Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.240
Filtrar
1.
ACS Appl Mater Interfaces ; 16(28): 36047-36062, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38978477

RESUMO

Sepsis, a life-threatening condition caused by a dysregulated immune response to infection, leads to systemic inflammation, immune dysfunction, and multiorgan damage. Various oxidoreductases play a very important role in balancing oxidative stress and modulating the immune response, but they are stored inconveniently, environmentally unstable, and expensive. Herein, we develop multifunctional artificial enzymes, CeO2 and Au/CeO2 nanozymes, exhibiting five distinct enzyme-like activities, namely, superoxide dismutase, catalase, glutathione peroxidase, peroxidase, and oxidase. These artificial enzymes have been used for the biocatalytic treatment of sepsis via inhibiting inflammation and modulating immune responses. These nanozymes significantly reduce reactive oxygen species and proinflammatory cytokines, achieving multiorgan protection. Notably, CeO2 and Au/CeO2 nanozymes with enzyme-mimicking activities can be particularly effective in restoring immunosuppression and maintaining homeostasis. The redox nanozyme offers a promising dual-protective strategy against sepsis-induced inflammation and organ dysfunction, paving the way for biocatalytic-based immunotherapies for sepsis and related inflammatory diseases.


Assuntos
Cério , Ouro , Inflamação , Sepse , Sepse/tratamento farmacológico , Sepse/imunologia , Animais , Inflamação/tratamento farmacológico , Inflamação/imunologia , Ouro/química , Cério/química , Cério/uso terapêutico , Camundongos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Catalase/metabolismo , Catalase/química , Citocinas/metabolismo
2.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39000380

RESUMO

Endothelial dysfunction often precedes the development of cardiovascular diseases, including heart failure. The cardioprotective benefits of sodium-glucose cotransporter 2 inhibitors (SGLT2is) could be explained by their favorable impact on the endothelium. In this review, we summarize the current knowledge on the direct in vitro effects of SGLT2is on endothelial cells, as well as the systematic observations in preclinical models. Four putative mechanisms are explored: oxidative stress, nitric oxide (NO)-mediated pathways, inflammation, and endothelial cell survival and proliferation. Both in vitro and in vivo studies suggest that SGLT2is share a class effect on attenuating reactive oxygen species (ROS) and on enhancing the NO bioavailability by increasing endothelial nitric oxide synthase activity and by reducing NO scavenging by ROS. Moreover, SGLT2is significantly suppress inflammation by preventing endothelial expression of adhesion receptors and pro-inflammatory chemokines in vivo, indicating another class effect for endothelial protection. However, in vitro studies have not consistently shown regulation of adhesion molecule expression by SGLT2is. While SGLT2is improve endothelial cell survival under cell death-inducing stimuli, their impact on angiogenesis remains uncertain. Further experimental studies are required to accurately determine the interplay among these mechanisms in various cardiovascular complications, including heart failure and acute myocardial infarction.


Assuntos
Inibidores do Transportador 2 de Sódio-Glicose , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Humanos , Animais , Estresse Oxidativo/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Óxido Nítrico/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Inflamação/metabolismo , Inflamação/tratamento farmacológico
3.
Mol Biol Rep ; 51(1): 825, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023749

RESUMO

BACKGROUND: Systemic inflammation causes several organ damage by activating the intracellular signaling mechanisms. Heart and aorta tissues are the structures mostly affected by this situation. By examining underlying processes, this study sought to determine whether cannabidiol (CBD) may have protective effects against the cardiovascular damage brought on by lipopolysaccharide (LPS). MATERIALS AND METHODS: A total of 32 female rats were randomly allocated to one of four groups: control, lipopolysaccharide (LPS) (5 mg/kg, i.p., single dose), LPS + CBD (5 mg/kg, i.p., single dose), and CBD groups. The rats were killed six hours after receiving LPS, and tissues from the heart and aorta were taken. Histopathological and immunohistochemical analyzes were performed. Oxidative stress was evaluated biochemically by spectrophotometric method. Expression levels of genes were studied by RT-qPCR method. RESULTS: Histopathological analysis of the LPS group showed moderate hyperemia, hemorrhages, edema, inflammation, and myocardial cell damage. There was a slight to moderate increase in Cox-1, G-CSF, and IL-3 immunoexpressions, along with enhanced expressions of IL-6, Hif1α, and STAT3 genes, and decreased expressions of eNOS genes. Additionally, there were increased levels of TOS and decreased TAS levels observed biochemically. CBD treatment effectively reversed and improved all of these observed changes. CONCLUSIONS: CBD protects the heart and aorta against systemic inflammation through its antioxidant and anti-inflammatory activity via regulating IL-6, Hif1α, STAT3, and eNOS intracellular pathways.


Assuntos
Anti-Inflamatórios , Antioxidantes , Canabidiol , Subunidade alfa do Fator 1 Induzível por Hipóxia , Interleucina-6 , Lipopolissacarídeos , Óxido Nítrico Sintase Tipo III , Estresse Oxidativo , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Canabidiol/farmacologia , Fator de Transcrição STAT3/metabolismo , Lipopolissacarídeos/toxicidade , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Ratos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Anti-Inflamatórios/farmacologia , Feminino , Transdução de Sinais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Interleucina-6/metabolismo , Interleucina-6/genética , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Aorta/efeitos dos fármacos , Aorta/patologia , Aorta/metabolismo
4.
Clin Transl Sci ; 17(7): e13887, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39010708

RESUMO

Voriconazole is the cornerstone of the treatment and prevention of fungal infections. While there is a good correlation between CYP2C19 genotype and voriconazole exposure during prophylactic treatment, no correlation was found in patients with invasive aspergillosis. Proinflammatory cytokines result in inhibition of CYP2C19 enzyme activity (and may result in phenoconversion). Here we investigated the relationship between inflammation, CYP2C19 genotype-predicted-phenotype, and CYP2C19 activity in patients receiving voriconazole. Data were obtained from two prospective studies investigating voriconazole treatment (NCT02074462 and NCT00893555). Dose-corrected voriconazole plasma concentration and C-reactive protein (CRP) were used as proxies for CYP2C19 activity and inflammation, respectively. After data extraction and synthesis, data from 39 patients with paired voriconazole and CRP measurements were available. The distribution of CYP2C19 genotype-predicted metabolizer phenotypes was 31% intermediate (IM), 41% normal (NM), and 28% rapid metabolizer (RM). During inflammation, dose-corrected voriconazole levels were increased by 245%, 278%, and 486% for CYP2C19 NMs IMs and RMs, respectively. Patients with moderate or high CRP levels (>50 mg/L) were phenoconverted to a lower metabolizer phenotype irrespective of their CYP2C19 genotype. In a subgroup analysis of eight patients with longitudinal data available with and without inflammation, the pattern of the dose-corrected voriconazole and CRP measurements were similar, with CYP2C19 activity following decreasing or increasing CRP levels. In conclusion, voriconazole plasma concentrations increase during inflammation due to downregulation of CYP2C19 activity. While this effect appears largest for CYP2C19 RMs, no clinically relevant differences were observed between the CYP2C19 genotypes.


Assuntos
Antifúngicos , Proteína C-Reativa , Citocromo P-450 CYP2C19 , Genótipo , Inflamação , Voriconazol , Voriconazol/administração & dosagem , Voriconazol/farmacocinética , Voriconazol/sangue , Humanos , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , Masculino , Feminino , Inflamação/tratamento farmacológico , Inflamação/genética , Pessoa de Meia-Idade , Antifúngicos/administração & dosagem , Antifúngicos/farmacocinética , Antifúngicos/sangue , Antifúngicos/efeitos adversos , Antifúngicos/farmacologia , Adulto , Proteína C-Reativa/análise , Proteína C-Reativa/metabolismo , Idoso , Estudos Prospectivos , Aspergilose/tratamento farmacológico , Aspergilose/genética , Fenótipo
5.
Front Immunol ; 15: 1400956, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39007134

RESUMO

Ginger (Zingiber officinale) is one of the most well-known spices and medicinal plants worldwide that has been used since ancient times to treat a plethora of diseases including cold, gastrointestinal complaints, nausea, and migraine. Beyond that, a growing body of literature demonstrates that ginger exhibits anti-inflammatory, antioxidant, anti-cancer and neuroprotective actions as well. The beneficial effects of ginger can be attributed to the biologically active compounds of its rhizome such as gingerols, shogaols, zingerone and paradols. Among these compounds, gingerols are the most abundant in fresh roots, and shogaols are the major phenolic compounds of dried ginger. Over the last two decades numerous in vitro and in vivo studies demonstrated that the major ginger phenolics are able to influence the function of various immune cells including macrophages, neutrophils, dendritic cells and T cells. Although the mechanism of action of these compounds is not fully elucidated yet, some studies provide a mechanistic insight into their anti-inflammatory effects by showing that ginger constituents are able to target multiple signaling pathways. In the first part of this review, we summarized the current literature about the immunomodulatory actions of the major ginger compounds, and in the second part, we focused on the possible molecular mechanisms that may underlie their anti-inflammatory effects.


Assuntos
Anti-Inflamatórios , Zingiber officinale , Zingiber officinale/química , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Animais , Raízes de Plantas , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/imunologia
6.
Artif Cells Nanomed Biotechnol ; 52(1): 370-383, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39017642

RESUMO

OBJECTIVE: The objective of this study was to test the therapeutic effect of carbon monoxide polyhemoglobin (polyCOHb) in haemorrhagic shock/resuscitation and its underlying mechanisms. METHODS: 48 rats were divided into two experimental parts, and 36 rats in the first experiment and 12 rats in the second experiment. In the first experimental part, 36 animals were randomly assigned to the following groups: hydroxyethyl starch group (HES group, n = 12), polyhemoglobin group (polyHb group, n = 12), and carbon monoxide polyhemoglobin group (polyCOHb group, n = 12). In the second experimental part, 12 animals were randomly assigned to the following groups: polyHb group (n = 6), and polyCOHb group (n = 6). Then the anaesthetised rats were haemorrhaged by withdrawing 50% of the animal's blood volume (BV), and resuscitated to the same volume of the animal's withdrawing BV with HES, polyHb, polyCOHb. In the first experimental part, the 72h survival rates of each groups animals were measured. In the second experimental part, the rats' mean arterial pressure (MAP), heart rate (HR), blood gas levels and other indicators were dynamically monitored in baseline, haemorrhagic shock (HS), at 0point resuscitation (RS 0h) and after 1 h resuscitation (RS 1h). The concentrations of malondialdehyde (MDA), superoxide dismutase (SOD), tumour necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) were measured by ELISA kits in both groups of rats at RS 1h. Changes in pathological sections were examined by haematoxylin-eosin (HE) staining. Nuclear factor erythroid 2-related factor 2 (Nrf2) and haem oxygenase-1 (HO-1) levels were detected by immunohistochemical analysis, while myeloperoxidase (MPO) levels were detected by immunofluorescence. DHE staining was used to determine reactive oxygen species (ROS) levels. RESULTS: The 72h survival rates of the polyHb and polyCOHb groups were 50.00% (6/12) and 58.33% (7/12) respectively, which were significantly higher than that of the 8.33% (1/12) in the HES group (p < 0.05). At RS 0h and RS 1h, the HbCO content of rats in the polyCOHb group (1.90 ± 0.21, 0.80 ± 0.21) g/L were higher than those in the polyHb group (0.40 ± 0.09, 0.50 ± 0.12)g/L (p < 0.05); At RS 1h, the MDA (41.47 ± 3.89 vs 34.17 ± 3.87 nmol/ml) in the plasma, Nrf2 and HO-1 content in the colon of rats in the polyCOHb group were lower than the polyHb group. And the SOD in the plasma (605.01 ± 24.46 vs 678.64 ± 36.37) U/mg and colon (115.72 ± 21.17 vs 156.70 ± 21.34) U/mg and the MPO content in the colon in the polyCOHb group were higher than the polyHb group (p < 0.05). CONCLUSIONS: In these haemorrhagic shock/resuscitation models, both polyCOHb and polyHb show similar therapeutic effects, and polyCOHb has more effective effects in maintaining MAP, correcting acidosis, reducing inflammatory responses than that in polyHb.


Assuntos
Ratos Sprague-Dawley , Ressuscitação , Choque Hemorrágico , Animais , Choque Hemorrágico/tratamento farmacológico , Choque Hemorrágico/terapia , Choque Hemorrágico/metabolismo , Ratos , Ressuscitação/métodos , Masculino , Colo/efeitos dos fármacos , Colo/patologia , Colo/metabolismo , Inflamação/tratamento farmacológico , Monóxido de Carbono/farmacologia , Monóxido de Carbono/metabolismo , Hemoglobinas , Estresse Oxidativo/efeitos dos fármacos
7.
Sci Rep ; 14(1): 16317, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009819

RESUMO

To study the effects of caspase inhibitors on hemodynamics and inflammatory factors in acute respiratory distress syndrome (ARDS) model rats. Sixty healthy male Wistar rats were randomly divided into three groups, namely, the control group, ARDS group and ARDS + Caspase inhibitor group, with 20 rats in each group. The control group was intraperitoneally injected with 2 mL/kg saline, and the ARDS model group was established by intraperitoneally injecting 4 mg/kg Lipopolysaccharide (LPS), ARDS + Caspase inhibitor group was adminstered 20 mg/kg caspase inhibitor after intraperitoneal LPS injection. Changes in pulmonary arterial pressure (PAP) and mean arterial pressure (MAP) at 6 and 12 h before and after administration were recorded. Moreover, arterial blood gas was evaluated with a blood gas analyzer and changes in the partial pressure of O2 (PaO2), partial pressure of CO2 (PaCO2), partial pressure of O2/fraction of inspired O2 (PaO2/FiO2) were evaluated. In addition, the lung wet/dry weight (W/D) ratio and inflammatory factor levels in lung tissue were determined. Finally, pathological sections were used to determine the pulmonary artery media thickness (MT), MT percentage (MT%), and the degree of muscle vascularization. The pulmonary arterial pressure of rats was determined at several time points. Compared with the control group, the model group had a significantly increased pulmonary arterial pressure at each time point (P < 0.01), and the mean arterial pressure significantly increased at 6 h (P < 0.05). Compared with that of rats in the model group, the pulmonary arterial pressure of rats in drug administration group was significantly reduced at each time point after administration (P < 0.01), and the mean arterial pressure was significantly reduced at 6 h (P < 0.05). The arterial blood gas analysis showed that compared with those in the control group, PaO2, PaCO2 and PaO2/FiO2 in the model group were significantly reduced (P < 0.01), and PaO2, PaCO2 and PaO2/FiO2 were significantly increased after caspase inhibitor treatment (P < 0.05 or 0.01). The levels of the inflammatory mediators tumor necrosis factor-alpha (TNF-α), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6) in the model group were significantly higher than those in the control group (P < 0.01), and they were significantly decreased after caspase inhibitor treatment (P < 0.01). In the model group, pulmonary artery MT, MT% and the degree of muscle vascularization were significantly increased (P < 0.05 or 0.01), and pulmonary artery MT and the degree of muscle vascularization were significantly reduced after caspase inhibitor treatment (P < 0.05 or 0.01). Apoptosis Repressor with a Caspase Recuitment Domain (ARC) can alleviate the occurrence and development of pulmonary hypertension (PH) by affecting hemodynamics and reducing inflammation.


Assuntos
Inibidores de Caspase , Modelos Animais de Doenças , Hemodinâmica , Ratos Wistar , Síndrome do Desconforto Respiratório , Animais , Masculino , Hemodinâmica/efeitos dos fármacos , Ratos , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/patologia , Inibidores de Caspase/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Lipopolissacarídeos , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/patologia , Gasometria , Inflamação/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo
8.
ACS Appl Mater Interfaces ; 16(28): 36077-36094, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38949426

RESUMO

Periodontitis, an inflammatory bone resorption disease associated with dental plaque, poses significant challenges for effective treatment. In this study, we developed Mino@ZIF-8 nanoparticles inspired by the periodontal microenvironment and the unique properties of zeolitic imidazolate framework 8, aiming to address the complex pathogenesis of periodontitis. Transcriptome analysis revealed the active engagement of Mino@ZIF-8 nanoparticles in innate and adaptive inflammatory host defense and cellular metabolic remodeling. Through sustained release of the anti-inflammatory and antibacterial agent minocycline hydrochloride (Mino) and the generation of Zn2+ with pro-antioxidant effects during degradation, Mino@ZIF-8 nanoparticles synergistically alleviate inflammation and oxidative damage. Notably, our study focuses on the pivotal role of zinc ions in mitochondrial oxidation protection. Under lipopolysaccharide (LPS) stimulation, periodontal ligament cells undergo a metabolic shift from oxidative phosphorylation (OXPHOS) to glycolysis, leading to reduced ATP production and increased reactive oxygen species levels. However, Zn2+ effectively rebalances the glycolysis-OXPHOS imbalance, restoring cellular bioenergetics, mitigating oxidative damage, rescuing impaired mitochondria, and suppressing inflammatory cytokine production through modulation of the AKT/GSK3ß/NRF2 pathway. This research not only presents a promising approach for periodontitis treatment but also offers novel therapeutic opportunities for zinc-containing materials, providing valuable insights into the design of biomaterials targeting cellular energy metabolism regulation.


Assuntos
Nanopartículas , Estresse Oxidativo , Periodontite , Estresse Oxidativo/efeitos dos fármacos , Periodontite/tratamento farmacológico , Periodontite/metabolismo , Periodontite/patologia , Nanopartículas/química , Humanos , Animais , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Minociclina/farmacologia , Minociclina/química , Minociclina/uso terapêutico , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Camundongos , Antibacterianos/química , Antibacterianos/farmacologia , Lipopolissacarídeos/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Espécies Reativas de Oxigênio/metabolismo , Imidazóis
9.
PeerJ ; 12: e17539, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952964

RESUMO

The association between sleep and the immune-endocrine system is well recognized, but the nature of that relationship is not well understood. Sleep fragmentation induces a pro-inflammatory response in peripheral tissues and brain, but it also activates the hypothalamic-pituitary-adrenal (HPA) axis, releasing glucocorticoids (GCs) (cortisol in humans and corticosterone in mice). It is unclear whether this rapid release of glucocorticoids acts to potentiate or dampen the inflammatory response in the short term. The purpose of this study was to determine whether blocking or suppressing glucocorticoid activity will affect the inflammatory response from acute sleep fragmentation (ASF). Male C57BL/6J mice were injected i.p. with either 0.9% NaCl (vehicle 1), metyrapone (a glucocorticoid synthesis inhibitor, dissolved in vehicle 1), 2% ethanol in polyethylene glycol (vehicle 2), or mifepristone (a glucocorticoid receptor antagonist, dissolved in vehicle 2) 10 min before the start of ASF or no sleep fragmentation (NSF). After 24 h, samples were collected from brain (prefrontal cortex, hypothalamus, hippocampus) and periphery (liver, spleen, heart, and epididymal white adipose tissue (EWAT)). Proinflammatory gene expression (TNF-α and IL-1ß) was measured, followed by gene expression analysis. Metyrapone treatment affected pro-inflammatory cytokine gene expression during ASF in some peripheral tissues, but not in the brain. More specifically, metyrapone treatment suppressed IL-1ß expression in EWAT during ASF, which implies a pro-inflammatory effect of GCs. However, in cardiac tissue, metyrapone treatment increased TNF-α expression in ASF mice, suggesting an anti-inflammatory effect of GCs. Mifepristone treatment yielded more significant results than metyrapone, reducing TNF-α expression in liver (only NSF mice) and cardiac tissue during ASF, indicating a pro-inflammatory role. Conversely, in the spleen of ASF-mice, mifepristone increased pro-inflammatory cytokines (TNF-α and IL-1ß), demonstrating an anti-inflammatory role. Furthermore, irrespective of sleep fragmentation, mifepristone increased pro-inflammatory cytokine gene expression in heart (IL-1ß), pre-frontal cortex (IL-1ß), and hypothalamus (IL-1ß). The results provide mixed evidence for pro- and anti-inflammatory functions of corticosterone to regulate inflammatory responses to acute sleep loss.


Assuntos
Glucocorticoides , Metirapona , Camundongos Endogâmicos C57BL , Mifepristona , Privação do Sono , Animais , Masculino , Metirapona/farmacologia , Privação do Sono/metabolismo , Privação do Sono/tratamento farmacológico , Camundongos , Mifepristona/farmacologia , Glucocorticoides/farmacologia , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Corticosterona/sangue , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/genética
10.
J Neuroimmune Pharmacol ; 19(1): 34, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949694

RESUMO

Amorfrutin B is a selective PPARγ modulator that we demonstrated to be a promising neuroprotective compound in cellular models of stroke and perinatal asphyxia. Although neuronal mechanisms of amorfrutin B-evoked neuroprotection have been identified, none of them reflects the actions of the compound on microglia, which play a pivotal role in brain response to hypoxia/ischemia. Here, we provide evidence for amorfrutin B-induced effects on human microglia subjected to hypoxia/ischemia; the compound counteracts inflammation, and influences mitochondrial status and proliferation potential in a PPARγ-dependent manner. Post-treatment with amorfrutin B decreased the IBA1 fluorescence intensity, reduced caspase-1 activity, and downregulated IL1B/IL-1ß and TNFA but not IL10/IL-10 expression, which was upregulated. Amorfrutin B also stimulated PPARγ signaling, as evidenced by increased mRNA and/or protein levels of PPARγ and PGC1α. In addition, amorfrutin B reversed the hypoxia/ischemia-evoked effects on mitochondria-related parameters, such as mitochondrial membrane potential, BCL2/BCL2 expression and metabolic activity, which were correlated with diminished proliferation potential of microglia. Interestingly, the inhibitory effect of amorfrutin B on the proliferation potential and mitochondrial function of microglia is opposite to the stimulatory effect of amorfrutin B on mouse neuronal survival, as evidenced by increased neuronal viability and reduced neurodegeneration. In summary, this study showed for the first time that amorfrutin B compromises hypoxia/ischemia-induced activation of human microglia in a PPARγ-dependent manner, which involves inhibiting inflammation, normalizing mitochondrial status, and controlling proliferation potential. These data extend the protective potential of amorfrutin B in the pharmacotherapy of hypoxic/ischemic brain injury, targeting not only neurons but also activated microglia.


Assuntos
Proliferação de Células , Hipóxia-Isquemia Encefálica , Microglia , Mitocôndrias , PPAR gama , PPAR gama/metabolismo , Humanos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Proliferação de Células/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Células Cultivadas , Fármacos Neuroprotetores/farmacologia
11.
Oxid Med Cell Longev ; 2024: 3534104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957586

RESUMO

Myocardial infarction (MI) is irreversible damage to the myocardial tissue caused by prolonged ischemia/hypoxia, subsequently leading to loss of contractile function and myocardial damage. However, after a perilous period, ischemia-reperfusion (IR) itself causes the generation of oxygen free radicals, disturbance in cation homeostasis, depletion of cellular energy stores, and activation of innate and adaptive immune responses. The present study employed Abatacept (ABT), which is an anti-inflammatory drug, originally used as an antirheumatic response agent. To investigate the cardioprotective potential of ABT, primarily, the dose was optimized in a chemically induced model of myocardial necrosis. Thereafter, ABT optimized the dose of 5 mg/kg s.c. OD was investigated for its cardioprotective potential in a surgical model of myocardial IR injury, where animals (n = 30) were randomized into five groups: Sham, IR-C, Telmi10 + IR (Telmisartan, 10 mg/kg oral OD), ABT5 + IR, ABT perse. ABT and telmisartan were administered for 21 days. On the 21st day, animals were subjected to LAD coronary artery occlusion for 60 min, followed by reperfusion for 45 min. Further, the cardioprotective potential was assessed through hemodynamic parameters, oxidant-antioxidant biochemical enzymatic parameters, cardiac injury, inflammatory markers, histopathological analysis, TUNEL assay, and immunohistochemical evaluation, followed by immunoblotting to explore signaling pathways. The statistics were performed by one-way analysis of variance, followed by the Tukey comparison post hoc tests. Noteworthy, 21 days of ABT pretreatment amended the hemodynamic and ventricular functions in the rat models of MI. The cardioprotective potential of ABT is accompanied by inhibiting MAP kinase signaling and modulating Nrf-2/HO-1 proteins downstream signaling cascade. Overall, the present work bolsters the previously known anti-inflammatory role of ABT in MI and contributes a mechanistic insight and application of clinically approved drugs in averting the activation of inflammatory response.


Assuntos
Abatacepte , Modelos Animais de Doenças , Inflamação , Infarto do Miocárdio , Animais , Ratos , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Masculino , Inflamação/tratamento farmacológico , Inflamação/patologia , Abatacepte/farmacologia , Abatacepte/uso terapêutico , Ratos Wistar , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia
12.
J Cell Mol Med ; 28(13): e18510, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38953409

RESUMO

In recent years, inflammatory disorders have emerged as a significant concern for human health. Through ongoing research on anti-inflammatory agents, alpinetin has shown promising anti-inflammatory properties, including involvement in epigenetic modification pathways. As a crucial regulator of epigenetic modifications, Mecp2 may play a role in modulating the epigenetic effects of alpinetin, potentially impacting its anti-inflammatory properties. To test this hypothesis, two key components, p65 (a member of NF-KB family) and p300 (a type of co-activator), were screened by the expression profiling microarray, which exhibited a strong correlation with the intensity of LPS stimulation in mouse macrophages. Meanwhile, alpinetin demonstrates the anti-inflammatory properties through its ability to disrupt the synthesis of p65 and its interaction with promoters of inflammatory genes, yet it did not exhibit similar effects on p300. Additionally, Mecp2 can inhibit the binding of p300 by attaching to the methylated inflammatory gene promoter induced by alpinetin, leading to obstacles in promoter acetylation and subsequently impacting the binding of p65, ultimately enhancing the anti-inflammatory capabilities of alpinetin. Similarly, in a sepsis mouse model, it was observed that homozygotes overexpressing Mecp2 showed a greater reduction in organ damage and improved survival rates compared to heterozygotes when administered by alpinetin. However, blocking the expression of DNA methyltransferase 3A (DNMT3A) resulted in the loss of Mecp2's anti-inflammatory assistance. In conclusion, Mecp2 may augment the anti-inflammatory effects of alpinetin through epigenetic 'crosstalk', highlighting the potential efficacy of a combined therapeutic strategy involving Mecp2 and alpinetin for anti-inflammatory intervention.


Assuntos
Anti-Inflamatórios , Epigênese Genética , Flavanonas , Proteína 2 de Ligação a Metil-CpG , Regiões Promotoras Genéticas , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Animais , Flavanonas/farmacologia , Epigênese Genética/efeitos dos fármacos , Camundongos , Anti-Inflamatórios/farmacologia , Células RAW 264.7 , Metilação de DNA/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Fator de Transcrição RelA/metabolismo , Sepse/tratamento farmacológico , Sepse/genética , Sepse/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/patologia , Inflamação/genética , Inflamação/metabolismo , DNA Metiltransferase 3A/metabolismo , Masculino , Proteína p300 Associada a E1A/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética
13.
J Biochem Mol Toxicol ; 38(7): e23763, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38984790

RESUMO

The advanced non-small cell lung cancer (NSCLC) that harbors epidermal growth factor receptor (EGFR) mutations has put a selective pressure on the discovery and development of newer EGFR inhibitors. Therefore, the present study intends to explore the pharmacological effect of Araguspongine C (Aragus-C) as anticancer agent against lung cancer. The effect of Aragus-C was evaluated on the viability of the A549 and H1975 cells. Further biochemical assays were performed to elaborate the effect of Aragus-C, on the apoptosis, cell-cycle analysis, and mitochondrial membrane potential in A549 cells. Western blot analysis was also conducted to determine the expression of EGFR in A549 cells. Tumor xenograft mice model from A549 cells was established to further elaborate the pharmacological activity of Aragus-C. Results suggest that Aragus C showed significant inhibitory activity against A549 cells as compared to H1975 cells. It has been found that Aragus-C causes the induction of apoptosis and promotes cell-cycle arrest at the G2/M phase of A549 cells. It also showed a reduction in the overexpression of EGFR in A549 cells. In tumor xenograft mice model, it showed a significant reduction of tumor volume in a dose-dependent manner, with maximum inhibitory activity was reported by the 8 mg/kg treated group. It also showed significant anti-inflammatory and antioxidant activity by reducing the level of TNF-α, IL-1ß, IL-6, and MDA, with a simultaneous increase of superoxide dismutase and glutathione peroxidase. We have demonstrated the potent anti-lung cancer activity of Aragus-C, and it may be considered as a potential therapeutic choice for NSCLC treatment.


Assuntos
Apoptose , Receptores ErbB , Neoplasias Pulmonares , Estresse Oxidativo , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Receptores ErbB/antagonistas & inibidores , Animais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Apoptose/efeitos dos fármacos , Células A549 , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Camundongos Nus , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Camundongos Endogâmicos BALB C , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral
15.
Diabetes Res Clin Pract ; 213: 111764, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38960044

RESUMO

AIMS: To investigate the effect of hyperglycemia and empagliflozin on cardiorenal injury and inflammation in patients with uncomplicated type 1 diabetes (T1D). METHODS: Serum cardiac (sST2, Gal-3, cTnT), kidney injury (KIM-1, NGAL), inflammatory (sTNFR1, sTNFR2), and hemodynamic (NT-proBNP, EPO) markers were assessed post-hoc in two separate T1D cohorts. The glycemic clamp trial (NCT02344602) evaluated 49 adults with T1D and 27 controls under euglycemic and acute hyperglycemic conditions. The crossover BETWEEN trial (NCT02632747) investigated empagliflozin 25 mg plus ramipril for 4 weeks compared to placebo-ramipril for 4 weeks in 30 adults with T1D. RESULTS: In the glycemic clamp study, hyperglycemia acutely increased levels of NT-proBNP (p = 0.0003) and sTNFR2 (p = 0.003). BETWEEN participants treated with empagliflozin exhibited a paradoxical subacute rise in NT-proBNP (p = 0.0147) compared to placebo, independent of hematocrit. Individuals with higher baseline levels of sST2 and sTNFR1 had greater empagliflozin-associated reductions in systolic blood pressure and greater activation of renin-angiotensin-aldosterone system (RAAS) mediators, whereas those with higher baseline levels of KIM-1 and sTNFR1 had greater glomerular filtration rate (GFR) dip. CONCLUSION: The protective mechanisms of SGLT2 inhibition on blood pressure, RAAS activation, and renal hemodynamics are apparent in the subset of people with uncomplicated T1D with adverse cardiorenal and inflammatory markers.


Assuntos
Compostos Benzidrílicos , Biomarcadores , Diabetes Mellitus Tipo 1 , Glucosídeos , Hiperglicemia , Inflamação , Humanos , Compostos Benzidrílicos/uso terapêutico , Glucosídeos/uso terapêutico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/sangue , Masculino , Feminino , Biomarcadores/sangue , Adulto , Hiperglicemia/tratamento farmacológico , Inflamação/tratamento farmacológico , Inflamação/sangue , Pessoa de Meia-Idade , Estudos Cross-Over , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Fragmentos de Peptídeos , Peptídeo Natriurético Encefálico
16.
Immun Inflamm Dis ; 12(7): e1303, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38967379

RESUMO

BACKGROUND: Psoriasis refers to a highly prevalent and immunologically mediated dermatosis with considerable deterioration in life quality. Wogonin, a sort of flavonoid, has been mentioned to elicit protective activities in skin diseases. However, whether Wogonin is implicated in the treatment of psoriasis and its specific mechanisms are not fully understood. AIM: The present work attempted to elaborate the role of Wogonin during the process of psoriasis and to concentrate on the associated action mechanism. METHODS: Cell counting kit-8 (CCK-8) method was initially applied to assay the viability of human keratinocyte HaCaT cells treated by varying concentrations of Wogonin. To mimic psoriasis in vitro, HaCaT cells were exposed to M5 cytokines. CCK-8 and 5-Ethynyl-2'-deoxyuridine  assays were adopted for the measurement of cell proliferation. Inflammatory levels were examined with enzyme-linked immunosorbent assay. Immunofluorescence staining tested nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) and Caspase-1 expressions. Western blot examined the protein expressions of proliferation-, inflammation-, pyroptosis-associated factors, and NLRP3. RESULTS: Wogonin treatment antagonized the proliferation, inflammatory response, and NLRP3/caspase-1/Gasdermin-D (GSDMD)-mediated pyroptosis in M5-challenged HaCaT cells. Besides, NLRP3 elevation partially abrogated the effects of Wogonin on M5-induced proliferation, inflammatory response, and NLRP3/caspase-1/GSDMD-mediated pyroptosis in HaCaT cells. CONCLUSION: In a word, Wogonin might exert anti-proliferation, anti-inflammatory and anti-pyroptosis activities in M5-induced cell model of psoriasis and the blockade of NLRP3/Caspase-1/GSDMD pathway might be recognized as a potential mechanism underlying the protective mechanism of Wogonin in psoriasis, suggesting Wogonin as a prospective anti-psoriasis drug.


Assuntos
Caspase 1 , Proliferação de Células , Flavanonas , Queratinócitos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Transdução de Sinais , Humanos , Flavanonas/farmacologia , Piroptose/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Proliferação de Células/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Caspase 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Psoríase/patologia , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Células HaCaT , Linhagem Celular , Gasderminas , Proteínas de Ligação a Fosfato
17.
BMC Complement Med Ther ; 24(1): 260, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987758

RESUMO

BACKGROUND: The Pro-inflammatory mediators such as prostaglandin E2, nitric oxide and TNF-α are the key players in the stimulation of the inflammatory responses. Thus, the pro-inflammatory mediators are considered to be potential targets for screening nutraceutical with anti-inflammatory activity. METHODS: In this context, we explored the anti-inflammatory potency of seagrass extract with western blot (Bio-Rad) analysis by using LPS induced RAW macrophages as in-vitro models, western blot analysis, In-silico methods using Mastero 13.0 software. RESULTS: The anti-inflammatory activity of Seagrass was demonstrated through down regulation of Pro-inflammatory markers such as Cyclooxygenase-2, induced Nitric oxide synthase and prostaglandin E synthase-1. The results were validated by docking the phytochemical constituents of seagrass namely Isocoumarin, Hexadecanoic acid, and Cis-9 Octadecenoic acid, 1,2 Benzene dicarboxylic acid and beta-sitosterol with TNF-alpha, COX-2, iNOS and PGES-1. CONCLUSION: The methanolic extract of seagrass Halophila beccarii is a potential nutraceutical agent for combating against inflammation with a significant anti-inflammatory activity.


Assuntos
Anti-Inflamatórios , Suplementos Nutricionais , Extratos Vegetais , Camundongos , Anti-Inflamatórios/farmacologia , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Células RAW 264.7 , Biomarcadores , Alismatales/química , Inflamação/tratamento farmacológico , Ciclo-Oxigenase 2/metabolismo
18.
Int J Biol Sci ; 20(9): 3353-3371, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993568

RESUMO

Radiation-induced pulmonary fibrosis (RIPF) represents a serious complication observed in individuals undergoing thoracic radiation therapy. Currently, effective interventions for RIPF are unavailable. Prior research has demonstrated that nintedanib, a Food and Drug Administration (FDA)-approved anti-fibrotic agent for idiopathic pulmonary fibrosis, exerts therapeutic effects on chronic fibrosing interstitial lung disease. This research aimed to investigate the anti-fibrotic influences of nintedanib on RIPF and reveal the fundamental mechanisms. To assess its therapeutic impact, a mouse model of RIPF was established. The process involved nintedanib administration at various time points, both prior to and following thoracic radiation. In the RIPF mouse model, an assessment was conducted on survival rates, body weight, computed tomography features, histological parameters, and changes in gene expression. In vitro experiments were performed to discover the mechanism underlying the therapeutic impact of nintedanib on RIPF. Treatment with nintedanib, administered either two days prior or four weeks after thoracic radiation, significantly alleviated lung pathological changes, suppressed collagen deposition, and improved the overall health status of the mice. Additionally, nintedanib demonstrated significant mitigation of radiation-induced inflammatory responses in epithelial cells by inhibiting the PI3K/AKT and MAPK signaling pathways. Furthermore, nintedanib substantially inhibited fibroblast-to-myofibroblast transition by suppressing the TGF-ß/Smad and PI3K/AKT/mTOR signaling pathways. These findings suggest that nintedanib exerts preventive and therapeutic effects on RIPF by modulating multiple targets instead of a single anti-fibrotic pathway and encourage the further clinical trials to determine the efficacy of nintedanib in patients with RIPF.


Assuntos
Fibroblastos , Indóis , Fibrose Pulmonar , Animais , Indóis/uso terapêutico , Indóis/farmacologia , Camundongos , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/tratamento farmacológico , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Células Epiteliais/efeitos dos fármacos , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Camundongos Endogâmicos C57BL , Inflamação/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
19.
Sci Adv ; 10(28): eadn1745, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996026

RESUMO

Rapid drug clearance and off-target effects of therapeutic drugs can induce low bioavailability and systemic side effects and gravely restrict the therapeutic effects of inflammatory bowel diseases (IBDs). Here, we propose an amplifying targeting strategy based on orally administered gallium (Ga)-based liquid metal (LM) nano-agents to efficiently eliminate reactive oxygen and nitrogen species (RONS) and modulate the dysregulated microbiome for remission of IBDs. Taking advantage of the favorable adhesive activity and coordination ability of polyphenol structure, epigallocatechin gallate (EGCG) is applied to encapsulate LM to construct the formulations (LM-EGCG). After adhering to the inflamed tissue, EGCG not only eliminates RONS but also captures the dissociated Ga to form EGCG-Ga complexes for enhancive accumulation. The detained composites protect the intestinal barrier and modulate gut microbiota for restoring the disordered enteral microenvironment, thereby relieving IBDs. Unexpectedly, LM-EGCG markedly decreases the Escherichia_Shigella populations while augmenting the abundance of Akkermansia and Bifidobacterium, resulting in favorable therapeutic effects against the dextran sulfate sodium-induced colitis.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Animais , Doenças Inflamatórias Intestinais/tratamento farmacológico , Administração Oral , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Catequina/análogos & derivados , Catequina/química , Catequina/administração & dosagem , Catequina/farmacologia , Gálio/química , Gálio/farmacologia , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Colite/tratamento farmacológico , Humanos , Espécies Reativas de Nitrogênio/metabolismo
20.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000242

RESUMO

Acute lung injury (ALI) is a condition associated with acute respiratory failure, resulting in significant morbidity and mortality. It involves cellular changes such as disruption of the alveolar-capillary membrane, excessive neutrophil migration, and release of inflammatory mediators. Broncho-Vaxom® (BV), a lyophilized product containing cell membrane components derived from eight bacteria commonly found in the respiratory tract, is known for its potential to reduce viral and bacterial lung infections. However, the specific effect of BV on ALI has not been clearly defined. This study explored the preventive effects of BV and its underlying mechanisms in a lipopolysaccharide (LPS)-induced ALI mouse model. Oral BV (1 mg/kg) gavage was administered one hour before the intratracheal injection of LPS to evaluate its preventive effect on the ALI model. The pre-administration of BV significantly mitigates inflammatory parameters, including the production of inflammatory mediators, macrophage infiltration, and NF-κB activation in lung tissue, and the increase in inflammatory cells in bronchoalveolar lavage fluid (BALF). Moreover, BV (3 µg/mL) pretreatment reduced the expression of M1 macrophage markers, interleukins (IL-1ß, IL-6), tumor necrosis factor α, and cyclooxygenase-2, which are activated by LPS, in both mouse alveolar macrophage MH-S cells and human macrophage THP-1 cells. These findings showed that BV exhibits anti-inflammatory effects by suppressing inflammatory mediators through the NF-κB pathway, suggesting its potential to attenuate bronchial and pulmonary inflammation.


Assuntos
Lesão Pulmonar Aguda , Modelos Animais de Doenças , Lipopolissacarídeos , Animais , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/tratamento farmacológico , Camundongos , Humanos , Inflamação/patologia , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Masculino , Extratos Celulares/farmacologia , Extratos Celulares/uso terapêutico , NF-kappa B/metabolismo , Líquido da Lavagem Broncoalveolar , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Pulmão/patologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Lisados Bacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...