Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.386
Filtrar
1.
Nat Commun ; 15(1): 5570, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956053

RESUMO

Despite the development of novel therapies for acute myeloid leukemia, outcomes remain poor for most patients, and therapeutic improvements are an urgent unmet need. Although treatment regimens promoting differentiation have succeeded in the treatment of acute promyelocytic leukemia, their role in other acute myeloid leukemia subtypes needs to be explored. Here we identify and characterize two lysine deacetylase inhibitors, CM-444 and CM-1758, exhibiting the capacity to promote myeloid differentiation in all acute myeloid leukemia subtypes at low non-cytotoxic doses, unlike other commercial histone deacetylase inhibitors. Analyzing the acetylome after CM-444 and CM-1758 treatment reveals modulation of non-histone proteins involved in the enhancer-promoter chromatin regulatory complex, including bromodomain proteins. This acetylation is essential for enhancing the expression of key transcription factors directly involved in the differentiation therapy induced by CM-444/CM-1758 in acute myeloid leukemia. In summary, these compounds may represent effective differentiation-based therapeutic agents across acute myeloid leukemia subtypes with a potential mechanism for the treatment of acute myeloid leukemia.


Assuntos
Diferenciação Celular , Epigênese Genética , Inibidores de Histona Desacetilases , Leucemia Mieloide Aguda , Humanos , Diferenciação Celular/efeitos dos fármacos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Epigênese Genética/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Linhagem Celular Tumoral , Acetilação/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Animais
2.
Sci Rep ; 14(1): 15100, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956204

RESUMO

The design and radiosynthesis of [18F]NT376, a high potency inhibitor of class-IIa histone deacetylases (HDAC) is reported. We utilized a three-step radiochemical approach that led to the radiosynthesis of [18F]NT376 in a good radiochemical yield, (17.0 ± 3%, decay corrected), high radiochemical purity (> 97%) and relatively high molar activity of 185.0 GBq/µmol (> 5.0 Ci/µmol). The repositioning of the 18F-radiolabel into a phenyl ring (18F-Fluoro-aryl) of the class-IIa HDAC inhibitor avoided the shortcomings of the direct radiolabeling of the 5-trifluoromethyl-1,2,4-oxadiazole moiety that was reported by us previously and was associated with low molar activity (0.74-1.51 GBq/µmol, 20-41 mCi/µmol). This radiochemical approach could find a wider application for radiolabeling similar molecules with good radiochemical yield and high molar activity.


Assuntos
Radioisótopos de Flúor , Inibidores de Histona Desacetilases , Compostos Radiofarmacêuticos , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/farmacologia , Radioisótopos de Flúor/química , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/síntese química , Desenho de Fármacos , Humanos , Radioquímica/métodos , Oxidiazóis/química , Oxidiazóis/síntese química
3.
Addict Biol ; 29(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38963015

RESUMO

The addictive use of nicotine contained in tobacco is associated with stressor-like emotional and cognitive effects such as anxiety and working memory impairment, and the involvement of epigenetic mechanisms such as histone acetylation has recently been reported. Although the precise nature of behavioural plasticity remains unclear, both anxiogenic- and working memory impairment-like effects were observed in the present experimental model of mice treated with repeated subcutaneous nicotine and/or immobilization stress, and these effects were commonly attenuated by the histone deacetylase (HDAC) inhibitors that induce histone acetylation. Such HDAC inhibitor-induced resilience was mimicked by ligands for the endocannabinoid (ECB) system, a neurotransmitter system that is closely associated with nicotine-induced addiction-related behaviours: the anxiogenic-like effects were mitigated by the cannabinoid type 1 (CB1) agonist arachidonylcyclopropylamide (ACPA), whereas the working memory impairment-like effects were mitigated by the CB1 antagonist SR 141716A. Moreover, the effects of the HDAC inhibitors were also mimicked by ligands for the endovanilloid (transient receptor potential vanilloid 1 [TRPV1]) system, a system that shares common characteristics with the ECB system: the anxiogenic-like effects were mitigated by the TRPV1 antagonist capsazepine, whereas the working memory impairment-like effects were mitigated by the TRPV1 agonist olvanil. Notably, the HDAC inhibitor-induced anxiolytic-like effects were attenuated by SR 141716A, which were further counteracted by capsazepine, whereas the working memory improvement-like effects were attenuated by capsazepine, which were further counteracted by SR 141716A. These results suggest the contribution of interrelated control of the ECB/TRPV1 systems and epigenetic processes such as histone acetylation to novel therapeutic approaches.


Assuntos
Ansiedade , Endocanabinoides , Epigênese Genética , Memória de Curto Prazo , Nicotina , Estresse Psicológico , Canais de Cátion TRPV , Animais , Canais de Cátion TRPV/efeitos dos fármacos , Nicotina/farmacologia , Camundongos , Memória de Curto Prazo/efeitos dos fármacos , Endocanabinoides/metabolismo , Masculino , Epigênese Genética/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Receptor CB1 de Canabinoide/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Capsaicina/farmacologia , Capsaicina/análogos & derivados , Modelos Animais de Doenças , Rimonabanto/farmacologia , Agonistas Nicotínicos/farmacologia , Piperidinas/farmacologia
4.
Theranostics ; 14(9): 3565-3582, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948069

RESUMO

Cancer therapy has moved from single agents to more mechanism-based targeted approaches. In recent years, the combination of HDAC inhibitors and other anticancer chemicals has produced exciting progress in cancer treatment. Herein, we developed a novel prodrug via the ligation of dichloroacetate to selenium-containing potent HDAC inhibitors. The effect and mechanism of this compound in the treatment of prostate cancer were also studied. Methods: The concerned prodrug SeSA-DCA was designed and synthesized under mild conditions. This compound's preclinical studies, including the pharmacokinetics, cell toxicity, and anti-tumor effect on prostate cancer cell lines, were thoroughly investigated, and its possible synergistic mechanism was also explored and discussed. Results: SeSA-DCA showed good stability in physiological conditions and could be rapidly decomposed into DCA and selenium analog of SAHA (SeSAHA) in the tumor microenvironment. CCK-8 experiments identified that SeSA-DCA could effectively inhibit the proliferation of a variety of tumor cell lines, especially in prostate cancer. In further studies, we found that SeSA-DCA could also inhibit the metastasis of prostate cancer cell lines and promote cell apoptosis. At the animal level, oral administration of SeSA-DCA led to significant tumor regression without obvious toxicity. Moreover, as a bimolecular coupling compound, SeSA-DCA exhibited vastly superior efficacy than the mixture with equimolar SeSAHA and DCA both in vitro and in vivo. Our findings provide an important theoretical basis for clinical prostate cancer treatment. Conclusions: Our in vivo and in vitro results showed that SeSA-DCA is a highly effective anti-tumor compound for PCa. It can effectively induce cell cycle arrest and growth suppression and inhibit the migration and metastasis of PCa cell lines compared with monotherapy. SeSA-DCA's ability to decrease the growth of xenografts is a little better than that of docetaxel without any apparent signs of toxicity. Our findings provide an important theoretical basis for clinical prostate cancer treatment.


Assuntos
Apoptose , Pontos de Checagem do Ciclo Celular , Inibidores de Histona Desacetilases , Neoplasias da Próstata , Fosfatases cdc25 , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Humanos , Animais , Apoptose/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Histona Desacetilases/química , Linhagem Celular Tumoral , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Fosfatases cdc25/metabolismo , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Camundongos Nus , Selênio/farmacologia , Selênio/química , Selênio/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Camundongos Endogâmicos BALB C
5.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39000339

RESUMO

Epithelial-mesenchymal transition (EMT) refers to the transformation of polar epithelial cells into motile mesenchymal cells under specific physiological or pathological conditions, thus promoting the metastasis of cancer cells. Epithelial cadherin (E-cadherin) is a protein that plays an important role in the acquisition of tumor cell motility and serves as a key EMT epithelial marker. In the present study, AW01178, a small-molecule compound with potential therapeutic efficacy, was identified via in-cell Western high-throughput screening technology using E-cadherin as the target. The compound induced the upregulation of E-cadherin at both mRNA and protein levels and inhibited the EMT of breast cancer cells in vitro as well as metastasis in vivo. Mechanistically, AW01178 is a novel benzacetamide histone deacetylase inhibitor (HDACi) mainly targeting class I histone deacetylases. AW01178 promoted the transcription and expression of E-cadherin through enhancing the acetylation level of histone H3 in the E-cadherin promoter region, thereby inhibiting the metastasis of breast cancer cells. The collective findings support the potential utility of the novel HDACi compound identified in this study, AW01178, as a therapeutic drug for breast cancer and highlight its value for the future development of HDACi structures as anticancer drugs.


Assuntos
Neoplasias da Mama , Caderinas , Transição Epitelial-Mesenquimal , Inibidores de Histona Desacetilases , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Feminino , Animais , Caderinas/metabolismo , Caderinas/genética , Linhagem Celular Tumoral , Metástase Neoplásica , Camundongos , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Histonas/metabolismo
6.
Int J Mol Sci ; 25(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39000021

RESUMO

Retinoblastoma, a pediatric ocular malignancy, presents significant challenges in comprehending its molecular underpinnings and targeted therapeutic approaches. The dysregulated activity of histone deacetylases (HDACs) has been associated with retinoblastoma pathogenesis, influencing critical cellular processes like cell cycle regulation or retinal ganglion cell apoptosis. Through their deacetylase activity, HDACs exert control over key tumor suppressors and oncogenes, influencing the delicate equilibrium between proliferation and cell death. Furthermore, the interplay between HDACs and the retinoblastoma protein pathway, a pivotal aspect of retinoblastoma etiology, reveals a complex network of interactions influencing the tumor microenvironment. The examination of HDAC inhibitors, encompassing both established and novel compounds, offers insights into potential approaches to restore acetylation balance and impede retinoblastoma progression. Moreover, the identification of specific HDAC isoforms exhibiting varying expression in retinoblastoma provides avenues for personalized therapeutic strategies, allowing for interventions tailored to individual patient profiles. This review focuses on the intricate interrelationship between HDACs and retinoblastoma, shedding light on epigenetic mechanisms that control tumor development and progression. The exploration of HDAC-targeted therapies underscores the potential for innovative treatment modalities in the pursuit of more efficacious and personalized management strategies for this disease.


Assuntos
Inibidores de Histona Desacetilases , Histona Desacetilases , Retinoblastoma , Retinoblastoma/genética , Retinoblastoma/metabolismo , Retinoblastoma/patologia , Humanos , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Histona Desacetilases/farmacologia , Animais , Neoplasias da Retina/genética , Neoplasias da Retina/metabolismo , Neoplasias da Retina/patologia , Epigênese Genética , Acetilação , Microambiente Tumoral , Regulação Neoplásica da Expressão Gênica , Proteína do Retinoblastoma/metabolismo , Proteína do Retinoblastoma/genética
7.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000128

RESUMO

Epigenetic changes are common in cancer and include aberrant DNA methylation and histone modifications, including both acetylation or methylation. DNA methylation in the promoter regions and histone deacetylation are usually accompanied by gene silencing, and may lead to the suppression of tumor suppressors in cancer cells. An interaction between epigenetic pathways has been reported that could be exploited to more efficiently target aggressive cancer cells, particularly those against which current treatments usually fail, such as pancreatic cancer. In this study, we explored the possibility to combine the DNA demethylating agent 5-AZA with HDAC inhibitor SAHA to treat pancreatic cancer cell lines, focusing on the acetylation of mutp53 and the consequences on its stability, as well as on the interaction of this protein with c-myc and BRCA-1, key molecules in cancer survival. The results obtained suggest that SAHA/5-AZA combination was more effective than single treatments to promote the degradation of mutp53, to upregulate p21 and downregulate c-Myc and BRCA-1, thus increasing DNA damage and cytotoxicity in pancreatic cancer cells.


Assuntos
Proteína BRCA1 , Inibidor de Quinase Dependente de Ciclina p21 , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas c-myc , Proteína Supressora de Tumor p53 , Vorinostat , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Acetilação/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Vorinostat/farmacologia , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Azacitidina/farmacologia , Regulação para Baixo/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia
8.
SAR QSAR Environ Res ; 35(6): 505-530, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39007781

RESUMO

Histone deacetylase 6 (HDAC6) is a promising drug target for the treatment of human diseases such as cancer, neurodegenerative diseases (in particular, Alzheimer's disease), and multiple sclerosis. Considerable attention is paid to the development of selective non-toxic HDAC6 inhibitors. To this end, we successfully form a set of 3854 compounds and proposed adequate regression QSAR models for HDAC6 inhibitors. The models have been developed using the PubChem, Klekota-Roth, 2D atom pair fingerprints, and RDkit descriptors and the gradient boosting, support vector machines, neural network, and k-nearest neighbours methods. The models are integrated into the developed HT_PREDICT application, which is freely available at https://htpredict.streamlit.app/. In vitro studies have confirmed the predictive ability of the proposed QSAR models integrated into the HT_PREDICT web application. In addition, the virtual screening performed with the HT_PREDICT web application allowed us to propose two promising inhibitors for further investigations.


Assuntos
Desacetilase 6 de Histona , Inibidores de Histona Desacetilases , Aprendizado de Máquina , Relação Quantitativa Estrutura-Atividade , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Humanos , Máquina de Vetores de Suporte , Redes Neurais de Computação
9.
PLoS One ; 19(7): e0306168, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008483

RESUMO

Dual-targeting chromatin regulation and DNA damage repair signaling presents a promising avenue for cancer therapy. Applying rational drug design, we synthesized a potent dual-targeting small molecule, SP-1-303. Here, we report SP-1-303 as a class I isoform selective histone deacetylase (HDAC) inhibitor and an activator of the ataxia-telangiectasia mutated protein (ATM). In vitro enzymatic assays demonstrated selective inhibition of HDAC1 and HDAC3. Cellular growth inhibition studies show that SP-1-303 differentially inhibits growth of estrogen receptor positive breast cancer (ER+ BC) cells with effective growth inhibition concentrations (EC50) for MCF-7 and T47D cells ranging from 0.32 to 0.34 µM, compared to 1.2-2.5 µM for triple negative breast cancer cells, and ~12 µM for normal breast epithelial cells. Western analysis reveals that SP-1-303 decreases estrogen receptor alpha (ER-α) expression and increases p53 protein expression, while inducing the phosphorylation of ATM and its substrates, BRCA1 and p53, in a time-dependent manner in ER+ BC cells. Pharmacokinetic evaluation demonstrates an area under the curve (AUC) of 5227.55 ng/ml × h with an elimination half-life of 1.26 h following intravenous administration in a rat model. Collectively, SP-1-303 emerges as a novel second generation class I (HDAC1 and HDAC3) selective HDAC inhibitor, and ATM activator, capable of modulating ER expression, and inhibiting growth of ER+ BC cells. Combined targeting of class I HDACs and ATM by SP-1-303 offers a promising therapeutic approach for treating ER+ breast cancers and supports further preclinical evaluation.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Neoplasias da Mama , Proliferação de Células , Inibidores de Histona Desacetilases , Humanos , Inibidores de Histona Desacetilases/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Feminino , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ratos , Proliferação de Células/efeitos dos fármacos , Histona Desacetilases/metabolismo , Linhagem Celular Tumoral , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/metabolismo , Células MCF-7 , Receptor alfa de Estrogênio/metabolismo , Receptores de Estrogênio/metabolismo
10.
J Exp Clin Cancer Res ; 43(1): 192, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992681

RESUMO

BACKGROUND: Treatment with regorafenib, a multiple-kinase inhibitor, to manage metastatic colorectal cancers (mCRCs) shows a modest improvement in overall survival but is associated with severe toxicities. Thus, to reduce regorafenib-induced toxicity, we used regorafenib at low concentration along with a dual JAK/HDAC small-molecule inhibitor (JAK/HDACi) to leverage the advantages of both JAK and HDAC inhibition to enhance antitumor activity. The therapeutic efficacy and safety of the combination treatment was evaluated with CRC models. METHODS: The cytotoxicity of JAK/HDACi, regorafenib, and their combination were tested with normal colonic and CRC cells exhibiting various genetic backgrounds. Kinomic, ATAC-seq, RNA-seq, cell cycle, and apoptosis analyses were performed to evaluate the cellular functions/molecular alterations affected by the combination. Efficacy of the combination was assessed using patient-derived xenograft (PDX) and experimental metastasis models of CRC. To evaluate the interplay between tumor, its microenvironment, and modulation of immune response, MC38 syngeneic mice were utilized. RESULTS: The combination therapy decreased cell viability; phosphorylation of JAKs, STAT3, EGFR, and other key kinases; and inhibited deacetylation of histone H3K9, H4K8, and alpha tubulin proteins. It induced cell cycle arrest at G0-G1 phase and apoptosis of CRC cells. Whole transcriptomic analysis showed that combination treatment modulated molecules involved in apoptosis, extracellular matrix-receptor interaction, and focal adhesion pathways. It synergistically reduces PDX tumor growth and experimental metastasis, and, in a syngeneic mouse model, the treatment enhances the antitumor immune response as evidenced by higher infiltration of CD45 and cytotoxic cells. Pharmacokinetic studies showed that combination increased the bioavailability of regorafenib. CONCLUSIONS: The combination treatment was more effective than with regorafenib or JAK/HDACi alone, and had minimal toxicity. A clinical trial to evaluate this combination for treatment of mCRCs is warranted.


Assuntos
Neoplasias Colorretais , Inibidores de Histona Desacetilases , Compostos de Fenilureia , Piridinas , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Humanos , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/administração & dosagem , Animais , Camundongos , Piridinas/farmacologia , Piridinas/administração & dosagem , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Histona Desacetilases/administração & dosagem , Metástase Neoplásica , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Sinergismo Farmacológico , Linhagem Celular Tumoral , Feminino , Apoptose/efeitos dos fármacos , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/administração & dosagem , Inibidores de Janus Quinases/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
11.
J Cancer Res Ther ; 20(3): 1049-1052, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-39023617

RESUMO

ABSTRACT: Angioimmunoblastic T-cell lymphoma (AITL) is one of the sub-types of peripheral T-cell lymphomas (PTCLs) that are remarkably refractory and has the potential to have a poor prognosis. The treatment process includes a wide range of treatment modalities, from anthracycline-based regimens that have been used for years to novel agents, such as histone deacetylase inhibitor romidepsin and belinostat. Increased treatment response rates and prolonged survival have been reported in studies with belinostat. Similarly, in this case report, we wanted to share a patient of an advanced age and with a high IPI score, whom we had treated in many treatment lines and maintained a long-term treatment response by administering belinostat.


Assuntos
Ácidos Hidroxâmicos , Linfoma de Células T Periférico , Sulfonamidas , Humanos , Sulfonamidas/uso terapêutico , Linfoma de Células T Periférico/tratamento farmacológico , Linfoma de Células T Periférico/patologia , Ácidos Hidroxâmicos/uso terapêutico , Masculino , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Resultado do Tratamento , Resistencia a Medicamentos Antineoplásicos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Idoso , Antineoplásicos/uso terapêutico , Feminino
12.
Cell Commun Signal ; 22(1): 361, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010083

RESUMO

BACKGROUND: Breast cancer is one of the most lethal cancers in women. Despite significant advances in the diagnosis and treatment of breast cancer, many patients still succumb to this disease, and thus, novel effective treatments are urgently needed. Natural product coumarin has been broadly investigated since it reveals various biological properties in the medicinal field. Accumulating evidence indicates that histone deacetylase inhibitors (HDACIs) are promising novel anti-breast cancer agents. However, most current HDACIs exhibit only moderate effects against solid tumors and are associated with severe side effects. Thus, to develop more effective HDACIs for breast cancer therapy, hydroxamate of HDACIs was linked to coumarin core, and coumarin-hydroxamate hybrids were designed and synthesized. METHODS: A substituted coumarin moiety was incorporated into the classic hydroxamate HDACIs by the pharmacophore fusion strategy. ZN444B was identified by using the HDACI screening kit and cell viability assay. Molecular docking was performed to explore the binding mode of ZN444B with HDAC1. Western blot, immunofluorescent staining, cell viability, colony formation and cell migration and flow cytometry assays were used to analyze the anti-breast cancer effects of ZN444B in vitro. Orthotopic studies in mouse models were applied for preclinical evaluation of efficacy and toxicity in vivo. Proteomic analysis, dual-luciferase reporter assay, chromatin immunoprecipitation, co-immunoprecipitation, immunofluorescent staining assays along with immunohistochemical (IHC) analysis were used to elucidate the molecular basis of the actions of ZN444B. RESULTS: We synthesized and identified a novel coumarin-hydroxamate conjugate, ZN444B which possesses promising anti-breast cancer activity both in vitro and in vivo. A molecular docking model showed that ZN444B binds to HDAC1 with high affinity. Further mechanistic studies revealed that ZN444B specifically decreases FOS-like antigen 2 (FOSL2) mRNA levels by inhibiting the deacetylase activity of HDAC1 on Sp1 at K703 and abrogates the binding ability of Sp1 to the FOSL2 promoter. Furthermore, FOSL2 expression positively correlates with breast cancer progression and metastasis. Silencing FOSL2 expression decreases the sensitivity of breast cancer cells to ZN444B treatment. In addition, ZN444B shows no systemic toxicity in mice. CONCLUSIONS: Our findings highlight the potential of FOSL2 as a new biomarker and therapeutic target for breast cancer and that targeting the HDAC1-Sp1-FOSL2 signaling axis with ZN444B may be a promising therapeutic strategy for breast cancer.


Assuntos
Neoplasias da Mama , Cumarínicos , Histona Desacetilase 1 , Ácidos Hidroxâmicos , Transdução de Sinais , Cumarínicos/química , Cumarínicos/farmacologia , Humanos , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/genética , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Animais , Transdução de Sinais/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/uso terapêutico , Fator de Transcrição Sp1/metabolismo , Camundongos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Proliferação de Células/efeitos dos fármacos , Camundongos Nus , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Camundongos Endogâmicos BALB C , Movimento Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Descoberta de Drogas
13.
Virology ; 597: 110161, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38981317

RESUMO

Epstein-Barr virus (EBV) is linked to lymphoma and epithelioma but lacks drugs specifically targeting EBV-positive tumors. BamHI A Rightward Transcript (BART) miRNAs are expressed in all EBV-positive tumors, suppressing both lytic infection and host cell apoptosis. We identified suberoylanilide hydroxamic acid (SAHA), an inhibitor of histone deacetylase enzymes, as an agent that suppresses BART promoter activity and transcription of BART miRNAs. SAHA treatment demonstrated a more pronounced inhibition of cell proliferation in EBV-positive cells compared to EBV-negative cells, affecting both p53 wild-type and mutant gastric epithelial cells. SAHA treatment enhanced lytic infection in wild-type EBV-infected cells, while also enhancing cell death in BZLF1-deficient EBV-infected cells. It reduced BART gene expression by 85% and increased the expression of proapoptotic factors targeted by BART miRNAs. These findings suggest that SAHA not only induces lytic infection but also leads to cell death by suppressing BART miRNA transcription and promoting the apoptotic program.


Assuntos
Apoptose , Herpesvirus Humano 4 , Ácidos Hidroxâmicos , MicroRNAs , Vorinostat , Vorinostat/farmacologia , Apoptose/efeitos dos fármacos , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiologia , Herpesvirus Humano 4/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Linhagem Celular , Inibidores de Histona Desacetilases/farmacologia , Regiões Promotoras Genéticas , Proliferação de Células/efeitos dos fármacos
14.
Chem Pharm Bull (Tokyo) ; 72(7): 630-637, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38945939

RESUMO

Alzheimer's disease (AD) is the leading cause of senile dementia, and the rapid increase in the frequency of AD cases has been attributed to population aging. However, current drugs have difficulty adequately suppressing symptoms and there is still a medical need for symptomatic agents. On the other hand, it has recently become clear that epigenetic dysfunctions are deeply involved in the development of cognitive impairments. Therefore, epigenetics-related proteins have attracted much attention as drug targets for AD. Early-developed epigenetic inhibitors were inappropriate for AD treatment because of their limited potential for oral administration, blood-brain barrier penetration, high target selectivity, and sufficient dose-limiting toxicity which are essential properties for small molecule drugs targeting chronic neurodegenerative diseases such as AD. In recent years, drug discovery studies have been actively performed to overcome such problems and several novel inhibitors targeting the epigenetics-related proteins are of interest as promising AD therapeutic agents. Here, we review the small molecule inhibitors of histone deacetylase (HDAC), lysine-specific demethylase 1 (LSD1) or bromodomains and extra-terminal domain (BET) protein, that enable memory function improvement in AD model mice.


Assuntos
Doença de Alzheimer , Epigênese Genética , Inibidores de Histona Desacetilases , Histona Desmetilases , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Humanos , Animais , Epigênese Genética/efeitos dos fármacos , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/metabolismo , Histona Desacetilases/metabolismo
15.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892072

RESUMO

Histone deacetylase 6 (HDAC6) is increasingly recognized for its potential in targeted disease therapy. This study delves into the mechanistic and structural nuances of HDAC6 inhibition by difluoromethyl-1,3,4-oxadiazole (DFMO) derivatives, a class of non-hydroxamic inhibitors with remarkable selectivity and potency. Employing a combination of nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS) kinetic experiments, comprehensive enzymatic characterizations, and X-ray crystallography, we dissect the intricate details of the DFMO-HDAC6 interaction dynamics. More specifically, we find that the chemical structure of a DMFO and the binding mode of its difluoroacetylhydrazide derivative are crucial in determining the predominant hydrolysis mechanism. Our findings provide additional insights into two different mechanisms of DFMO hydrolysis, thus contributing to a better understanding of the HDAC6 inhibition by oxadiazoles in disease modulation and therapeutic intervention.


Assuntos
Desacetilase 6 de Histona , Inibidores de Histona Desacetilases , Oxidiazóis , Oxidiazóis/química , Oxidiazóis/farmacologia , Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/química , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Humanos , Cristalografia por Raios X , Cinética , Ligação Proteica , Modelos Moleculares , Relação Estrutura-Atividade
16.
Drug Discov Today ; 29(7): 104052, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38830501

RESUMO

Current treatment options for Alzheimer's disease (AD) focus on symptom relief rather than halting disease progression. In this context, targeting histone deacetylation emerges as a promising therapeutic alternative. Dysregulation of histone deacetylase (HDAC) activity is present in AD, contributing to cognitive decline. Pharmacological HDAC inhibition has shown benefits in preclinical models, namely reduced amyloid beta plaque formation, lower phosphorylation and aggregation of tau protein, greater microtubule stability, less neuroinflammation, and improved metabolic homeostasis and cell survival. Nonetheless, clinical trials evidenced limitations such as insufficient selectivity or blood-brain barrier penetration. Hence, future innovative strategies are required to enhance their efficacy/safety.


Assuntos
Doença de Alzheimer , Epigenoma , Inibidores de Histona Desacetilases , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Animais , Histona Desacetilases/metabolismo
17.
Int J Mol Sci ; 25(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38928463

RESUMO

The prevalence of dilated cardiomyopathy (DCM) is increasing globally, highlighting the need for innovative therapeutic approaches to prevent its onset. In this study, we examined the energetic and epigenetic distinctions between dilated and non-dilated human myocardium-derived mesenchymal stem/stromal cells (hmMSCs) and assessed the effects of class I and II HDAC inhibitors (HDACi) on these cells and their cardiomyogenic differentiation. Cells were isolated from myocardium biopsies using explant outgrowth methods. Mitochondrial and histone deacetylase activities, ATP levels, cardiac transcription factors, and structural proteins were assessed using flow cytometry, PCR, chemiluminescence, Western blotting, and immunohistochemistry. The data suggest that the tested HDAC inhibitors improved acetylation and enhanced the energetic status of both types of cells, with significant effects observed in dilated myocardium-derived hmMSCs. Additionally, the HDAC inhibitors activated the cardiac transcription factors Nkx2-5, HOPX, GATA4, and Mef2C, and upregulated structural proteins such as cardiac troponin T and alpha cardiac actin at both the protein and gene levels. In conclusion, our findings suggest that HDACi may serve as potential modulators of the energetic status and cardiomyogenic differentiation of human heart hmMSCs. This avenue of exploration could broaden the search for novel therapeutic interventions for dilated cardiomyopathy, ultimately leading to improvements in heart function.


Assuntos
Cardiomiopatia Dilatada , Diferenciação Celular , Inibidores de Histona Desacetilases , Células-Tronco Mesenquimais , Humanos , Inibidores de Histona Desacetilases/farmacologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Diferenciação Celular/efeitos dos fármacos , Miocárdio/citologia , Miocárdio/metabolismo , Miocárdio/patologia , Histona Desacetilases/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Fatores de Transcrição MEF2/metabolismo , Fatores de Transcrição MEF2/genética , Proteína Homeobox Nkx-2.5/metabolismo , Proteína Homeobox Nkx-2.5/genética , Acetilação/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Células Cultivadas
18.
Nat Cancer ; 5(6): 844-865, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38937652

RESUMO

Epigenetic dysregulation is increasingly appreciated as a hallmark of cancer, including disease initiation, maintenance and therapy resistance. As a result, there have been advances in the development and evaluation of epigenetic therapies for cancer, revealing substantial promise but also challenges. Three epigenetic inhibitor classes are approved in the USA, and many more are currently undergoing clinical investigation. In this Review, we discuss recent developments for each epigenetic drug class and their implications for therapy, as well as highlight new insights into the role of epigenetics in cancer.


Assuntos
Epigênese Genética , Epigenoma , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Epigênese Genética/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Metilação de DNA/efeitos dos fármacos , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Histona Desacetilases/farmacologia , Terapia de Alvo Molecular/métodos , Animais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
19.
Drug Dev Res ; 85(4): e22224, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38867474

RESUMO

The mammalian cytoplasmic protein SIRT2, a class III histone deacetylase family member, possesses NAD+-dependent lysine deacetylase/deacylase activity. Dysregulation of SIRT2 has been implicated in the pathogenesis of several diseases, including neurological and metabolic disorders and cancer; thus, SIRT2 emerges as a potential therapeutic target. Herein, we identified a series of diaryl acetamides (ST61-ST90) by the structural optimization of our hit STH2, followed by enhanced SIRT2 inhibitory potency and selectivity. Among them, ST72, ST85, and ST88 selectively inhibited SIRT2 with IC50 values of 9.97, 5.74, and 8.92 µM, respectively. Finally, the entire study was accompanied by in silico prediction of binding modes of docked compounds and the stability of SIRT2-ligand complexes. We hope our findings will provide substantial information for designing selective inhibitors of SIRT2.


Assuntos
Acetamidas , Sirtuína 2 , Sirtuína 2/antagonistas & inibidores , Sirtuína 2/química , Sirtuína 2/metabolismo , Humanos , Acetamidas/química , Acetamidas/farmacologia , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química
20.
Antimicrob Agents Chemother ; 68(7): e0020124, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38829049

RESUMO

Limited cellular levels of the HIV transcriptional activator Tat are one contributor to proviral latency that might be targeted in HIV cure strategies. We recently demonstrated that lipid nanoparticles containing HIV tat mRNA induce HIV expression in primary CD4 T cells. Here, we sought to further characterize tat mRNA in the context of several benchmark latency reversal agents (LRAs), including inhibitor of apoptosis protein antagonists (IAPi), bromodomain and extra-Terminal motif inhibitors (BETi), and histone deacetylase inhibitors (HDACi). tat mRNA reversed latency across several different cell line models of HIV latency, an effect dependent on the TAR hairpin loop. Synergistic enhancement of tat mRNA activity was observed with IAPi, HDACi, and BETi, albeit to variable degrees. In primary CD4 T cells from durably suppressed people with HIV, tat mRNA profoundly increased the frequencies of elongated, multiply-spliced, and polyadenylated HIV transcripts, while having a lesser impact on TAR transcript frequencies. tat mRNAs alone resulted in variable HIV p24 protein induction across donors. However, tat mRNA in combination with IAPi, BETi, or HDACi markedly enhanced HIV RNA and protein expression without overt cytotoxicity or cellular activation. Notably, combination regimens approached or in some cases exceeded the latency reversal activity of maximal mitogenic T cell stimulation. Higher levels of tat mRNA-driven HIV p24 induction were observed in donors with larger mitogen-inducible HIV reservoirs, and expression increased with prolonged exposure time. Combination LRA strategies employing both small molecule inhibitors and Tat delivered to CD4 T cells are a promising approach to effectively target the HIV reservoir.


Assuntos
Linfócitos T CD4-Positivos , Infecções por HIV , HIV-1 , Inibidores de Histona Desacetilases , Nanopartículas , Latência Viral , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Latência Viral/efeitos dos fármacos , Humanos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD4-Positivos/metabolismo , HIV-1/efeitos dos fármacos , HIV-1/genética , Inibidores de Histona Desacetilases/farmacologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Antígenos HIV/genética , Fármacos Anti-HIV/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...