
Catepsina B/metabolismo , Endossomos/enzimologia , Infecções por Henipavirus/enzimologia , Infecções por Henipavirus/virologia , Vírus Nipah/metabolismo , Proteínas Virais de Fusão/metabolismo , Animais , Catepsina B/genética , Catepsina L/genética , Catepsina L/metabolismo , Linhagem Celular , Cães , Endocitose , Endossomos/virologia , Infecções por Henipavirus/genética , Infecções por Henipavirus/fisiopatologia , Humanos , Camundongos , Camundongos Knockout , Vírus Nipah/genética , Proteínas Virais de Fusão/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...