Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Poult Sci ; 103(5): 103611, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471226

RESUMO

The aim of this study was to develop an efficient and accurate platform for the detection of the newly identified goose megrivirus (GoMV). To achieve this goal, we developed a TaqMan real-time PCR technology for the rapid detection and identification of GoMV. Our data showed that the established TaqMan real-time PCR assay had high sensitivity, with the lowest detection limit of 67.3 copies/µL. No positive signal can be observed from other goose origin viruses (including AIV, GPV, GoCV, GHPyV, and GoAstV), with strong specificity. The coefficients of variation of repeated intragroup and intergroup tests were all less than 1.5%, with excellent repeatability. Clinical sample investigation data from domestic Minbei White geese firstly provided evidence that GoMV can be transmitted both horizontally and vertically. In conclusion, since the TaqMan real-time PCR method has high sensitivity, specificity, and reproducibility, it can be a useful candidate tool for GoMV epidemiological investigation.


Assuntos
Gansos , Doenças das Aves Domésticas , Reação em Cadeia da Polimerase em Tempo Real , Animais , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reação em Cadeia da Polimerase em Tempo Real/métodos , Gansos/virologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/diagnóstico , Sensibilidade e Especificidade , Infecções por Vírus de RNA/veterinária , Infecções por Vírus de RNA/virologia , Infecções por Vírus de RNA/diagnóstico , Reprodutibilidade dos Testes
2.
Sci Rep ; 12(1): 939, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042900

RESUMO

With the advent of highly sensitive real-time PCR, multiple pathogens have been identified from nasopharyngeal swabs of patients with acute respiratory infections (ARIs). However, the detection of microorganisms in the upper respiratory tract does not necessarily indicate disease causation. We conducted a matched case-control study, nested within a broader fever aetiology project, to facilitate determination of the aetiology of ARIs in hospitalised patients in Northeastern Laos. Consenting febrile patients of any age admitted to Xiengkhuang Provincial Hospital were included if they met the inclusion criteria for ARI presentation (at least one of the following: cough, rhinorrhoea, nasal congestion, sore throat, difficulty breathing, and/or abnormal chest auscultation). One healthy control for each patient, matched by sex, age, and village of residence, was recruited for the study. Nasopharyngeal swabs were collected from participants and tested for 33 pathogens by probe-based multiplex real-time RT-PCR (FastTrack Diagnostics Respiratory pathogen 33 kit). Attributable fraction of illness for a given microorganism was calculated by comparing results between patients and controls (= 100 * [OR - 1]/OR) (OR = odds ratio). Between 24th June 2019 and 24th June 2020, 205 consenting ARI patients and 205 matching controls were recruited. After excluding eight pairs due to age mismatch, 197 pairs were included in the analysis. Males were predominant with sex ratio 1.2:1 and children < 5 years old accounted for 59% of participants. At least one potential pathogen was detected in 173 (88%) patients and 175 (89%) controls. ARI in admitted patients were attributed to influenza B virus, influenza A virus, human metapneumovirus (HMPV), and respiratory syncytial virus (RSV) in 17.8%, 17.2%, 7.5%, and 6.5% of participants, respectively. SARS-CoV-2 was not detected in any cases or controls. Determining ARI aetiology in individual patients remains challenging. Among hospitalised patients with ARI symptoms presenting to a provincial hospital in Northeastern Laos, half were determined to be caused by one of several respiratory viruses, in particular influenza A virus, influenza B virus, HMPV, and RSV.


Assuntos
Hospitalização , Infecções por Vírus de RNA , Vírus de RNA/genética , Infecções Respiratórias , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Doença Aguda , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Laos/epidemiologia , Masculino , Infecções por Vírus de RNA/diagnóstico , Infecções por Vírus de RNA/epidemiologia , Infecções por Vírus de RNA/genética , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/genética , Infecções Respiratórias/virologia , Fatores Sexuais
3.
Nucleic Acids Res ; 49(17): e102, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34214168

RESUMO

Rapidly evolving RNA viruses continuously produce minority haplotypes that can become dominant if they are drug-resistant or can better evade the immune system. Therefore, early detection and identification of minority viral haplotypes may help to promptly adjust the patient's treatment plan preventing potential disease complications. Minority haplotypes can be identified using next-generation sequencing, but sequencing noise hinders accurate identification. The elimination of sequencing noise is a non-trivial task that still remains open. Here we propose CliqueSNV based on extracting pairs of statistically linked mutations from noisy reads. This effectively reduces sequencing noise and enables identifying minority haplotypes with the frequency below the sequencing error rate. We comparatively assess the performance of CliqueSNV using an in vitro mixture of nine haplotypes that were derived from the mutation profile of an existing HIV patient. We show that CliqueSNV can accurately assemble viral haplotypes with frequencies as low as 0.1% and maintains consistent performance across short and long bases sequencing platforms.


Assuntos
Algoritmos , Biologia Computacional/métodos , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Infecções por Vírus de RNA/diagnóstico , Vírus de RNA/genética , COVID-19/diagnóstico , COVID-19/virologia , Frequência do Gene , Infecções por HIV/diagnóstico , Infecções por HIV/virologia , HIV-1/genética , Humanos , Mutação , Polimorfismo de Nucleotídeo Único , Infecções por Vírus de RNA/virologia , Reprodutibilidade dos Testes , SARS-CoV-2/genética , Sensibilidade e Especificidade
4.
J Fish Dis ; 44(10): 1595-1607, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34170523

RESUMO

Tilapia is one of the major aquaculture species with a global economic significance. Despite a high scale of production worldwide, mortality in many tilapia cultures has recently become a problem concerned with not only intensive farming but also the prevalence of infectious pathogens. Tilapia lake virus (TiLV) has emerged as a serious single-stranded RNA disease agent that thus far has continued to cause a number of incidences across the continents. Conventional PCR-based molecular detection techniques, despite having high sensitivity for TiLV, are not best suited for the onsite identification of infected fish mainly due to their requirement of laboratory resources and extended assay turnaround time. To address this practical limitation, we have developed a novel colorimetric assay based on reverse transcription-loop-mediated isothermal amplification (RT-LAMP) and gold nanoparticle (AuNP)-labelled oligonucleotide reporter probe targeting the viral genomic segment 9 that enables the assay to be completed within an hour. This technique has been shown to be compatible with a rapid nucleic extraction method that does not demand centrifugation steps or any benchtop laboratory equipment. When validated with field-acquired tilapia samples, our RT-LAMP-AuNP assay exhibited a near-perfect agreement with the semi-nested RT-PCR assay recommended by OIE with Cohen's κ coefficient of .869, yet requiring significantly less time to perform.


Assuntos
Aquicultura/métodos , Ciclídeos , Colorimetria/veterinária , Doenças dos Peixes/diagnóstico , Nanopartículas Metálicas/uso terapêutico , Técnicas de Diagnóstico Molecular/veterinária , Técnicas de Amplificação de Ácido Nucleico/veterinária , Infecções por Vírus de RNA/veterinária , Vírus de RNA/isolamento & purificação , Animais , Doenças dos Peixes/virologia , Ouro/uso terapêutico , Infecções por Vírus de RNA/diagnóstico , Infecções por Vírus de RNA/virologia , Transcrição Reversa , Sensibilidade e Especificidade
5.
J Fish Dis ; 44(10): 1491-1502, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34101853

RESUMO

Infectious diseases represent one of the major challenges to sustainable aquaculture production. Rapid, accurate diagnosis and genotyping of emerging pathogens during early-suspected disease cases is critical to facilitate timely response to deploy adequate control measures and prevent or reduce spread. Currently, most laboratories use PCR to amplify partial pathogen genomic regions, occasionally combined with sequencing of PCR amplicon(s) using conventional Sanger sequencing services for confirmatory diagnosis. The main limitation of this approach is the lengthy turnaround time. Here, we report an innovative approach using a previously developed specific PCR assay for pathogen diagnosis combined with a new Oxford Nanopore Technologies (ONT)-based amplicon sequencing method for pathogen genotyping. Using fish clinical samples, we applied this approach for the rapid confirmation of PCR amplicon sequences identity and genotyping of tilapia lake virus (TiLV), a disease-causing virus affecting tilapia aquaculture globally. The consensus sequences obtained after polishing exhibit strikingly high identity to references derived by Illumina and Sanger methods (99.83%-100%). This study suggests that ONT-based amplicon sequencing is a promising platform to deploy in regional aquatic animal health diagnostic laboratories in low- and medium-income countries, for fast identification and genotyping of emerging infectious pathogens from field samples within a single day.


Assuntos
Ciclídeos , Doenças dos Peixes/diagnóstico , Genótipo , Sequenciamento por Nanoporos/veterinária , Infecções por Vírus de RNA/veterinária , Vírus de RNA/isolamento & purificação , Animais , Doenças dos Peixes/virologia , Infecções por Vírus de RNA/diagnóstico , Infecções por Vírus de RNA/virologia , Vírus de RNA/genética
6.
Fish Shellfish Immunol ; 116: 115-123, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34186182

RESUMO

Tilapia lake virus (TiLV) is a notable contagious agent that causes massive economic losses in the tilapia industry globally. Evaluations of the histological changes associated with TiLV infection are not only crucial for diagnosis, but also to gain an understanding of the disease. We therefore synthesized a rabbit polyclonal immunoglobulin G antibody against TiLV and developed an immunohistochemical (IHC) procedure to detect TiLV localization in the tissues of infected fish for comparison with in situ hybridization (ISH) testing. A total of four different sample cohorts derived from TiLV-infected fish was used to validate the IHC procedure. The TiLV IHC application was successfully developed and facilitated nuclear and cytoplasmic immunolabelling in the intestines, gills, brain, liver, pancreas, spleen, and kidneys that corresponded with the ISH results. Apart from the ISH results, TiLV-IHC signals were clearly evident in the endothelial cells of various organs, the circulating leukocytes in the blood vessels, and the areas of tissue inflammation. Among the tested sample cohorts, the intestines, gills, and brain had IHC-positive signals, highlighting the possibility of these organs as common TiLV targets. Immunological staining pattern and distribution corresponded with the TiLV viral load but not the inoculation route. The TiLV IHC was also capable of detecting TiLV infection in the experimentally challenged ornamental cichlids, Mozambique tilapia, giant gourami, and naturally infected tilapia, indicating the dynamic range of IHC for TiLV detection. Overall, our study delivers the first IHC platform to detect TiLV infection and provides novel evidence of cellular tropism during TiLV infection. Our findings also reveal the TiLV distribution pattern of infected fish and propose the endotheliotropism and lymphotropism of this virus, which requires further elaboration. Importantly, this new IHC procedure could be applied to study the pathogenesis and interaction of TiLV in future research.


Assuntos
Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Doenças dos Peixes/diagnóstico , Imunoglobulina G/imunologia , Infecções por Vírus de RNA/diagnóstico , Vírus de RNA/imunologia , Tilápia/imunologia , Animais , Linhagem Celular , Feminino , Doenças dos Peixes/imunologia , Imuno-Histoquímica , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/veterinária , Vírus de RNA/fisiologia , Coelhos , Tropismo Viral
7.
J Fish Dis ; 44(6): 783-791, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33527460

RESUMO

A lateral flow immunochromatography strip test, based on antibody-gold nanoparticles specific for nervous necrosis virus (NNV), was developed for rapid, on-site detection of the virus in fish stocks. A monoclonal antibody against NNV was conjugated with colloidal gold as the detector antibody. A rabbit anti-NNV polyclonal antibody and goat anti-mouse IgG antibody were blotted onto the nitrocellulose membrane as the capture antibodies on the test line and control line, respectively. The reaction could be seen by the eye within 15 min and did not cross-react with the other viruses tested. The detection limit of the strip was approximately 103 TCID50 /ml and had good stability after storage at 4°C for 8 months. When brains of 70 naturally infected golden grey mullet, Chelon aurata, were tested with the strip test, the diagnostic specificity and sensitivity of the test compared to real-time RT-PCR were 100% and 74%, respectively. Therefore, the one-step test strip developed here had high specificity, reproducibility, and stability. This, together with its simplicity to use and rapid detection, without the requirement of sophisticated equipment or specialized skills, makes the strip suitable for pond-side detection of NNV in farmed fish.


Assuntos
Cromatografia de Afinidade/veterinária , Testes Diagnósticos de Rotina/veterinária , Doenças dos Peixes/diagnóstico , Peixes , Coloide de Ouro/química , Nodaviridae/isolamento & purificação , Infecções por Vírus de RNA/veterinária , Animais , Cromatografia de Afinidade/instrumentação , Cromatografia de Afinidade/métodos , Testes Diagnósticos de Rotina/instrumentação , Testes Diagnósticos de Rotina/métodos , Doenças dos Peixes/virologia , Infecções por Vírus de RNA/diagnóstico , Infecções por Vírus de RNA/virologia
8.
Sci Rep ; 11(1): 3209, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547380

RESUMO

Viral co-infections occur in COVID-19 patients, potentially impacting disease progression and severity. However, there is currently no dedicated method to identify viral co-infections in patient RNA-seq data. We developed PACIFIC, a deep-learning algorithm that accurately detects SARS-CoV-2 and other common RNA respiratory viruses from RNA-seq data. Using in silico data, PACIFIC recovers the presence and relative concentrations of viruses with > 99% precision and recall. PACIFIC accurately detects SARS-CoV-2 and other viral infections in 63 independent in vitro cell culture and patient datasets. PACIFIC is an end-to-end tool that enables the systematic monitoring of viral infections in the current global pandemic.


Assuntos
COVID-19/diagnóstico , Coinfecção/diagnóstico , Aprendizado Profundo , Infecções por Vírus de RNA/diagnóstico , Vírus de RNA/isolamento & purificação , SARS-CoV-2/isolamento & purificação , Teste para COVID-19 , Coinfecção/virologia , Coronaviridae/isolamento & purificação , Humanos , Metapneumovirus/classificação , Metapneumovirus/isolamento & purificação , Redes Neurais de Computação , Orthomyxoviridae/classificação , Orthomyxoviridae/isolamento & purificação , Infecções por Vírus de RNA/virologia , Vírus de RNA/classificação , RNA-Seq , Rhinovirus/classificação , Rhinovirus/isolamento & purificação , SARS-CoV-2/classificação , Sensibilidade e Especificidade
9.
Transbound Emerg Dis ; 68(3): 1229-1239, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32767820

RESUMO

Numerous infectious diseases impacting livestock impose an important economic burden and in some cases also represent a threat to humans and are classified as zoonoses. Some zoonotic diseases are transmitted by vectors and, due to complex environmental and socio-economic factors, the distribution of many of these pathogens is changing, with increasing numbers being found in previously unaffected countries. Here, we developed a multiplex assay, based on a suspension microarray, able to detect specific antibodies to five important pathogens of livestock (three of them zoonotic) that are currently emerging in new geographical locations: Rift Valley fever virus (RVFV), Crimean-Congo haemorrhagic fever virus (CCHFV), Schmallenberg virus (SBV), Bluetongue virus (BTV) and the bacteria complex Mycobacterium tuberculosis. Using the Luminex platform, polystyrene microspheres were coated with recombinant proteins from each of the five pathogens. The mix of microspheres was used for the simultaneous detection of antibodies against the five corresponding diseases affecting ruminants. The following panel of sera was included in the study: 50 sera from sheep experimentally infected with RVFV, 74 sera from calves and lambs vaccinated with SBV, 26 sera from cattle vaccinated with Mycobacterium bovis, 30 field sera from different species of ruminants infected with CCHFV and 88 calf sera infected with BTV. Finally, to determine its diagnostic specificity 220 field sera from Spanish farms free of the five diseases were assessed. All the sera were classified using commercial ELISAs specific for each disease, used in this study as the reference technique. The results showed the multiplex assay exhibited good performance characteristics with values of sensitivity ranging from 93% to 100% and of specificity ranging from 96% to 99% depending on the pathogen. This new tool allows the simultaneous detection of antibodies against five important pathogens, reducing the volume of sample needed and the time of analysis where these pathogens are usually tested individually.


Assuntos
Anticorpos Antibacterianos/sangue , Anticorpos Antivirais/sangue , Mycobacterium tuberculosis/imunologia , Infecções por Vírus de RNA/veterinária , Vírus de RNA/imunologia , Ruminantes/imunologia , Testes Sorológicos/veterinária , Tuberculose/veterinária , Animais , Vírus Bluetongue/imunologia , Bovinos , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/epidemiologia , Ensaio de Imunoadsorção Enzimática/veterinária , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Infecções por Vírus de RNA/diagnóstico , Infecções por Vírus de RNA/epidemiologia , Febre do Vale de Rift/diagnóstico , Febre do Vale de Rift/epidemiologia , Vírus da Febre do Vale do Rift/imunologia , Ruminantes/virologia , Ovinos/imunologia , Doenças dos Ovinos/diagnóstico , Doenças dos Ovinos/epidemiologia , Tuberculose/diagnóstico , Tuberculose/epidemiologia , Zoonoses
10.
J Proteome Res ; 19(11): 4259-4274, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33095583

RESUMO

Emerging and re-emerging infectious diseases due to RNA viruses cause major negative consequences for the quality of life, public health, and overall economic development. Most of the RNA viruses causing illnesses in humans are of zoonotic origin. Zoonotic viruses can directly be transferred from animals to humans through adaptation, followed by human-to-human transmission, such as in human immunodeficiency virus (HIV), severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and, more recently, SARS coronavirus 2 (SARS-CoV-2), or they can be transferred through insects or vectors, as in the case of Crimean-Congo hemorrhagic fever virus (CCHFV), Zika virus (ZIKV), and dengue virus (DENV). At the present, there are no vaccines or antiviral compounds against most of these viruses. Because proteins possess a vast array of functions in all known biological systems, proteomics-based strategies can provide important insights into the investigation of disease pathogenesis and the identification of promising antiviral drug targets during an epidemic or pandemic. Mass spectrometry technology has provided the capacity required for the precise identification and the sensitive and high-throughput analysis of proteins on a large scale and has contributed greatly to unravelling key protein-protein interactions, discovering signaling networks, and understanding disease mechanisms. In this Review, we present an account of quantitative proteomics and its application in some prominent recent examples of emerging and re-emerging RNA virus diseases like HIV-1, CCHFV, ZIKV, and DENV, with more detail with respect to coronaviruses (MERS-CoV and SARS-CoV) as well as the recent SARS-CoV-2 pandemic.


Assuntos
Doenças Transmissíveis Emergentes , Proteômica , Infecções por Vírus de RNA , Animais , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico , Doenças Transmissíveis Emergentes/diagnóstico , Doenças Transmissíveis Emergentes/terapia , Doenças Transmissíveis Emergentes/virologia , Infecções por Coronavirus/diagnóstico , Humanos , Pandemias , Pneumonia Viral , Infecções por Vírus de RNA/diagnóstico , Infecções por Vírus de RNA/terapia , Infecções por Vírus de RNA/virologia , Vírus de RNA
11.
J Appl Lab Med ; 5(5): 897-907, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32674131

RESUMO

BACKGROUND: Upper respiratory tract infections are common, and the ability to accurately and rapidly diagnose the causative pathogen has important implications for patient management. METHODS: We evaluated the test-ordering practices for 2 commonly utilized nucleic acid amplification tests (NAATs) for the detection of respiratory pathogens: the Xpert Flu Assay for influenza A/B (Flu assay) and the Biofire FilmArray respiratory panel assay (RP assay), which detects 20 different targets. Our study examined repeat testing; that is, testing within 7 days from an initial test. RESULTS: Our study found that repeat testing is common for each of the individual assays: 3.0% of all Flu assays and 10.0% of all RP assays were repeat testing. Of repeat testing, 8/293 (2.7%) of repeat Flu assays and 75/1257 (6.0%) of RP assays resulted diagnostic gains, i.e., new detections. However, for the RP assay, these new detections were not always clinically actionable. The most frequently discrepant organisms were rhinovirus/enterovirus (28/102, 27.5%), followed by respiratory syncytial virus (12/102, 11.8%) and coronavirus OC43 (11/102, 10.8%). Furthermore, there were 3,336 instances in which a patient was tested using both a Flu assay and RP assay, of which only 44 (1.3%) had discrepant influenza results. CONCLUSIONS: Our findings suggest opportunities exist to better guide ordering practices for respiratory pathogen testing, including limiting repeat testing, with the goal of optimization of clinical yield, and diagnostic stewardship.


Assuntos
Vírus da Influenza A , Vírus da Influenza B , Influenza Humana , Técnicas de Amplificação de Ácido Nucleico/métodos , Infecções por Vírus de RNA , Infecções Respiratórias , Diagnóstico Diferencial , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza B/genética , Vírus da Influenza B/isolamento & purificação , Influenza Humana/diagnóstico , Influenza Humana/virologia , Reação em Cadeia da Polimerase Multiplex/métodos , Utilização de Procedimentos e Técnicas , Infecções por Vírus de RNA/diagnóstico , Infecções por Vírus de RNA/virologia , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/virologia , Vírus/classificação , Vírus/isolamento & purificação
12.
J Virol Methods ; 283: 113916, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32574649

RESUMO

Metagenomic next generation sequencing (mNGS) is increasingly recognized as an important complementary tool to targeted human and animal infectious disease diagnostics. It is, however, sensitive to biases and errors that are currently not systematically evaluated by the implementation of quality controls (QC) for the diagnostic use of mNGS. We evaluated a commercial reagent (Mengovirus extraction control kit, CeraamTools, bioMérieux) as an exogenous internal control for mNGS. It validates the integrity of reagents and workflow, the efficient isolation of viral nucleic acids and the absence of inhibitors in individual samples (verified using a specific qRT-PCR). Moreover, it validates the efficient generation of viral sequence data in individual samples (verified by normalized mengoviral read counts in the metagenomic analysis). We show that when using a completely random metagenomics workflow: (1) Mengovirus RNA can be reproducibly detected in different animal sample types (swine feces and sera, wild bird cloacal swabs), except for tissue samples (swine lung); (2) the Mengovirus control kit does not contain other contaminating viruses that may affect metagenomic experiments (using a cutoff of minimum 1 Kraken classified read per million (RPM)); (3) the addition of 2.17 × 106Mengovirus copies/mL of sample does not affect the virome composition of pig fecal samples or wild bird cloacal swab samples; (4) Mengovirus Cq values (using as cutoff the upper limit of the 99 % confidence interval of Cq values for a given sample matrix) allow the identification of samples with poor viral RNA extraction or high inhibitor load; (5) Mengovirus normalized read counts (cutoff RPM > 1) allow the identification of samples where the viral sequences are outcompeted by host or bacterial target sequences in the random metagenomic workflow. The implementation of two QC testing points, a first one after RNA extraction (Mengoviral qRT-PCR) and a second one after metagenomic data analysis provide valuable information for the validation of individual samples and results. Their implementation in addition to external controls validating runs or experiments should be carefully considered for a given sample type and workflow.


Assuntos
Metagenômica/métodos , Infecções por Vírus de RNA/diagnóstico , Infecções por Vírus de RNA/virologia , Vírus de RNA/isolamento & purificação , Animais , Fezes/virologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mengovirus/genética , Mengovirus/isolamento & purificação , Vírus de RNA/genética , RNA Viral/genética , RNA Viral/isolamento & purificação , Sensibilidade e Especificidade , Suínos , Doenças dos Suínos/virologia , Viroma
13.
J Invertebr Pathol ; 168: 107252, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31585118

RESUMO

Varroa destructor and its associated viruses, in particular deformed wing virus (DWV), have been identified as probable causes of honey bee (Apis mellif era L.) colony losses. Evidence suggests that elevated DWV titres in bees could compromise sensory and communication abilities resulting in negative consequences for hygienic behaviour. As antennae play a central role in this behaviour, we compared antennal ultrastructure in DWV-symptomatic and asymptomatic bees. The results show that virus capsids accumulate in the basal regions of the antennal epithelium, close to the haemolymph. No virus particles were detected at the level of sensory sensilla, such as pore plates, nor within the sensory cell dendrites associated with these sensilla. However, membranous structures appeared to be more prevalent in supporting cells surrounding the dendrites of DWV-symptomatic bees. Para-crystalline arrays containing large numbers of virus particles were detected in the antennae of DWV-symptomatic bees but not in asymptomatic bees.


Assuntos
Antenas de Artrópodes/virologia , Abelhas/virologia , Epitélio/virologia , Vírus de RNA/patogenicidade , Animais , Antenas de Artrópodes/citologia , Antenas de Artrópodes/patologia , Antenas de Artrópodes/ultraestrutura , Tomografia com Microscopia Eletrônica , Epitélio/patologia , Epitélio/ultraestrutura , Infecções por Vírus de RNA/diagnóstico , Varroidae/virologia
14.
J Fish Dis ; 42(11): 1629-1636, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31578751

RESUMO

Detection of tilapia lake virus (TiLV) in tilapines is mainly from visceral organs of killed fish. However, lethal sampling might not be viable to broodstock and economically important ornamental cichlids. To contribute towards screening of the virus in asymptomatic infected fish, a subclinically infected population of Nile tilapia adults obtained from a local farm was preliminarily tested to compare different non-lethal sampling methods, for example liver biopsy, gill biopsy, fin clip, mucus, faeces and blood for detection of TiLV. Only liver and blood samples gave positive results by PCR. Since blood sampling is relatively simpler, it was further used for five naturally co-cultured juvenile fish species from above-mentioned farm including 40 red tilapia broodstock and 20 Nile tilapia adults from two other different farms. The results showed that from the tested fish, 4 of 5 Nile tilapia, 2 of 5 hybrid red tilapia and 3 of 5 giant gourami blood samples tested positive, while 38 of 40 blood samples of red tilapia tested positive for TiLV in second-step PCR. Sequencing representative PCR amplicons of positive samples confirmed sequence identity to TiLV. In conclusion, both blood and liver biopsy are practical non-destructive sampling platforms for TiLV screening in cichlids with blood being more convenient, especially for tilapia broodstock.


Assuntos
Biópsia/veterinária , Ciclídeos , Doenças dos Peixes/diagnóstico , Infecções por Vírus de RNA/veterinária , Vírus de RNA/isolamento & purificação , Animais , Infecções Assintomáticas , Biópsia/métodos , Sangue/virologia , Doenças dos Peixes/patologia , Fígado/patologia , Fígado/virologia , Infecções por Vírus de RNA/diagnóstico , Infecções por Vírus de RNA/patologia
15.
Anal Chem ; 91(20): 12962-12970, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31509389

RESUMO

Electrospraying (ES) dissolved viral particles, followed by charge reduction and size analysis with a differential mobility analyzer (DMA), offers a flexible size-analysis tool for small particles in solution. The technique relies on pioneering work by Kaufman and colleagues, commercialized by TSI, and often referred to as GEMMA. However, viral studies with TSI's GEMMA have suffered from limited resolving power, possibly because of imperfections in either the instrument (DMA or charge reduction) or the sample solution preparation. Here, we explore the limits of the resolution achievable by GEMMA, taking advantage of (i) cleaner charge reduction methods and (ii) DMAs of higher resolving power. Analysis of the literature provides indications that mobility peak widths (fwhm) of 2% or less may be achieved by combining careful sample preparation with improved instrumentation. Working with purified PP7 bacteriophage particles small enough to be classifiable by existing high-resolution DMAs, we confirm that fairly narrow viral mobility peaks may be obtained (relative full width at half-maximum fwhm <5%). Comparison of spectra of a given apian virus sample obtained with TSI's GEMMA and our improved instrumentation confirms that one critical limitation is the DMA. This is further verified by narrow peaks from murine parvovirus, norovirus, and encephalomyelitis virus samples, obtained in our improved GEMMA with little sample preparation, directly from infected cell cultures. Classification of purified large (60 nm) coliphage PR772 particles leads to broad peaks, due to both viral degradation and limited intrinsic resolution of the DMAs used to cover the range of such large particles. We conclude that improved DMAs suitable for high-resolution analysis of particles larger than 30 nm need to be developed to determine the intrinsic mobility width of viral particles.


Assuntos
Infecções por Vírus de DNA/diagnóstico , Vírus de DNA/crescimento & desenvolvimento , Infecções por Vírus de RNA/diagnóstico , Vírus de RNA/crescimento & desenvolvimento , Espectrometria de Massas por Ionização por Electrospray/métodos , Vírion/isolamento & purificação , Vírion/fisiologia , Animais , Abelhas/virologia , Infecções por Vírus de DNA/virologia , Camundongos , Infecções por Vírus de RNA/virologia
16.
Viruses ; 11(9)2019 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-31450611

RESUMO

Following the Ebola outbreak in Western Africa in 2013-16, a global effort has taken place for preparedness for future outbreaks. As part of this response, the development of vaccines, treatments and diagnostic tools has been accelerated, especially towards pathogens listed as likely to cause an epidemic and for which there are no current treatments. Several of the priority pathogens identified by the World Health Organisation are haemorrhagic fever viruses. This review provides information on the role of reference materials as an enabling tool for the development and evaluation of assays, and ultimately vaccines and treatments. The types of standards available are described, along with how they can be applied for assay harmonisation through calibration as a relative potency to a common arbitrary unitage system (WHO International Unit). This assures that assay metrology is accurate and robust. We describe reference materials that have been or are being developed for haemorrhagic fever viruses and consider the issues surrounding their production, particularly that of biosafety where the viruses require specialised containment facilities. Finally, we advocate the use of reference materials at early stages, including research and development, as this helps produce reliable assays and can smooth the path to regulatory approval.


Assuntos
Técnicas e Procedimentos Diagnósticos , Doença pelo Vírus Ebola , Serviços de Informação , Infecções por Vírus de RNA , Vacinas/normas , África Ocidental/epidemiologia , Animais , Antígenos Virais/sangue , Vírus da Dengue/imunologia , Vírus da Dengue/isolamento & purificação , Vírus da Dengue/patogenicidade , Surtos de Doenças/prevenção & controle , Ebolavirus/imunologia , Ebolavirus/isolamento & purificação , Ebolavirus/patogenicidade , Epidemias/prevenção & controle , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Vírus da Febre Hemorrágica da Crimeia-Congo/isolamento & purificação , Vírus da Febre Hemorrágica da Crimeia-Congo/patogenicidade , Febre Hemorrágica da Crimeia/diagnóstico , Febre Hemorrágica da Crimeia/imunologia , Febre Hemorrágica da Crimeia/prevenção & controle , Doença pelo Vírus Ebola/diagnóstico , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Febre Lassa/diagnóstico , Febre Lassa/imunologia , Febre Lassa/prevenção & controle , Vírus Lassa/imunologia , Vírus Lassa/isolamento & purificação , Vírus Lassa/patogenicidade , Doença do Vírus de Marburg/diagnóstico , Doença do Vírus de Marburg/imunologia , Doença do Vírus de Marburg/prevenção & controle , Marburgvirus/imunologia , Marburgvirus/isolamento & purificação , Marburgvirus/patogenicidade , Infecções por Vírus de RNA/diagnóstico , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/prevenção & controle , Vírus de RNA/imunologia , Vírus de RNA/isolamento & purificação , Vírus de RNA/patogenicidade , RNA Viral/isolamento & purificação , Febre do Vale de Rift/diagnóstico , Febre do Vale de Rift/imunologia , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/imunologia , Vírus da Febre do Vale do Rift/isolamento & purificação , Vírus da Febre do Vale do Rift/patogenicidade , Dengue Grave/diagnóstico , Dengue Grave/imunologia , Dengue Grave/prevenção & controle , Organização Mundial da Saúde
17.
J Fish Dis ; 42(8): 1097-1105, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31180142

RESUMO

One of the major disease threats affecting the Mediterranean aquaculture industry is viral encephalopathy and retinopathy (VER). The target organs for Betanodavirus detection are the brain and eyes, obtained through lethal sampling. This study aimed to evaluate the efficacy and suitability of non-lethal samples for detecting Betanodavirus in European seabass (Dicentrarchus labrax). European seabass juveniles were infected with Betanodavirus, by either an intramuscular injection or immersion (107 TCID50 /ml and 106 TCID50 /ml, respectively), and samples collected 7, 15 and 30 days post-infection (dpi). The brain was collected as a lethal sample, and gills, caudal fin and blood as non-lethal tissues for detecting Betanodavirus by quantitative reverse transcription PCR (RT-qPCR). The presence of virus in non-lethal tissues was inconsistent, with lower viral loads than in the brain. For blood, higher viral loads were detected in intramuscular-infected fish at 15 dpi until the end of the challenge. Serum antibodies against Betanodavirus were assessed using an enzyme-linked immunosorbent assay (ELISA). Antibodies were detected as early as 7 dpi, with higher mean antibody titres at 15 and 30 dpi. The presence of Betanodavirus-specific antibodies indicates that this is a suitable evaluation method for detecting early stages of the infection.


Assuntos
Nadadeiras de Animais/virologia , Bass , Encéfalo/virologia , Doenças dos Peixes/diagnóstico , Brânquias/virologia , Nodaviridae/isolamento & purificação , Infecções por Vírus de RNA/veterinária , Animais , Anticorpos Antivirais/análise , Ensaio de Imunoadsorção Enzimática/veterinária , Doenças dos Peixes/virologia , Infecções por Vírus de RNA/sangue , Infecções por Vírus de RNA/diagnóstico , Infecções por Vírus de RNA/virologia
18.
Clin Infect Dis ; 69(12): 2170-2176, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30768180

RESUMO

BACKGROUND: Trichomonas vaginalis virus (TVV) is a non-segmented, 4.5-5.5 kilo-base pair (kbp), double-stranded RNA virus infecting T. vaginalis. The objectives of this study were to examine the TVV prevalence in US Trichomonas vaginalis isolates and TVV's associations with patient demographics, clinical outcomes, and metronidazole resistance. METHODS: Archived T. vaginalis isolates from the enrollment visits of 355 women participating in a T. vaginalis treatment trial in Birmingham, Alabama, were thawed and grown in culture. Their total RNA was extracted using a Trizol reagent. Contaminating, single-stranded RNA was precipitated using 4.0 M Lithium Chloride and centrifugation. The samples were analyzed by gel electrophoresis to visualize a 4.5 kbp band representative of TVV. In vitro testing for metronidazole resistance was also performed on 25/47 isolates obtained from the women's test of cure visits. RESULTS: TVV was detected in 142/355 (40%) isolates at the enrollment visit. Women with TVV-positive (TVV+) isolates were significantly older (P = .01), more likely to smoke (P = .04), and less likely to report a history of gonorrhea (P = .04). There was no association between the presence of clinical symptoms or repeat T. vaginalis infections with TVV+ isolates (P = .14 and P = .44, respectively). Of 25 test of cure isolates tested for metronidazole resistance, 0/10 TVV+ isolates demonstrated resistance, while 2/15 TVV-negative isolates demonstrated mild to moderate resistance (P = .23). CONCLUSIONS: Of 355 T. vaginalis isolates tested for TVV, T. vaginalis isolates tested for TVV, the prevalence was 40%. However, there was no association of TVV+ isolates with clinical symptoms, repeat infections, or metronidazole resistance. These results suggest that TVV may be commensal to T. vaginalis.


Assuntos
Coinfecção , Infecções por Vírus de RNA/epidemiologia , Infecções por Vírus de RNA/virologia , Vírus de RNA , Vaginite por Trichomonas/epidemiologia , Vaginite por Trichomonas/microbiologia , Trichomonas vaginalis/virologia , Adulto , Resistência a Medicamentos , Feminino , Humanos , Metronidazol/farmacologia , Metronidazol/uso terapêutico , Pessoa de Meia-Idade , Testes de Sensibilidade Parasitária , Avaliação de Resultados da Assistência ao Paciente , Vigilância em Saúde Pública , Infecções por Vírus de RNA/diagnóstico , Vírus de RNA/genética , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Risco , Vaginite por Trichomonas/diagnóstico , Vaginite por Trichomonas/tratamento farmacológico , Adulto Jovem
19.
J Virol Methods ; 266: 58-64, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30703412

RESUMO

Mixed infections with different pathogens are common in sheep and goats under intensive production conditions. Quick and accurate detection and differentiation of different pathogens is necessary for epidemiological surveillance, disease management and import and export controls. Multiplex TaqMan qPCR protocols were developed and subsequently evaluated as effective tools in simultaneously detecting single and mixed infections in sheep and goats. Four pairs of primers and four probes labeled with Rox/BHQ2, Cy5/BHQ2, Hex/BHQ1 and Fam/BHQ1 for peste des petits ruminants virus (PPRV), foot and mouth disease virus (FMDV), goat pox virus (GTPV) and orf virus (ORFV), respectively, were used in the multiplex TaqMan qPCR assay. The assay was shown to be sensitive with detection limits of 9.17 × 101, 1.69 × 102, 9.41 × 101 and 7.46 × 101 copies/µL for PPRV, FMDV, GTPV and ORFV from a mixture of four viruses in a reaction, respectively. The assay was highly specific in its ability to detect one or more viruses in various combinations in the specimens. 38 clinical samples collected from sheep and goats were detected among 43 samples tested by multiplex TaqMan qPCR, showing highly effective identification. Overall, the multiplex TaqMan qPCR panel provides a fast, specific, and sensitive diagnostic tool for the accurate detection of multiple viral pathogens in sheep and goats.


Assuntos
Infecções por Vírus de DNA/veterinária , Vírus de DNA/isolamento & purificação , Reação em Cadeia da Polimerase Multiplex/veterinária , Infecções por Vírus de RNA/veterinária , Vírus de RNA/isolamento & purificação , Animais , Infecções por Vírus de DNA/diagnóstico , Doenças das Cabras/diagnóstico , Doenças das Cabras/virologia , Cabras/virologia , Infecções por Vírus de RNA/diagnóstico , RNA Viral/genética , Sensibilidade e Especificidade , Ovinos/virologia , Doenças dos Ovinos/diagnóstico , Doenças dos Ovinos/virologia
20.
J Virol Methods ; 262: 65-71, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30308216

RESUMO

Covert mortality nodavirus (CMNV), an emerging RNA virus, is the pathogen of viral covert mortality disease (VCMD), which has emerged as a cause of serious losses in shrimp aquaculture in China. To improve VCMD diagnosis, a one-step, real-time TaqMan probe-based reverse transcription quantitative PCR (RT-qPCR) was developed in this study. The TaqMan RT-qPCR was optimized firstly, whereby the best results were obtained with 0.2 µM of each primer, 0.2 µM probe, and 0.5 µL Enzyme Mix II. The optimal reaction program was determined as 15 min at 51ºC for reverse transcription and 5 min at 95 ºC, followed by 40 cycles of denaturation at 94 ºC for 10 s, and annealing and extension at 52.7 ºC for 30 s. The optimized assay detected as little as 9.6 pg total RNA from CMNV-infected shrimp and 5.7 copies of the target plasmid. The RT-qPCR assay for CMNV with a high correlation coefficient (r2 = 0.996) was developed basing on the standard curve generated by plotting the threshold cycle values (y) against the common logarithmic copies (log10nc as x; nc is copy number) of pMD20-CMNV. The diagnostic sensitivity and specificity of this assay versus the previously reported RT-qPCR was 96.2% and 98.0%, respectively. This method is highly specific to CMNV, as it showed no cross-reactivity with other common shrimp viruses. It is anticipated that the newly developed and optimized RT-qPCR assay will be instrumental for the rapid diagnosis and quantitation of CMNV.


Assuntos
Nodaviridae/genética , Penaeidae/virologia , Infecções por Vírus de RNA/veterinária , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Nodaviridae/isolamento & purificação , Nodaviridae/patogenicidade , Infecções por Vírus de RNA/diagnóstico , RNA Viral/genética , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...