Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.008
Filtrar
1.
Nanotechnology ; 35(33)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829163

RESUMO

Dry eye disease (DED) is a major global eye disease leading to severe eye discomfort and even vision impairment. The incidence of DED has been gradually increasing with the high frequency of use of electronic devices. It has been demonstrated that celastrol (Cel) has excellent therapeutic efficacy in ocular disorders. However, the poor water solubility and short half-life of Cel limit its further therapeutic applications. In this work, a reactive oxygen species (ROS) sensitive polymeric micelle was fabricated for Cel delivery. The micelles improve the solubility of Cel, and the resulting Cel loaded micelles exhibit an enhanced intervention effect for DED. Thein vitroresults demonstrated that Cel-nanomedicine had a marked ROS responsive release behavior. The results ofin vitroandin vivoexperiments demonstrated that Cel has excellent biological activities to alleviate inflammation in DED by inhibiting TLR4 signaling activation and reducing pro-inflammatory cytokine expression. Therefore, the Cel nanomedicine can effectively eliminate ocular inflammation, promote corneal epithelial repair, and restore the number of goblet cells and tear secretion, providing a new option for the treatment of DED.


Assuntos
Síndromes do Olho Seco , Micelas , Nanomedicina , Triterpenos Pentacíclicos , Espécies Reativas de Oxigênio , Triterpenos , Síndromes do Olho Seco/tratamento farmacológico , Triterpenos Pentacíclicos/farmacologia , Animais , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Nanomedicina/métodos , Triterpenos/farmacologia , Triterpenos/química , Inflamação/tratamento farmacológico , Receptor 4 Toll-Like/metabolismo , Humanos , Lágrimas/metabolismo , Lágrimas/efeitos dos fármacos
2.
Immun Inflamm Dis ; 12(6): e1309, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38860765

RESUMO

BACKGROUND: Astragaloside IV (AS-IV) is the most active monomer in the traditional Chinese herbal medicine Radix Astragali, which has a wide range of antiviral, anti-inflammatory, and antifibrosis pharmacological effects, and shows protective effects in acute lung injury. METHODS: This study utilized the immunofluorescence, flow cytometry, enzyme-linked immunosorbent assay, quantitative reverse transcription-polymerase chain reaction, western blot, and hematoxylin and eosin staining methods to investigate the mechanism of AS-IV in reducing viral pneumonia caused by influenza A virus in A549 cells and BALB/c mice. RESULTS: The results showed that AS-IV suppressed reactive oxygen species production in influenza virus-infected A549 cells in a dose-dependent manner, and subsequently inhibited the activation of nucleotide-binding oligomerization domain-like receptor thermal protein domain associated protein 3 inflammasome and Caspase-1, decreased interleukin (IL) -1ß and IL-18 secretion. In BALB/c mice infected with Poly (I:C), oral administration of AS-IV can significantly reduce Poly (I:C)-induced acute pneumonia and lung pathological injury. CONCLUSIONS: AS-IV alleviates the inflammatory response induced by influenza virus in vitro and lung flammation and structural damage caused by poly (I:C) in vivo.


Assuntos
Caspase 1 , Camundongos Endogâmicos BALB C , Proteína 3 que Contém Domínio de Pirina da Família NLR , Infecções por Orthomyxoviridae , Espécies Reativas de Oxigênio , Saponinas , Transdução de Sinais , Triterpenos , Animais , Saponinas/farmacologia , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Camundongos , Transdução de Sinais/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Células A549 , Caspase 1/metabolismo , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamação/tratamento farmacológico , Vírus da Influenza A/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
3.
Pharmazie ; 79(3): 64-66, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38872269

RESUMO

Some macrolide antibiotics, which share a basic lactone ring structure, also exhibit anti-inflammatory actions in addition to their antibacterial activities. However, no study has directly compared anti-inflammatory effects on acute inflammation among macrolide antibiotics with the distinct size of the lactone ring. In this study, we evaluated and compared the anti-inflammatory activities of four 14-membered macrolides (erythromycin, clarithromycin, roxithromycin, oleandomycin), one 15-membered macrolide (azithromycin), and three 16-membered macrolides (midecamycin, josamycin, leucomycin) using a rat carrageenan-induced footpad edema model. All macrolide antibiotics were intraperitoneally administered to rats one hour before the induction of inflammatory edema with 1% λ -carrageenan. The anti-inflammatory effects on acute inflammation were evaluated by changing the edema volume. All 14-membered and 15-membered macrolide antibiotics significantly suppressed the development of edema. Conversely, none of the 16-membered macrolide antibiotics inhibited the growth of edema. In conclusion, compared to 16-membered macrolide antibiotics, 14-membered and 15-membered macrolide antibiotics have stronger anti-inflammatory effects. Further research should be done to determine why different lactone ring sizes should have distinct anti-inflammatory effects.


Assuntos
Antibacterianos , Anti-Inflamatórios , Carragenina , Edema , Inflamação , Macrolídeos , Animais , Macrolídeos/farmacologia , Ratos , Edema/tratamento farmacológico , Edema/induzido quimicamente , Masculino , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Modelos Animais de Doenças , Ratos Sprague-Dawley , Anti-Inflamatórios não Esteroides/farmacologia
4.
Pharmazie ; 79(3): 72-81, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38872267

RESUMO

Hyperuricemia (HUA) is a disorder of uric acid metabolism, which can lead to the formation of gouty arthritis, kidney inflammation and other damages. Previous studies have found that the alcohol extract of Poria cutis can reduce the level of uric acid and protect against kidney injury. Based on network pharmacology, the core targets and main active components of P. cutis intervention in HUA were determined. Most of the potential active ingredients are triterpenoid acids such as tumulosic acid (TA) and eburicoic acid (EA), and the potential targets are TNF and IL-6, which are associated with inflammation. In vitro experiments have shown that TA can significantly inhibit the release of NO, TNF-α and IL-6 in inflammatory RAW264.7 cell culture medium and the expression of TNF-α and IL-6 in RAW264.7 cells. This study suggests that TA based on network pharmacological screening has obvious anti-inflammatory effect on inflammatory RAW264.7 cells and is a promising anti-inflammatory compound.


Assuntos
Anti-Inflamatórios , Interleucina-6 , Farmacologia em Rede , Óxido Nítrico , Fator de Necrose Tumoral alfa , Wolfiporia , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Interleucina-6/metabolismo , Células RAW 264.7 , Wolfiporia/química , Fator de Necrose Tumoral alfa/metabolismo , Óxido Nítrico/metabolismo , Triterpenos/farmacologia , Hiperuricemia/tratamento farmacológico , Inflamação/tratamento farmacológico , Inflamação/patologia , Linhagem Celular
5.
Anal Chim Acta ; 1312: 342747, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38834275

RESUMO

BACKGROUND: Lipid droplets (LDs) polarity is intricately linked to diverse biological processes and diseases. The visualization of LDs-polarity is of vital importance but challenging due to the lack of high-specificity, high-sensitivity and large-Stokes shift probes for real-time tracking LDs-polarity in biological systems. RESULTS: Four D-π-A based fluorescent probes (TPA-TCF1-TPA-TCF4) have been developed by combining tricyanofuran (an electron acceptor, A) and triphenylamine (an electron donor, D) derivatives with different terminal groups. Among them, TPA-TCF1 and TPA-TCF4 exhibit excellent polar sensitivity, large Stokes shift (≥182 nm in H2O), and efficient LDs targeting ability. In particular, TPA-TCF4 is capable of monitoring the change of LDs-polarity during ferroptosis, inflammation, apoptosis of cancer cell, and fatty liver. SIGNIFICANCE: All these features render TPA-TCF4 a versatile tool for pharmacodynamic evaluation of anti-cancer drugs, in-depth understanding of the biological effect of LDs on ferroptosis, and medical diagnosis of LDs-polarity related diseases.


Assuntos
Fígado Gorduroso , Ferroptose , Corantes Fluorescentes , Inflamação , Gotículas Lipídicas , Gotículas Lipídicas/química , Gotículas Lipídicas/metabolismo , Humanos , Ferroptose/efeitos dos fármacos , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Corantes Fluorescentes/química , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Estrutura Molecular
6.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 171-177, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836663

RESUMO

Chronic heart disease (CHD) is still a major global cause of morbidity and mortality, necessitating effective therapeutic interventions to mitigate its progression. Omega-3 fatty acids (FAs) have garnered attention for their potential anti-inflammatory and endothelial-protective properties in CHD management. The present study aims to assess the efficacy of Omega-3 FA supplementation on markers of inflammation and endothelial function in patients with CHD. To achieve this, we used the relevant keywords to search international databases (Web of Science, PubMed, Embase, and Scopus) and extract publications evaluating the effectiveness of omega-3 FA supplementation on inflammation markers and endothelial function in patients with CHD. STATA (version 15) and the random and fixed-effects models were used to evaluate the collected data. Thirteen clinical trial studies met inclusion criteria, with a total sample size of 853 individuals (406 cases and 447 controls). The cases had a mean age of 58 ± 10.3 years. The pooled results indicated that omega-3 Omega-3 FA supplementation significantly reduced the level of circulating IL-6 (SMD = -0.47, 95% CI -1.29 to 0.35, %, p < 0.001), hs-CRP (SMD = -0.21, 95% CI -0.70 to 0.28, p = 0.01), and TNF-α (SMD = -0.56, 95% CI -1.14 to 0.01, p < 0.001) in patients with CHD. Also, findings revealed that a daily supplement of omega-3 significantly increased FMD by 0.34% (95% CI: 0.14-0.54%, p < 0.001) as compared with placebo by a fixed-effect model in patients with CHD. These findings underscore the potential therapeutic utility of omega-3 fatty acid supplementation in modulating inflammation and endothelial dysfunction in patients with CHD.


Assuntos
Biomarcadores , Suplementos Nutricionais , Ácidos Graxos Ômega-3 , Inflamação , Humanos , Pessoa de Meia-Idade , Biomarcadores/sangue , Doença Crônica , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Ácidos Graxos Ômega-3/uso terapêutico , Ácidos Graxos Ômega-3/farmacologia , Cardiopatias/tratamento farmacológico , Cardiopatias/sangue , Inflamação/tratamento farmacológico , Inflamação/sangue , Idoso
7.
Sci Rep ; 14(1): 13016, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844763

RESUMO

Diabetes mellitus (DM) is a complex metabolic condition that causes organ dysfunction. The current experiment sought to determine the effect of thymoquinone (TQ) on hyperglycemia, hyperlipidemia, oxidative/nitrosative stress, inflammation, and apoptosis in diabetic rats prompted by streptozotocin (STZ) (55 mg/kg body weight i/p). The animals were allocated into control, TQ (50 mg/kg B.W. orally administered for 4 succeeding weeks), Diabetic, and Diabetic + TQ groups. This study confirmed that TQ preserves the levels of insulin, fasting blood glucose, HOMA ß-cell indices, HbA1c %, body weight, and lipid profile substantially relative to the DC group. Furthermore, hepatic antioxidant (CAT, GSH, and T-SOD) values were reduced. Conversely, the enzymatic activity of liver functions (AST, ALT, ALP, cytochrome P450, and hepatic glucose-6-phosphatase), lipid peroxidation (MDA), pro-inflammatory cytokines (IL-1ß, TNF-α, and IL-6), nitric oxide (NO) and inflammatory marker (CRP) enhanced with STZ administration, which is substantially restored after TQ treatment. Relative to the diabetic rats, TQ reestablished the hepatic architectural changes and collagen fibers. Additionally, TQ downregulated the intensity of the immunohistochemical staining of pro-apoptotic marker (caspase-3), p53, and tumor necrosis factor-alpha (TNF-α) proteins in hepatic tissues. Furthermore, TQ displayed abilities to interact and inhibit the binding site of caspase-3, interleukin-6 receptor, interleukin-1 receptor type 1, TNF receptor superfamily member 1A, and TNF receptor superfamily member 1B in rats following the molecular docking modeling. All these data re-establish the liver functions, antioxidant enzymes, anti-inflammatory markers, and anti-apoptotic proteins impacts of TQ in STZ-induced DM rats. Founded on these outcomes, the experiment proposes that TQ is a novel natural supplement with various clinical applications, including managing DM, which in turn is recommended to play a pivotal role in preventing the progression of diabetes mellitus.


Assuntos
Apoptose , Benzoquinonas , Diabetes Mellitus Experimental , Fígado , Simulação de Acoplamento Molecular , Estresse Nitrosativo , Estresse Oxidativo , Animais , Benzoquinonas/farmacologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Ratos , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Masculino , Estresse Nitrosativo/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Glicemia/metabolismo , Ratos Wistar , Estreptozocina
8.
BMC Musculoskelet Disord ; 25(1): 447, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844896

RESUMO

BACKGROUND: Although various anti-inflammatory medicines are widely recommended for osteoarthritis (OA) treatment, no significantly clinical effect has been observed. This study aims to examine the effects of vitamin B6, a component that has been reported to be capable of alleviating inflammation and cell death in various diseases, on cartilage degeneration in OA. METHODS: Collagen-induced arthritis (CIA) mice model were established and the severity of OA in cartilage was determined using the Osteoarthritis Research Society International (OARSI) scoring system. The mRNA and protein levels of indicators associated with extracellular matrix (ECM) metabolism, apoptosis and inflammation were detected. The effect of vitamin B6 (VB6) on the mice were assessed using HE staining and masson staining. The apoptosis rate of cells was assessed using TdT-mediated dUTP nick end labeling. RESULTS: Our results showed a trend of improved OARSI score in mice treated with VB6, which remarkably inhibited the hyaline cartilage thickness, chondrocyte disordering, and knees hypertrophy. Moreover, the VB6 supplementation reduced the protein expression of pro-apoptosis indicators, including Bax and cleaved caspase-3 and raised the expression level of anti-apoptosis marker Bcl-2. Importantly, VB6 improved ECM metabolism in both in vivo and in vitro experiments. CONCLUSIONS: This study demonstrated that VB6 alleviates OA through regulating ECM metabolism, inflammation and apoptosis in chondrocytes and CIA mice. The findings in this study provide a theoretical basis for targeted therapy of OA, and further lay the theoretical foundation for studies of mechanisms of VB6 in treating OA.


Assuntos
Apoptose , Artrite Experimental , Condrócitos , Inflamação , Osteoartrite , Vitamina B 6 , Animais , Apoptose/efeitos dos fármacos , Camundongos , Vitamina B 6/farmacologia , Vitamina B 6/uso terapêutico , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Osteoartrite/metabolismo , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Artrite Experimental/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Masculino , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/patologia , Camundongos Endogâmicos DBA , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/patologia , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Cartilagem Articular/metabolismo
9.
Sci Rep ; 14(1): 12917, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839811

RESUMO

Allii Macrostemonis Bulbus (AMB) is a traditional Chinese medicine with medicinal and food homology. AMB has various biological activities, including anti-coagulation, lipid-lowering, anti-tumor, and antioxidant effects. Saponins from Allium macrostemonis Bulbus (SAMB), the predominant beneficial compounds, also exhibited lipid-lowering and anti-inflammatory properties. However, the effect of SAMB on atherosclerosis and the underlying mechanisms are still unclear. This study aimed to elucidate the pharmacological impact of SAMB on atherosclerosis. In apolipoprotein E deficiency (ApoE-/-) mice with high-fat diet feeding, oral SAMB administration significantly attenuated inflammation and atherosclerosis plaque formation. The in vitro experiments demonstrated that SAMB effectively suppressed oxidized-LDL-induced foam cell formation by down-regulating CD36 expression, thereby inhibiting lipid endocytosis in bone marrow-derived macrophages. Additionally, SAMB effectively blocked LPS-induced inflammatory response in bone marrow-derived macrophages potentially through modulating the NF-κB/NLRP3 pathway. In conclusion, SAMB exhibits a potential anti-atherosclerotic effect by inhibiting macrophage foam cell formation and inflammation. These findings provide novel insights into potential preventive and therapeutic strategies for the clinical management of atherosclerosis.


Assuntos
Aterosclerose , Células Espumosas , Inflamação , Saponinas , Animais , Células Espumosas/efeitos dos fármacos , Células Espumosas/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Saponinas/farmacologia , Camundongos , Inflamação/tratamento farmacológico , Inflamação/patologia , Allium/química , Masculino , Apolipoproteínas E/deficiência , Dieta Hiperlipídica/efeitos adversos , NF-kappa B/metabolismo , Camundongos Endogâmicos C57BL , Lipoproteínas LDL/metabolismo
10.
J Nanobiotechnology ; 22(1): 314, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840113

RESUMO

Osteoporosis is the most common bone metabolic disease that affects the health of middle-aged and elderly people, which is hallmarked by imbalanced bone remodeling and a deteriorating immune microenvironment. Magnesium and calcium are pivotal matrix components that participate in the bone formation process, especially in the immune microenvironment regulation and bone remodeling stages. Nevertheless, how to potently deliver magnesium and calcium to bone tissue remains a challenge. Here, we have constructed a multifunctional nanoplatform composed of calcium-based upconversion nanoparticles and magnesium organic frameworks (CM-NH2-PAA-Ald, denoted as CMPA), which features bone-targeting and pH-responsive properties, effectively regulating the inflammatory microenvironment and promoting the coordination of osteogenic functions for treating osteoporosis. The nanoplatform can efficaciously target bone tissue and gradually degrade in response to the acidic microenvironment of osteoporosis to release magnesium and calcium ions. This study validates that CMPA possessing favorable biocompatibility can suppress inflammation and facilitate osteogenesis to treat osteoporosis. Importantly, high-throughput sequencing results demonstrate that the nanoplatform exerts a good inflammatory regulation effect through inhibition of the nuclear factor kappa-B signaling pathway, thereby normalizing the osteoporotic microenvironment. This collaborative therapeutic strategy that focuses on improving bone microenvironment and promoting osteogenesis provides new insight for the treatment of metabolic diseases such as osteoporosis.


Assuntos
Cálcio , Magnésio , Nanopartículas , Osteogênese , Osteoporose , Osteogênese/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Magnésio/farmacologia , Magnésio/química , Cálcio/metabolismo , Animais , Nanopartículas/química , Camundongos , Inflamação/tratamento farmacológico , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Humanos , Microambiente Celular/efeitos dos fármacos , Feminino , NF-kappa B/metabolismo
11.
Mol Med Rep ; 30(2)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38873986

RESUMO

Chronic low­grade inflammation defines obesity as a metabolic disorder. Alterations in the structure of gut flora are strongly associated with obesity. Lactoferrin (LF) has a biological function in regulating intestinal flora. The present study aimed to investigate the therapeutic and anti­-inflammatory effects of LF in obese mice based on intestinal flora. A total of 30 C57BL/6 mice were divided into three groups consisting of 10 mice each. Subsequently, one group was fed a normal diet (Group K), another group was fed a high­fat diet (Group M) and the remaining group switched from regular drinking to drinking 2% LF water (Group Z2) after 2 weeks of high­fat diet; all mice were fed for 12 weeks. After the experiment, the mouse blood lipid and lipopolysaccharide levels, levels of inflammatory factors and intestinal tight junction proteins were assessed. Mouse stool samples were analyzed using 16S ribosomal RNA sequencing. The results showed that LF reduced serum total cholesterol, triglycerides and low­density lipoprotein levels, elevated high­density lipoprotein levels, suppressed metabolic endotoxemia and attenuated chronic low­grade inflammatory responses in obese mice. In addition, LF upregulated zonula occludens­1 and occludin protein expression levels in the intestine, thereby improving intestinal barrier integrity. LF altered the intestinal microbial structure of obese mice, reduced the ratio of Firmicutes and an elevated ratio of Bacteroidota, modifying the bacterial population to the increased relative abundance of Alistipes, Acidobacteriota, Psychrobacter and Bryobacter.


Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal , Inflamação , Lactoferrina , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade , Animais , Lactoferrina/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Masculino , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ocludina/metabolismo , Ocludina/genética , Lipopolissacarídeos
12.
Cell Biochem Funct ; 42(4): e4074, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38874340

RESUMO

Usnic acid (UA) is a unique bioactive substance in lichen with potential anticancer properties. Recently, we have reported that UA can reduce 7,12-dimethylbenz[a] anthracene-induced oral carcinogenesis by inhibiting oxidative stress, inflammation, and cell proliferation in a male golden Syrian hamster in vivo model. The present study aims to explore the relevant mechanism of cell death induced by UA on human oral carcinoma (KB) cell line in an in vitro model. We found that UA can induce apoptosis (cell death) in KB cells by decreasing cell viability, increasing the production of reactive oxygen species (ROS), depolarizing mitochondrial membrane potential (MMP) levels, causing nuclear fragmentation, altering apoptotic morphology, and causing excessive DNA damage. Additionally, UA inhibits the expression of Bcl-2, a protein that promotes cell survival, while increasing the expression of p53, Bax, Cytochrome-c, Caspase-9, and 3 proteins in KB cells. UA also inhibits the expression of nuclear factor-κB (NF-κB), a protein that mediates the activation of pro-inflammatory cytokines such as TNF-α and IL-6, in KB cells. Furthermore, UA promotes apoptosis by enhancing the mitochondrial-mediated apoptotic mechanism through oxidative stress, depletion of cellular antioxidants, and an inflammatory response. Ultimately, the findings of this study suggest that UA may have potential as an anticancer therapeutic agent for oral cancer treatments.


Assuntos
Apoptose , Benzofuranos , Inflamação , Neoplasias Bucais , NF-kappa B , Transdução de Sinais , Humanos , Apoptose/efeitos dos fármacos , NF-kappa B/metabolismo , Benzofuranos/farmacologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Neoplasias Bucais/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Sobrevivência Celular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos
13.
Drug Dev Res ; 85(4): e22219, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38845211

RESUMO

Sepsis is a life-threatening organ dysfunction that endangers patient lives and is caused by an imbalance in the host defense against infection. Sepsis continues to be a significant cause of morbidity and mortality in critically sick patients. Oxymatrine (OMT), a quinolizidine alkaloid derived from the traditional Chinese herb Sophora flavescens Aiton, has been shown to have anti-inflammatory effects on a number of inflammatory illnesses according to research. In this study, we aimed to evaluate the therapeutic effects of OMT on sepsis and explore the underlying mechanisms. We differentiated THP-1 cells into THP-1 macrophages and studied the anti-inflammatory mechanism of OMT in a lipopolysaccharide (LPS)-induced THP-1 macrophage sepsis model. Activation of the receptor for advanced glycation end products (RAGE), as well as NF-κB, was assessed by Western blot analysis and immunofluorescence staining. ELISA was used to measure the levels of inflammatory factors. We found that OMT significantly inhibited HMGB1-mediated RAGE/NF-κB activation and downstream inflammatory cytokine production in response to LPS stimulation. Finally, an in vivo experiment was performed on septic mice to further study the effect of OMT on injured organs. The animal experiments showed that OMT significantly inhibited HMGB1-mediated RAGE/NF-κB activation, protected against the inflammatory response and organ injury induced by CLP, and prolonged the survival rate of septic mice. Herein, we provide evidence that OMT exerts a significant therapeutic effect on sepsis by inhibiting the HMGB1/RAGE/NF-κB signaling pathway.


Assuntos
Alcaloides , Proteína HMGB1 , Inflamação , Lipopolissacarídeos , NF-kappa B , Quinolizinas , Receptor para Produtos Finais de Glicação Avançada , Sepse , Transdução de Sinais , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Quinolizinas/farmacologia , Quinolizinas/uso terapêutico , Animais , Sepse/tratamento farmacológico , Sepse/complicações , Sepse/metabolismo , NF-kappa B/metabolismo , Proteína HMGB1/metabolismo , Proteína HMGB1/antagonistas & inibidores , Humanos , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Células THP-1 , Camundongos Endogâmicos C57BL , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Matrinas
14.
Trials ; 25(1): 378, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38863076

RESUMO

BACKGROUND: There is no known effective pharmacological therapy for long COVID, which is characterized by wide-ranging, multisystemic, fluctuating, or relapsing symptoms in a large proportion of survivors of acute COVID. This randomized controlled trial aims to assess the safety and efficacy of an anti-inflammatory agent colchicine, to reduce symptoms among those at high risk of developing long COVID. METHODS: This multi-centre, parallel arm, 1:1 individual randomized, placebo-controlled, double-blind superiority trial will enrol 350 individuals with persistent post-COVID symptoms. Participants will be randomized to either colchicine 0.5 mg once daily (< 70 kg) or twice daily (≥ 70 kg) or matched placebo for 26 weeks and will be followed up until 52 weeks after randomization. The primary trial objective is to demonstrate the superiority of colchicine over a placebo in improving distance walked in 6 min at 52 weeks from baseline. The secondary objectives are to assess the efficacy of colchicine compared to placebo with respect to lung function, inflammatory markers, constitutional symptoms, and mental health state. In a sub-sample of 100 participants, cardiac biomarkers of myocardial injury and myocardial oedema using MRI will be compared. DISCUSSION: Persistent inflammatory response following SARS-CoV-19 is one of the postulated pathophysiological mechanisms of long COVID. Colchicine, a low-cost anti-inflammatory agent, acts via multiple inflammatory pathways and has an established safety profile. This trial will generate evidence for an important health priority that can rapidly translate into practice. TRIAL REGISTRATION: This clinical trial has been registered prospectively on www. CLINICALTRIALS: gov with registration CTRI/2021/11/038234 dated November 24, 2021.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Colchicina , Humanos , Colchicina/uso terapêutico , Colchicina/efeitos adversos , Método Duplo-Cego , COVID-19/complicações , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/efeitos adversos , Inflamação/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Estudos Multicêntricos como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento , Adulto
15.
Cell Commun Signal ; 22(1): 309, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835076

RESUMO

BACKGROUND: Neuroinflammation is widely acknowledged as a characteristic feature of almost all neurological disorders and specifically in depression- and anxiety-like disorders. In recent years, there has been significant attention on natural compounds with potent anti-inflammatory effects due to their potential in mitigating neuroinflammation and neuroplasticity. METHODS: In the present study, we aimed to evaluate the neuroprotective effects of oleacein (OC), a rare secoiridoid derivative found in extra virgin olive oil. Our goal was to explore the BDNF/TrkB neurotrophic activity of OC and subsequently assess its potential for modulating neuroinflammatory response using human neuroblastoma cells (SH-SY5Y cells) and an in vivo model of depression induced by lipopolysaccharide (LPS)-mediated inflammation. RESULTS: In SH-SY5Y cells, OC exhibited a significant dose-dependent increase in BDNF expression. This enhancement was absent when cells were co-treated with inhibitors of BDNF's receptor TrkB, as well as downstream molecules PI3K and MEK. Whole-transcriptomics analysis revealed that OC upregulated cell cycle-related genes under normal conditions, while downregulating inflammation-associated genes in LPS-induced conditions. Furthermore, surface plasmon resonance (SPR) assays demonstrated that OC exhibited a stronger and more stable binding affinity to TrkB compared to the positive control, 7,8-dihydroxyflavone. Importantly, bioluminescence imaging revealed that a single oral dose of OC significantly increased BDNF expression in the brains of Bdnf-IRES-AkaLuc mice. Furthermore, oral administration of OC at a dosage of 10 mg/kg body weight for 10 days significantly reduced immobility time in the tail suspension test compared to the LPS-treated group. RT-qPCR analysis revealed that OC significantly decreased the expression of pro-inflammatory cytokines Tnfα, Il6, and Il1ß, while simultaneously enhancing Bdnf expression, as well as both pro and mature BDNF protein levels in mice hippocampus. These changes were comparable to those induced by the positive control antidepressant drug fluoxetine. Additionally, microarray analysis of mouse brains confirmed that OC could counteract LPS-induced inflammatory biological events. CONCLUSION: Altogether, our study represents the first report on the potential antineuroinflammatory and antidepressant properties of OC via modulation of BDNF/TrkB neurotrophic activity. This finding underscores the potential of OC as a natural therapeutic agent for depression- and anxiety-related disorders.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Lipopolissacarídeos , Receptor trkB , Animais , Humanos , Receptor trkB/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Lipopolissacarídeos/farmacologia , Camundongos , Doenças Neuroinflamatórias/tratamento farmacológico , Linhagem Celular Tumoral , Monoterpenos Ciclopentânicos/farmacologia , Masculino , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Camundongos Endogâmicos C57BL , Azeite de Oliva/farmacologia , Azeite de Oliva/química , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Inflamação/patologia , Aldeídos , Glicoproteínas de Membrana , Fenóis
16.
Nutr Diabetes ; 14(1): 41, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858382

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is a chronic disease with an increasing incidence, which can further develop into liver fibrosis and hepatocellular carcinoma at the end stage. Alantolactone (Ala), a sesquiterpene lactone isolated from Asteraceae, has shown anti-inflammatory effects in different models. However, the therapeutic effect of Ala on NAFLD is not clear. METHODS: C57BL/6 mice were fed a high-fat diet (HFD) to induce NAFLD. After 16 weeks, Ala was administered by gavage to observe its effect on NAFLD. RNA sequencing of liver tissues was performed to investigate the mechanism. In vitro, mouse cell line AML-12 was pretreated with Ala to resist palmitic acid (PA)-induced inflammation, oxidative stress and fibrosis. RESULTS: Ala significantly inhibited inflammation, fibrosis and oxidative stress in HFD-induced mice, as well as PA-induced AML-12 cells. Mechanistic studies showed that the effect of Ala was related to the induction of Nrf2 and the inhibition of NF-κB. Taken together, these findings suggested that Ala exerted a liver protective effect on NAFLD by blocking inflammation and oxidative stress. CONCLUSIONS: The study found that Ala exerted a liver protective effect on NAFLD by blocking inflammation and oxidative stress, suggesting that Ala is an effective therapy for NAFLD.


Assuntos
Dieta Hiperlipídica , Inflamação , Lactonas , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Estresse Oxidativo , Sesquiterpenos de Eudesmano , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Dieta Hiperlipídica/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Lactonas/farmacologia , Lactonas/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Sesquiterpenos de Eudesmano/farmacologia , Sesquiterpenos de Eudesmano/uso terapêutico , Fígado/metabolismo , Fígado/efeitos dos fármacos , NF-kappa B/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Linhagem Celular , Modelos Animais de Doenças
17.
Wiad Lek ; 77(4): 652-658, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38865618

RESUMO

OBJECTIVE: Aim: The aim of this research is to assess the anti-inflammatory effect of ghrelin in mice models of polymicrobial sepsis. PATIENTS AND METHODS: Materials and Methods: 35 male albino Swiss mice, ages 8-12 weeks, weighing 23-33g, were randomly separated into five groups n = 7; normal group was fed their usual diets until time of sampling, the sham group subjected to Anaesthesia and laparotomy, sepsis group subjected to cecal ligation and puncture, vehicle group was given an equivalent volume of intraperitoneal saline injections immediately after cecal ligation and puncture, and the ghrelin group was treated with 80 µg/kg of ghrelin intraperitoneal injections immediately following cecal ligation and puncture. Twenty hours after cecal ligation and puncture, mice were sacrificed; myocardial tissue and serum samples were collected. Serum IL-1ß, NF-κB, and TLR4 levels were measured, and inflammatory response's effects on cardiac tissue were evaluated. RESULTS: Results: The mean serum IL-1ß, NF-κB, and TLR4 levels were markedly elevated in the sepsis and vehicle groups than in the normal and sham groups. The mean serum levels of IL-1ß, NF-κB, and TLR4 were considerably lower in the ghrelin-treated group than in the vehicle and sepsis groups. Myocardium tissue of the normal and sham groups showed normal architecture. The sepsis and vehicle groups had a severe myocardial injury. The histological characteristics of ghrelin-treated mice differed slightly from those of the normal and sham groups. CONCLUSION: Conclusions: Our study concluded that ghrelin exerts anti-inflammatory effects in polymicrobial sepsis, as indicated by a considerable decrease in the IL-1ß, NF-κB and TLR4 serum levels.


Assuntos
Modelos Animais de Doenças , Endotoxemia , Grelina , Interleucina-1beta , NF-kappa B , Receptor 4 Toll-Like , Animais , Grelina/sangue , Camundongos , Masculino , Endotoxemia/tratamento farmacológico , Endotoxemia/sangue , Interleucina-1beta/sangue , Interleucina-1beta/metabolismo , Receptor 4 Toll-Like/metabolismo , NF-kappa B/metabolismo , Inflamação/tratamento farmacológico , Sepse/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
18.
Drug Des Devel Ther ; 18: 1821-1832, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38845851

RESUMO

Aim: Natural medicines possess significant research and application value in the field of atherosclerosis (AS) treatment. The study was performed to investigate the impacts of a natural drug component, notoginsenoside R1, on the development of atherosclerosis (AS) and the potential mechanisms. Methods: Rats induced with AS by a high-fat-diet and vitamin D3 were treated with notoginsenoside R1 for six weeks. The ameliorative effect of NR1 on AS rats was assessed by detecting pathological changes in the abdominal aorta, biochemical indices in serum and protein expression in the abdominal aorta, as well as by analysing the gut microbiota. Results: The NR1 group exhibited a noticeable reduction in plaque pathology. Notoginsenoside R1 can significantly improve serum lipid profiles, encompassing TG, TC, LDL, ox-LDL, and HDL. Simultaneously, IL-6, IL-33, TNF-α, and IL-1ß levels are decreased by notoginsenoside R1 in lowering inflammatory elements. Notoginsenoside R1 can suppress the secretion of VCAM-1 and ICAM-1, as well as enhance the levels of plasma NO and eNOS. Furthermore, notoginsenoside R1 inhibits the NLRP3/Cleaved Caspase-1/IL-1ß inflammatory pathway and reduces the expression of the JNK2/P38 MAPK/VEGF endothelial damage pathway. Fecal analysis showed that notoginsenoside R1 remodeled the gut microbiota of AS rats by decreasing the count of pathogenic bacteria (such as Firmicutes and Proteobacteria) and increasing the quantity of probiotic bacteria (such as Bacteroidetes). Conclusion: Notoginsenoside R1, due to its unique anti-inflammatory properties, may potentially prevent the progression of atherosclerosis. This mechanism helps protect the vascular endothelium from damage, while also regulating the imbalance of intestinal microbiota, thereby maintaining the overall health of the body.


Assuntos
Aterosclerose , Colecalciferol , Dieta Hiperlipídica , Microbioma Gastrointestinal , Ginsenosídeos , Inflamação , Ratos Sprague-Dawley , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Ginsenosídeos/farmacologia , Ginsenosídeos/administração & dosagem , Ratos , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Aterosclerose/patologia , Dieta Hiperlipídica/efeitos adversos , Masculino , Colecalciferol/farmacologia , Colecalciferol/administração & dosagem , Inflamação/tratamento farmacológico , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo
19.
Cardiovasc Diabetol ; 23(1): 197, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849829

RESUMO

OBJECTIVE: Sodium glucose cotransporter 2 (SGLT2) inhibitors significantly improve cardiovascular outcomes in diabetic patients; however, the mechanism is unclear. We hypothesized that dapagliflozin improves cardiac outcomes via beneficial effects on systemic and cardiac inflammation and cardiac fibrosis. RESEARCH AND DESIGN METHODS: This randomized placebo-controlled clinical trial enrolled 62 adult patients (mean age 62, 17% female) with type 2 diabetes (T2D) without known heart failure. Subjects were randomized to 12 months of daily 10 mg dapagliflozin or placebo. For all patients, blood/plasma samples and cardiac magnetic resonance imaging (CMRI) were obtained at time of randomization and at the end of 12 months. Systemic inflammation was assessed by plasma IL-1B, TNFα, IL-6 and ketone levels and PBMC mitochondrial respiration, an emerging marker of sterile inflammation. Global myocardial strain was assessed by feature tracking; cardiac fibrosis was assessed by T1 mapping to calculate extracellular volume fraction (ECV); and cardiac tissue inflammation was assessed by T2 mapping. RESULTS: Between the baseline and 12-month time point, plasma IL-1B was reduced (- 1.8 pg/mL, P = 0.003) while ketones were increased (0.26 mM, P = 0.0001) in patients randomized to dapagliflozin. PBMC maximal oxygen consumption rate (OCR) decreased over the 12-month period in the placebo group but did not change in patients receiving dapagliflozin (- 158.9 pmole/min/106 cells, P = 0.0497 vs. - 5.2 pmole/min/106 cells, P = 0.41), a finding consistent with an anti-inflammatory effect of SGLT2i. Global myocardial strain, ECV and T2 relaxation time did not change in both study groups. GOV REGISTRATION: NCT03782259.


Assuntos
Compostos Benzidrílicos , Biomarcadores , Diabetes Mellitus Tipo 2 , Glucosídeos , Mediadores da Inflamação , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Compostos Benzidrílicos/uso terapêutico , Compostos Benzidrílicos/efeitos adversos , Glucosídeos/uso terapêutico , Glucosídeos/efeitos adversos , Feminino , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Masculino , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos , Pessoa de Meia-Idade , Idoso , Resultado do Tratamento , Mediadores da Inflamação/sangue , Biomarcadores/sangue , Fatores de Tempo , Anti-Inflamatórios/uso terapêutico , Fibrose , Inflamação/tratamento farmacológico , Inflamação/sangue , Inflamação/diagnóstico , Método Duplo-Cego , Miocárdio/patologia , Miocárdio/metabolismo , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/prevenção & controle , Cardiomiopatias Diabéticas/diagnóstico por imagem , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/sangue
20.
Commun Biol ; 7(1): 710, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851804

RESUMO

Selective serotonin reuptake inhibitors (SSRIs) are widely used for depression based on the monoamine deficiency hypothesis. However, the clinical use of these agents is controversial, in part because of their variable clinical efficacy and in part because of their delayed onset of action. Because of the complexities involved in replicating human disease and clinical dosing in animal models, the scientific community has not reached a consensus on the reasons for these phenomena. In this work, we create a theoretical hippocampal model incorporating escitalopram's pharmacokinetics, pharmacodynamics (competitive and non-competitive inhibition, and serotonin transporter (SERT) internalization), inflammation, and receptor dynamics. With this model, we simulate chronic oral escitalopram in mice showing that days to weeks are needed for serotonin levels to reach steady-state. We show escitalopram's chemical efficacy is diminished under inflammation. Our model thus offers mechanisms for how chronic escitalopram affects brain serotonin, emphasizing the importance of optimized dose and time for future antidepressant discoveries.


Assuntos
Escitalopram , Inflamação , Inibidores Seletivos de Recaptação de Serotonina , Proteínas da Membrana Plasmática de Transporte de Serotonina , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Animais , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Camundongos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Escitalopram/farmacologia , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Serotonina/metabolismo , Humanos , Citalopram/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...