Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 291
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Open Vet J ; 14(5): 1191-1198, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38938440

RESUMO

Background: The intracytoplasmic sperm injection (ICSI) technique has low efficiency in cattle. This has mainly been attributed to the oocyte activation failure due to oocyte and/or sperm factors. Aim: Our aim was to evaluate the effect of conventional ICSI and Piezo-ICSI with bull or human sperm on bovine oocyte activation and embryo development and to assess its relationship with the phospholipase C zeta (PLCɀ) activity of both species. Methods: In vitro matured bovine oocytes were randomly divided into five groups and were fertilized as follows: conventional ICSI using bovine sperm with chemical activation (control), conventional ICSI using bovine sperm, Piezo-ICSI using bovine sperm, conventional ICSI using human sperm, and Piezo-ICSI using human sperm. PLCɀ activity was determined in bull and human sperm samples. Results: Within the groups using bull sperm, the oocytes fertilized by conventional ICSI had the lowest values of 2 pronuclei (PN) formation and cleavage, Piezo-ICSI increased both percentages and ICSI + chemical activation presented the highest 2 PN, cleavage, and blastocyst rates (p < 0.05). Within the groups using human sperm, the oocytes fertilized by Piezo-ICSI presented higher 2 PN and cleavage rates than those activated by conventional ICSI (p < 0.05). Piezo-ICSI with human sperm increased bovine oocyte activation as much as conventional ICSI + chemical activation with bovine sperm (p < 0.05). Higher values of PLCɀ activity were found in human sperm compared with bovine sperm (p < 0.05). Conclusion: Our results suggest that the higher stability of the bovine sperm in combination with its relatively low content of PLCɀ impairs bovine oocyte activation after ICSI.


Assuntos
Oócitos , Injeções de Esperma Intracitoplásmicas , Espermatozoides , Bovinos , Injeções de Esperma Intracitoplásmicas/veterinária , Masculino , Animais , Humanos , Oócitos/fisiologia , Espermatozoides/fisiologia , Feminino , Fosfoinositídeo Fosfolipase C/metabolismo
2.
Theriogenology ; 224: 34-40, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38723472

RESUMO

Two Poitou donkey jennies were presented for clinical oocyte recovery and embryo production via intracytoplasmic sperm injection (ICSI). Both jennies underwent transvaginal ultrasound-guided follicle aspiration on two occasions. Recovered oocytes were held overnight then placed into maturation culture, using standard methods for mare oocytes. On the first replicate for both jennies, the oocytes were divided into two groups; one group was denuded and examined at 30 h culture (standard culture duration for mare oocytes) and the second was denuded and examined at 36 h culture. No oocytes with polar bodies were observed at either time. The oocytes were maintained in maturation culture until 46 h, at which time oocytes with polar bodies were observed. Semen was then prepared; oocytes underwent ICSI approximately 48 h after being placed into maturation culture. On the second replicate for both jennies, oocytes were cultured for maturation for 42 h, then denuded and subjected to ICSI at 46 h. Sperm preparation, injection and embryo culture were performed as for mare oocytes. Blastocyst rates per injected oocyte were 8/19 (42 %) overall, being 4/12 and 4/7 for the first and second TVAs, respectively. Blastocysts were vitrified. Three blastocysts were warmed and transferred to Poitou donkey jenny recipients. One embryonic vesicle was visualized on ultrasonography on embryo Day 12, which increased in size on Day 13 but was not present when examined on Day 14. These results demonstrate that oocyte recovery and ICSI are efficient for production of Poitou donkey blastocysts. To the best of our knowledge, this is the first report of production of blastocysts via ICSI in the Poitou donkey, and the first report of transfer of ICSI-produced embryos in the donkey. Further work is needed on factors affecting pregnancy after embryo transfer in the donkey.


Assuntos
Equidae , Oócitos , Injeções de Esperma Intracitoplásmicas , Animais , Injeções de Esperma Intracitoplásmicas/veterinária , Equidae/fisiologia , Feminino , Gravidez , Oócitos/fisiologia , Blastocisto/fisiologia , Recuperação de Oócitos/veterinária , Recuperação de Oócitos/métodos , Espécies em Perigo de Extinção , Masculino , Técnicas de Maturação in Vitro de Oócitos/veterinária , Técnicas de Cultura Embrionária/veterinária , Transferência Embrionária/veterinária
3.
J Equine Vet Sci ; 138: 105095, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38810588

RESUMO

Intracytoplasmic sperm injection (ICSI) in horses is currently employed for clinical and commercial uses, but the protocol could be optimized to improve its efficiency. We have hypothesized that destabilization of plasma and acrosomal membranes prior to injection would positively impact the developmental potential of equine zygotes generated by ICSI. This study evaluated effects of the sperm treatment with lysolecithin on plasma and acrosomal membranes and on oocyte activation ability, initially following heterologous ICSI on bovine oocytes and subsequently employing equine oocytes. The effects of the lysolecithin -treatment on the efficiency of conventional and piezo-assisted equine ICSI were evaluated. To do this, the equine sperm were treated with different concentrations of lysolecithin and the sperm plasma membrane, acrosome and DNA integrity were evaluated by flow cytometry. The results showed that a lysolecithin concentration of 0.08 % destabilized the membranes of all sperm and affected DNA integrity within the range described for the species (8-30 %). In addition, the heterologous ICSI assay showed that lysolecithin treatment was detrimental to the sperm's ability to activate the oocyte, therefore, chemical oocyte activation was used after equine ICSI after injection with lysolecithin -treated sperm. This group showed similar developmental rate to the control group with and without exogenous activation. In conclusion, lysolecithin pre-treatment is not necessary when using ICSI to produce equine embryos in vitro. The results from the current study provide additional insight regarding the factors impacting ICSI in horses.


Assuntos
Lisofosfatidilcolinas , Injeções de Esperma Intracitoplásmicas , Espermatozoides , Animais , Cavalos , Injeções de Esperma Intracitoplásmicas/veterinária , Injeções de Esperma Intracitoplásmicas/métodos , Masculino , Lisofosfatidilcolinas/farmacologia , Espermatozoides/efeitos dos fármacos , Feminino , Oócitos/efeitos dos fármacos
4.
Theriogenology ; 223: 47-52, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38669841

RESUMO

This retrospective study aimed at identifying factors that contribute to the success of equine in vitro embryo production by intracytoplasmic sperm injection (ICSI). A total of 7993 ovum pick-up (OPU) sessions were performed, totaling 2540 donor mares and semen from 396 stallions. Oocytes were aspirated at multiple sites in Brazil and were sent to the laboratory, within 6 h from OPU, in pre-maturation medium where they were in vitro matured (IVM) followed by ICSI and in vitro embryo culture for 7-8 days. The number of recovered oocytes, matured oocytes, cleaved embryos and blastocysts were used to explore the effect of age and breed of the donor mare, time of year in which the mare was aspirated and phase of the estrous cycle on the day of follicular aspiration. Mares between 6 and 15 years old were superior to other age groups in most parameters evaluated, including the average number of blastocysts per OPU. The impact of age was similar when evaluated within two breeds, American Quarter Horse (AQHA) and Warmblood mares. We observed that breed (AQHA, Warmblood, Crioulo, Lusitano and Mangalarga) had an important effect on most of the parameter evaluated, including number of oocytes recovered, blastocysts produced per OPU, and blastocyst rates. The overall impact of season was less pronounced than age and breed, with the only statistically significant difference being a higher rate of oocyte maturation during the summer season. Finally, most of the parameters evaluated were superior in follicular phase mares, with or without dominant follicle than luteal phase mares. In conclusion, this retrospective study revealed that breed, age, season and stage of estrous at the time of OPU are all important parameters for the success of equine embryo production by ICSI. This technology enables producing embryos all-year-round from mares of different breeds and ages from OPU-derived oocytes collected at multiple sites.


Assuntos
Ciclo Estral , Estações do Ano , Injeções de Esperma Intracitoplásmicas , Animais , Cavalos/fisiologia , Cavalos/embriologia , Injeções de Esperma Intracitoplásmicas/veterinária , Injeções de Esperma Intracitoplásmicas/métodos , Feminino , Ciclo Estral/fisiologia , Estudos Retrospectivos , Técnicas de Cultura Embrionária/veterinária , Masculino , Envelhecimento/fisiologia , Fatores Etários , Recuperação de Oócitos/veterinária , Recuperação de Oócitos/métodos
5.
Theriogenology ; 223: 53-58, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38678696

RESUMO

Mares enrolled in assisted reproductive technologies (ARTs) programs are often treated with non-steroidal anti-inflammatory drugs (NSAIDs), particularly phenylbutazone (Bute), due to chronic lameness. The current study was performed to determine the effect of Bute administration on the developmental competence of in vitro-matured equine oocytes subjected to Intracytoplasmic Sperm Injection (ICSI). In a Preliminary Study, immature cumulus-oocyte complexes (COCs) recovered by post-mortem ovary harvested from two healthy mares (n = 2) treated for 10 days with Bute (4.4 mg/kg, PO, BID), and four non-treated healthy mares (n = 4), were matured in vitro and subjected to Piezo-driven ICSI. Lower oocyte in vitro maturation [Bute: 25% (3/12) vs. Control: 61% (28/46)] and blastocyst rates [Bute: 0% (0/12) vs. Control: 18% (5/28)] were observed in the Bute-treated when compared to the Control mares (P < 0.05). In the Main Experiment, a group of healthy mares (n = 9) received a daily dose of Bute (4.4 mg/kg, orally, SID) for 10 days. A control group of mares (n = 10) was treated with an equal volume of placebo. Mares in both groups were subjected to ultrasound-guided transvaginal oocyte aspiration (TVA) on days 3, 33, and 77 following the last dose of Bute (PT). Recovered COCs from both mare groups were matured in vitro and subjected to Piezo-driven ICSI. By day-3 PT, oocyte in vitro maturation rate was similar between mare groups [Bute: 65% (36/55) vs. Control: 67% (78/116); P > 0.05], while oocyte recovery [Bute: 53% (55/103) vs. Control: 70% (116/166)], cleavage [Bute: 31% (11/36) vs. Control: 62% (48/78)] and blastocyst rates [Bute: [0%] (0/36) vs. Control: 28% (22/78)] were significantly different (P < 0.05). By day 33 PT and 77 PT, differences on oocyte recovery, in vitro maturation, cleavage, and blastocyst rates were not observed between mare groups. In summary, the administration of Bute for 10 consecutive days (4.4 mg/kg, PO, SID, or BID) is associated with a decrease in the ability of immature equine oocytes to undergo in vitro-maturation (Preliminary Study) and develop to the blastocyst stage following ICSI (Preliminary Study and Main Experiment). This negative effect appeared to be transient, as 30- and 77-days post-treatment, no differences on in vitro maturation, cleavage or blastocyst rates were observed.


Assuntos
Anti-Inflamatórios não Esteroides , Blastocisto , Técnicas de Maturação in Vitro de Oócitos , Oócitos , Fenilbutazona , Injeções de Esperma Intracitoplásmicas , Animais , Cavalos , Injeções de Esperma Intracitoplásmicas/veterinária , Injeções de Esperma Intracitoplásmicas/métodos , Feminino , Técnicas de Maturação in Vitro de Oócitos/veterinária , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/administração & dosagem , Fenilbutazona/farmacologia , Blastocisto/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos
6.
Theriogenology ; 220: 43-55, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471390

RESUMO

Genome editing in pigs for xenotransplantation has seen significant advances in recent years. This study compared three methodologies to generate gene-edited embryos, including co-injection of sperm together with the CRISPR-Cas9 system into oocytes, named ICSI-MGE (mediated gene editing); microinjection of CRISPR-Cas9 components into oocytes followed by in vitro fertilization (IVF), and microinjection of in vivo fertilized zygotes with the CRISPR-Cas9 system. Our goal was to knock-out (KO) porcine genes involved in the biosynthesis of xenoantigens responsible for the hyperacute rejection of interspecific xenografts, namely GGTA1, CMAH, and ß4GalNT2. Additionally, we attempted to KO the growth hormone receptor (GHR) gene with the aim of limiting the growth of porcine organs to a size that is physiologically suitable for human transplantation. Embryo development, pregnancy, and gene editing rates were evaluated. We found an efficient mutation of the GGTA1 gene following ICSI-MGE, comparable to the results obtained through the microinjection of oocytes followed by IVF. ICSI-MGE also showed higher rates of biallelic mutations compared to the other techniques. Five healthy piglets were born from in vivo-derived embryos, all of them exhibiting biallelic mutations in the GGTA1 gene, with three displaying mutations in the GHR gene. No mutations were observed in the CMAH and ß4GalNT2 genes. In conclusion, in vitro methodologies showed high rates of gene-edited embryos. Specifically, ICSI-MGE proved to be an efficient technique for obtaining homozygous biallelic mutated embryos. Lastly, only live births were obtained from in vivo-derived embryos showing efficient multiple gene editing for GGTA1 and GHR.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Suínos/genética , Humanos , Masculino , Animais Geneticamente Modificados , Edição de Genes/veterinária , Transplante Heterólogo/veterinária , Injeções de Esperma Intracitoplásmicas/veterinária , Sêmen , Fertilização in vitro/veterinária
7.
Anim Reprod Sci ; 263: 107432, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401395

RESUMO

Low motility and low sperm concentration are characteristics of alpaca semen. Thus, the intracytoplasmic sperm injection (ICSI) technique represents an alternative to improve the reproductive capacity of the male. However, the effect of post-ICSI activation in alpaca is not yet known. The aim of the present study was to compare the effect of chemical activators on alpaca embryo development after ICSI. Alpaca ovaries were collected from a local slaughterhouse and transported to the laboratory. Category I, II and III oocytes were matured for 30 h at 38.5 °C. After ICSI, injected oocytes were randomly divided and activated as follows: i) 5 µM ionomycin for 5 min, ii) 7% ethanol for 4 min, iii) 5 µM ionomycin for 5 min, window period 3 h plus 7% ethanol for 4 min, iv) 5 µM ionomycin for 5 min, window period 3 h, a second ionomycin treatment for 5 min, followed by 1.9 mM 6-DMAP for 3 h, v) 10 mM SrCl2 for 3 h. Culture was carried out for 5 days in SOFaa at 38.5 °C. The cleavage rate was the lowest in the SrCl2 group, morula development was the lowest in the SrCl2 and without activation groups, and blastocyst stage was not different between groups (P<0.05). The rates with SrCl2 were lower in total embryos produced, whereas in transferable embryos they were lower with 2Io/6-DMAP and with SrCl2 (P<0.05). In conclusion, alpaca oocyte activation is more efficient with ionomycin and ethanol to produce transferable embryos.


Assuntos
Camelídeos Americanos , Injeções de Esperma Intracitoplásmicas , Masculino , Animais , Injeções de Esperma Intracitoplásmicas/veterinária , Injeções de Esperma Intracitoplásmicas/métodos , Ionomicina/farmacologia , Sêmen , Desenvolvimento Embrionário , Oócitos/fisiologia , Blastocisto , Etanol/farmacologia , Espermatozoides/fisiologia
8.
Theriogenology ; 218: 200-207, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38335707

RESUMO

Members of the Equus genus exhibit a fascinating capacity for hybridization, giving rise to healthy offspring. Mules, resulting from the mating of a mare with a jack, represent the most prevalent equid hybrid, serving diverse roles in our society. While in vitro embryo production, particularly through Intracytoplasmic Sperm Injection (ICSI), has rapidly gained significance in domestic horses, the in vitro production in other equids remains largely unexplored. Utilizing donkey sperm for fertilizing horse oocytes not only addresses this gap but also provides an opportunity to investigate donkey sperm's fertilization capability in vitro to further improve donkey ICSI. In this work, we initially studied the localization of donkey sperm Phospholipase C zeta (PLCζ) and assessed the sperm's capacity to induce pronuclear formation and maternal SMARCA4 recruitment upon injection into pig oocytes through ICSI. Subsequently, we investigated the injection of donkey sperm into horse oocytes, evaluating in vitro production up to the blastocyst stage using sperm from different jacks, including frozen and refrigerated samples. Distinct patterns of PLCζ localization were observed for donkey sperm cells compared to their horse counterparts. Additionally, donkey sperm exhibits a reduced ability to induce porcine oocyte activation. However, when injected into horse oocytes, donkey sperm demonstrated sufficient capability to induce oocyte activation as no discernible differences in cleavage or blastocyst rates are observed between in vitro produced mules and horse ICSI embryos. Our study not only delineates PLCζ localization in donkey sperm but also suggests potential differences in the ability to induce oocyte activation in pigs compared to horses while observing no distinctions in pronuclear recruitment of SMARCA4. Interestingly, donkey sperm remains sufficiently capable of inducing horse oocyte activation for in vitro mule blastocyst production.


Assuntos
Equidae , Injeções de Esperma Intracitoplásmicas , Cavalos , Masculino , Animais , Feminino , Suínos , Injeções de Esperma Intracitoplásmicas/veterinária , Sêmen , Oócitos/fisiologia , Espermatozoides/fisiologia , Desenvolvimento Embrionário/fisiologia
9.
J Assist Reprod Genet ; 40(11): 2565-2576, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37725179

RESUMO

BACKGROUND: The impact of vitrification on oocyte developmental competence as a function of donor age remains an important issue in assisted reproductive technologies (ARTs). METHODS: Equine germinal vesicle (GV) or metaphase II (M(II) oocytes were vitrified using the Cryotop® method. Spindle organization and chromosome alignment were evaluated from confocal imaging data sets of in vivo (IVO) or in vitro (IVM) matured oocytes subjected to vitrification or not. Intracytoplasmic sperm injection (ICSI) from the same groups was used to assess developmental potential. RESULTS: An increase in chromosome misalignment was observed in spindles from older mares when compared to those of younger mares (P < 0.05). When MII oocytes subjected to vitrification were examined following warming, there was no difference in the percentage of oocytes displaying chromosome misalignment. Next, GV oocytes, collected from the ovaries of younger and older mares, were compared between fresh IVM and IVM following vitrification and warming. For nonvitrified samples, an age difference was again noted for spindle organization and chromosome alignment, with a higher (P < 0.05) percentage of normal bipolar meiotic spindles with aligned chromosomes observed in nonvitrified oocytes from young versus older mares. Vitrification led to a reduction of spindle length (P < 0.05) for oocytes from old mares, whether vitrified at GV or MII stages, whereas this effect was not observed in oocytes from young mares except those vitrified at GV and subjected to IVM. Oocyte developmental potential after vitrification was evaluated after ICSI of vitrified and warmed MII or GV oocytes from young mares. From 25 MII oocytes, 18 oocytes were injected with sperm, and six blastocysts were produced, which, upon transfer to mares' uteri, resulted in four pregnancies. Immature (GV) oocytes collected from live mares were also vitrified, warmed, and matured in vitro before ICSI. In this group, nonvitrified, control, and vitrified oocytes did not differ (P > 0.05) with respect to the incidence of maturation to MII, cleavage after ICSI, or blastocyst development. CONCLUSION: These findings demonstrate an effect of maternal age in an equine model at the level of meiotic spindle integrity and chromosome positioning that is influenced by both the meiotic stage at which oocytes are vitrified and whether meiotic maturation occurred in vivo or in vitro.


Assuntos
Injeções de Esperma Intracitoplásmicas , Vitrificação , Animais , Cavalos , Masculino , Feminino , Injeções de Esperma Intracitoplásmicas/veterinária , Criopreservação/veterinária , Criopreservação/métodos , Sêmen , Oócitos , Microscopia Confocal
10.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569324

RESUMO

Sperm sexing is a technology that can generate great economic benefits in the animal production sector. Techniques such as sex-sorting promise over 90% accuracy in sperm sexing. However, for the correct standardization of the technique, some laboratory methodologies are required. The present manuscript describes in detail a standardized equine sperm sex-sorting protocol using an absolute qPCR-based methodology. Furthermore, the results of absolute qPCR were implemented and validated by generating equine/bovine heterologous embryos by intracytoplasmic sperm injection (ICSI) of presumably sexed equine spermatozoa into bovine oocytes using a piezoelectric system (Piezo-ICSI). Our results indicated that equine sex-sorting spermatozoa had a 97% and 94% certainty for X and Y sperm, respectively, while presumptive female and male equine/bovine hybrid embryos, generated by Piezo-ICSI, had an accuracy of 92% with respect to the desired sex. Therefore, it is concluded that the presented methodology is a reliable, cost-effective, and relatively simple option for standardizing sex-sorting of equine spermatozoa. This is supported by the results of the correct sexing of Piezo-ICSI heterologous embryos generated with the sexed spermatozoa, validating the correct sexing and viability of these gametes.


Assuntos
Sêmen , Espermatozoides , Cavalos , Masculino , Animais , Bovinos , Feminino , Oócitos , Injeções de Esperma Intracitoplásmicas/veterinária , Injeções de Esperma Intracitoplásmicas/métodos , Padrões de Referência
11.
Theriogenology ; 206: 106-113, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37207564

RESUMO

Round spermatid injection (ROSI), one of the assistant reproductive technologies, was used to treat partial infertility patients suffering from non-obstructive azoospermia. However, the development efficiency and birth rate of ROSI embryos are extremely low, and it is urgent to investigate the underlying mechanisms of low efficiency to improve the clinical application of ROSI technology. Here, we analyzed and compared the genome stability of the mouse blastocyst and the post-implantation development between ROSI and ICSI embryos. We first sequenced the genome of blastocysts from mouse ROSI embryos that can correctly form male and female pronuclei (2 PN) and found that the genomes of 7 blastocysts were normal. Furthermore, the implantation rate of ROSI 2 PN embryos on embryonic day 7.5 is similar to that of ICSI embryos, and at this time, 37.50% (9/24) of deciduas have no normal gestational sac. The proportion of embryos that survived to embryonic day 11.5 in the ROSI 2 PN group, ROSI non-2 PN group, parthenogenesis group, and ICSI 2 PN group was 51.61%, 7.14%, 0.00%, and 55.00%, respectively. And two smaller fetuses were found in the ROSI 2 PN group, which is not found in the other three groups. In addition, the physiological indexes, including fetus and placenta weight, sex ratio, growth rate, and the natural breeding ability for the offspring obtained from mouse ROSI, were evaluated; ROSI mice exhibited no obvious defect or abnormality and implied that the progeny were safe. Our results provided new evidence to promote the clinical application of ROSI technology.


Assuntos
Oócitos , Espermátides , Masculino , Feminino , Gravidez , Animais , Camundongos , Oócitos/fisiologia , Injeções de Esperma Intracitoplásmicas/veterinária , Desenvolvimento Embrionário , Partenogênese , Blastocisto/fisiologia
12.
Theriogenology ; 195: 199-208, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356490

RESUMO

Equus members exhibit very divergent karyotype, genetic plasticity, and significant differences in their reproductive physiology. Despite the fact that somatic cell nuclear transfer and intracytoplasmic sperm injection (ICSI) has gained relevance in the last few years in horses, few reports have been published exploring ovum pick up (OPU) and in vitro maturation (IVM) of cumulus-oocyte complexes (COCs) in donkeys. Yet, some donkey species and breeds are considered endangered, and these assisted-reproductive technologies could help to preserve the genetic of valuable individuals. In this study, we tested the hypothesis that supplementation with jenny preovulatory follicular fluid (PFF) during IVM could improve oocyte developmental competence in the donkey. For this, in vitro nuclear maturation rates, cumulus cell expansion, and embryo development after ICSI of donkey COCs matured in culture media supplemented with fetal bovine serum (FBS) or donkey PFF, with a known metabolomic profile, were assessed. Time-lapse imagining was performed after ICSI of horse and donkey oocytes. Eight OPU sessions were done in five jennies with an average recovery rate of 69.2% (n = 45 COCs). Although lower cumulus cells expansion was observed in oocytes of PFF group (P = 0.0010), no significant differences were described in nuclear maturation rates and preimplantation embryo development between groups. Donkey ICSI embryos showed similar morphokinetics to horse ICSI embryos. Our study shows that supplementing IVM media with FBS or donkey PFF supports nuclear maturation and early preimplantation embryo development after ICSI in donkeys. To our knowledge, the present study is the first report of ICSI, time-lapse imaging and in vitro blastocyst production in donkey.


Assuntos
Líquido Folicular , Técnicas de Maturação in Vitro de Oócitos , Masculino , Gravidez , Animais , Feminino , Cavalos , Técnicas de Maturação in Vitro de Oócitos/veterinária , Equidae , Imagem com Lapso de Tempo/veterinária , Injeções de Esperma Intracitoplásmicas/veterinária , Sêmen
13.
Theriogenology ; 195: 85-92, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332376

RESUMO

Intracytoplasmic Sperm Injection (ICSI) using frozen/thawed sperm is a common procedure to obtain embryos from fertile or subfertile mares and stallions. Stallion-associated factors that impact the efficiency of ICSI have been studied less than those associated with the mare. Three experiments were conducted: Experiment 1: the effect of freezing extender composition and cryoprotectant; Experiment 2: the effect of sperm exposure to seminal plasma prior to freezing (ejaculated vs. epididymal sperm; two-freeze/thaw cycles each); and Experiment 3: the effect of sperm morphologic feature used for fertilization (normal vs. cytoplasmic droplet vs. bent tail); on the blastocyst rate after ICSI. In Experiment 1, stallion sperm was cryopreserved using commercially available extenders containing: a) 2% egg-yolk + milk + 4% glycerol (MFR5); b) 2% egg-yolk + milk + 2% glycerol + 3% methyl formamide (CMMFR5); c) 20% egg-yolk + 4.75% glycerol (LE); or d) 20% egg-yolk + 2% glycerol + 3% methyl formamide (CMLE). Sperm from each of the treatment groups were used for Piezo-driven ICSI on in vitro-matured equine oocytes (n = 321). Extender CMLE resulted in a lower cleavage rate (35%) than the other treatment groups (MFR5: 74%, CMMFR5: 62%, LE: 68%; P < 0.05). Extender MFR5 yielded a higher blastocyst rate per injected oocyte (21/82 [26%]) than the Groups LE (8/77 [10%]), CMLE (4/80 [5%]) or CMMFR5 (4/82 [5%]; P < 0.05). Extender MFR5 also yielded a higher blastocyst rate per cleaved oocyte (34%) than Groups LE, CMLE or CMMFR5 (15%, 14%, 8%; respectively P < 0.05). In Experiment 2, ejaculated (EJ) and epididymal (EPD) sperm from a fertile stallion which was initially cryopreserved in the CMLE extender, was thawed and re-cryopreserved in MFR5 extender for use in ICSI. Sperm from both groups (EJ vs. EPD) were used for ICSI on in vitro matured oocytes (n = 127). Differences were not detected for cleavage rate (EJ: 36/63 [57%] vs. EPD: 49/64 [77%]), blastocyst rate per injected oocyte (EJ: 11/63 [17%] vs. EPD: 11/64 [17%]), or blastocyst rate per cleaved oocyte (EJ: 31% vs. EPD: 22%) between treatment groups (P > 0.05). In Experiment 3, morphologically normal sperm (N), or sperm with proximal droplets (PD) or bent tails (BT), were obtained from a single fertile stallion and were used for ICSI on in vitro matured oocytes (n = 75). No differences were detected among treatment groups for cleavage rate (N: 19/25 [77%] vs. PD: 20/25 [88%] vs. BT: 18/25 [72%]), blastocyst rate per injected oocyte (N: 6/25 [24%] vs. PD: 5/25 [20%] vs. BT: 2/25 [8%]), and blastocyst rate per cleaved oocyte (N: 32% vs. PD: 23% vs. BT: 11%; P > 0.05). In conclusion, the current study indicates that freezing extender composition used for stallion sperm cryopreservation has an impact on the developmental competence of in vitro-matured equine oocytes after ICSI and in vitro culture. Furthermore, we were unable to detect differences on cleavage and blastocyst rates when performing ICSI when using: 1) ejaculated or epididymal sperm; or 2) sperm with different morphologic features. The results from the current study provide additional insight regarding stallion-related factors that should be considered when performing ICSI in horses.


Assuntos
Sêmen , Injeções de Esperma Intracitoplásmicas , Masculino , Cavalos , Animais , Feminino , Injeções de Esperma Intracitoplásmicas/veterinária , Glicerol , Espermatozoides , Blastocisto , Formamidas
14.
Anim Reprod Sci ; 245: 107071, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36152450

RESUMO

The demand for equine in vitro produced embryos has increased over the last decade. The aim of this study was to compare the effects of an extended IVM or a prolonged period before fertilization, including holding time, on equine immature oocyte developmental competence. Oocytes, collected from abattoir-derived ovaries, were divided into 4 groups: H0/24 (n = 165) 0 h holding + standard 24-26 h IVM; H8/36 (n = 160) 8 h holding + 36 h IVM; H20/24 (n = 187) 20 h holding + 24 h IVM; H0/44 (n = 164) 0 h holding + 44 h IVM. Oocytes matured to MII were fertilized by intracytoplasmic sperm injection (ICSI) and cultured for 10 days. The oocyte degeneration rate was higher (P < 0.05) for H20/24 than the other groups (H0/24 38.2 %, H8/36 43.1 %, H20/24 54.5 %, H0/44 32.9 %). Cleavage was higher (P < 0.05) in H20/24 (70 %) compared to H0/24 (45 %) and H8/36 (54 %) but not to H0/44 (63 %). No differences among groups were observed in the number of blastocysts per oocyte. Injected oocytes that reached the blastocysts stage were higher (P < 0.05) for H20/24 (20 %) than H0/24 (7 %) and H0/44 (7 %) but not H8/36 (12 %). For cleaved oocytes, a higher blastocyst rate (P < 0.05) was observed for H20/24 (28 %) than H0/44 (11 %), while H0/24 (15 %) and H8/36 (21 %) were not different from any group (P > 0.05). Timing of blastocyst development was not different among groups. Overnight holding of equine immature oocytes followed by a standard IVM interval may induce a pre-selection of the most competent oocytes thereby improving cleavage and embryo development rates after ICSI.


Assuntos
Técnicas de Maturação in Vitro de Oócitos , Sêmen , Animais , Blastocisto , Desenvolvimento Embrionário , Cavalos , Técnicas de Maturação in Vitro de Oócitos/veterinária , Masculino , Oócitos , Injeções de Esperma Intracitoplásmicas/veterinária
15.
Zygote ; 30(6): 749-767, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36082429

RESUMO

Intracytoplasmic sperm injection (ICSI) is an assisted reproductive technique mainly used to overcome severe infertility problems associated with the male factor, but in cattle its efficiency is far from optimal. Artificial activation treatments combining ionomycin (Io) with 6-dimethylaminopurine after piezo-ICSI or anisomycin after conventional ICSI have recently increased the blastocyst rate obtained. Compounds to capacitate bovine spermatozoa, such as heparin and methyl-ß-cyclodextrin and compounds to destabilize sperm membranes such as NaOH, lysolecithin and Triton X-100, have been assessed, although they have failed to substantially improve post-ICSI embryonic development. Disulfide bond reducing agents, such as dithiothreitol (DTT), dithiobutylamine and reduced glutathione, have been assessed to decondense the hypercondensed head of bovine spermatozoa, the two latter being more efficient than DTT and less harmful. Although piezo-directed ICSI without external activation has generated high fertilization rates and modest rates of early embryo development, other studies have required exogenous activation to improve the results. This manuscript thoroughly reviews the different strategies used in bovine ICSI to improve its efficiency and proposes some alternative approaches, such as the use of extracellular vesicles (EVs) as 'biological methods of oocyte activation' or the incorporation of EVs in the in vitro maturation and/or culture medium as antioxidant defence agents to improve the competence of the ooplasm, as well as a preincubation of the spermatozoa in estrous oviductal fluid to induce physiological capacitation and acrosome reaction before ICSI, and the use of hyaluronate in the sperm immobilization medium.


Assuntos
Sêmen , Injeções de Esperma Intracitoplásmicas , Gravidez , Feminino , Bovinos , Masculino , Animais , Injeções de Esperma Intracitoplásmicas/veterinária , Injeções de Esperma Intracitoplásmicas/métodos , Espermatozoides/fisiologia , Reação Acrossômica , Oócitos/fisiologia , Ditiotreitol/farmacologia
16.
J Reprod Dev ; 68(5): 335-339, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-35965077

RESUMO

Intracytoplasmic sperm injection (ICSI) is an alternative technique to in vitro fertilization (IVF) for producing transferable blastocysts, especially in combination with cryopreserved oocytes, when the IVF system does not work sufficiently. The present study was conducted to directly compare the efficacy of producing bovine blastocysts by ICSI and IVF from vitrified-warmed and fresh oocytes. Denuded oocytes with a detectable first polar body were vitrified-warmed using a nylon mesh device. In the non-vitrified control group, blastocyst yields 8 days after IVF and ICSI were 32.0 and 26.8%, respectively. Oocyte vitrification and subsequent IVF resulted in an impaired blastocyst yield (15.0%); however, such a loss of efficacy due to vitrification was not observed in the ICSI group (blastocyst yield, 25.2%). The alignment of cortical granules beneath the oolemma was comparable between the fresh control and vitrified-warmed oocytes. Here, we report the high survival of vitrified-warmed bovine oocytes, as assessed by ICSI.


Assuntos
Nylons , Injeções de Esperma Intracitoplásmicas , Animais , Blastocisto , Bovinos , Criopreservação/métodos , Criopreservação/veterinária , Fertilização in vitro/veterinária , Masculino , Oócitos , Sêmen , Injeções de Esperma Intracitoplásmicas/métodos , Injeções de Esperma Intracitoplásmicas/veterinária , Vitrificação
17.
J Am Vet Med Assoc ; 260(13): 1683-1689, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35905148

RESUMO

OBJECTIVE: To determine the effect of stage of estrus cycle (day after ovulation) at the time of transvaginal ultrasound-guided follicle aspiration (TVA) on parameters related to the success of in vitro equine embryo production. ANIMALS: 14 healthy mares were used; 11 completed the study and were included for analysis. PROCEDURES: Mares underwent TVA of all follicles ≥ 5 mm diameter at each of 3 timepoints: 7 days after ovulation, 14 days after ovulation, and S-DSF (subordinate to a dominant stimulated follicle), during estrus at 24 hours after gonadotropin administration. The 3 treatments were assigned to each mare in random order; mares underwent follicle growth and ovulation between treatments. Recovered oocytes were matured in vitro, subjected to intracytoplasmic sperm injection (ICSI), and cultured to the blastocyst stage in vitro. RESULTS: Total follicle numbers differed significantly between individual mares but did not differ between treatments. The number of follicles of different sizes significantly (P < 0.05) differed between treatments, with mares in the Day 7 treatment having more follicles 5 to 9 mm in diameter and fewer follicles 20 to 24 mm in diameter than mares in the other 2 treatments. After in vitro maturation culture, there were significantly more mature oocytes in the S-DSF treatment than in the other 2 treatments. There were no differences in blastocyst rate after ICSI among treatment groups. CLINICAL RELEVANCE: Timing of TVA for aspiration of S-DSFs may increase the number of mature oocytes available for ICSI. Understanding of the effects of timing of TVA will help veterinarians to maximize the efficiency of this procedure.


Assuntos
Sêmen , Injeções de Esperma Intracitoplásmicas , Cavalos , Animais , Feminino , Masculino , Injeções de Esperma Intracitoplásmicas/veterinária , Blastocisto , Estro , Oócitos
18.
Theriogenology ; 187: 215-218, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35623226

RESUMO

In vitro embryo production (IVEP) via Ovum Pick-Up (OPU) and Intracytoplasmic Sperm Injection (ICSI) has become a popular breeding technique in Warmblood mares because of the high success rate and several practical advantages. IVEP offers a solution for a variety of reproductive issues including, but not limited to, sub-fertility in stallions or mares, poor quality or scarce frozen semen, difficulty in synchronizing donor and recipient mares, and inefficient use of recipient mares. In 515 OPU-ICSI sessions performed in our facility in 2021, a mean of 25.9 antral follicles were aspirated yielding an average 13.8 immature oocytes, which were shipped overnight to a specialized ICSI laboratory (Avantea). One or more blastocysts (range: 0-13 blastocysts) were produced from 78% of procedures with a mean of 2.12 blastocysts per session; the likelihood of pregnancy after transfer of a cryopreserved thawed IVP blastocysts in 2021 (n = 781) was 77.7%. Several donor mare, recipient mare, stallion and embryonic factors influence the likelihood of producing an in vitro blastocyst or achieving pregnancy. Approximately 60% of the transferred IVP blastocysts yield a foal; moreover, neither gestation length nor the health of foals is noticeably influenced by IVEP. On the other hand, a skewed sex ratio towards colts is apparent among IVEP foals resulting from day 7 but not day 8 embryos, suggesting that male embryos develop more rapidly in vitro. Although serious complications after OPU are uncommon, owners should be aware of their existence, because some complications can be life-threating.


Assuntos
Blastocisto , Embrião de Mamíferos , Animais , Criopreservação/veterinária , Feminino , Cavalos , Masculino , Oócitos , Gravidez , Injeções de Esperma Intracitoplásmicas/veterinária
19.
Theriogenology ; 185: 121-126, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35397307

RESUMO

Intracytoplasmic sperm injection (ICSI), oocyte vitrification after ovum pick-up (OPU), and in vitro maturation are reproductive technologies with incredible potential for efficient cattle production. However, the developmental competence of embryos produced by ICSI using vitrified OPU oocytes remains unknown. Here, we aimed to evaluate the developmental competence of these embryos from the early embryo period to full term. The cleavage rate in the ICSI embryos using vitrified OPU oocytes during in vitro culture was significantly lower than those in control in vitro fertilized (IVF) embryos using fresh OPU oocytes (30.9 ± 4.5% v.s. 65.9 ± 7.0%) (P < 0.05), but the proportion of blastocysts to cleaved embryos was significantly higher than those of IVF embryos using vitrified OPU oocytes (55.9 ± 10.8% v.s. 23.2 ± 9.3%) (P < 0.05). To further investigate the transcription levels of genes related to cell differentiation in ICSI embryos using vitrified OPU oocytes, the relative abundance of mRNAs (OCT4, NANOG, SOX2, CDX2, GATA3, and IFNT) was analyzed by quantitative reverse-transcription PCR. There were no significant differences in the expression levels between ICSI embryos using vitrified OPU oocytes and control IVF embryos. Finally, developmental competence to term in ICSI embryos using vitrified OPU oocytes was examined by embryo transfer, and two healthy calves were born. These findings confirmed that ICSI and vitrification decrease developmental rates in vitro, but both procedures can lead to full-term development of bovine embryos. These results demonstrate that ICSI embryos using vitrification OPU oocytes are viable for cattle production.


Assuntos
Oócitos , Injeções de Esperma Intracitoplásmicas , Animais , Blastocisto , Bovinos , Fertilização in vitro/veterinária , Injeções de Esperma Intracitoplásmicas/veterinária , Vitrificação
20.
Anim Reprod Sci ; 246: 106925, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35148927

RESUMO

During the past 2 decades, intracytoplasmic sperm injection (ICSI) has become a routine technique for clinical applications in humans. The widespread use among domestic species, however, has been limited to horses. In horses, ICSI is used to reproduce elite individuals and, as well as in humans, to mitigate or even circumvent reproductive barriers. Failures in superovulation and conventional in vitro fertilization (IVF) have been the main reason for the use of this technology in horses. In pigs, ICSI has been successfully used to produce transgenic animals. A series of factors have resulted in implementation of ICSI in pigs: need to use zygotes for numerous technologies, complexity of collecting zygotes surgically, and problems of polyspermy when there is utilization of IVF procedures. Nevertheless, there have been very few additional reports confirming positive results with the use of ICSI in pigs. The ICSI procedure could be important for use in cattle of high genetic value by maximizing semen utilization, as well as for utilization of spermatozoa from prepubertal bulls, by providing the opportunity to shorten the generation interval. When attempting to utilize ICSI in ruminants, there are some biological limitations that need to be overcome if this procedure is going to be efficacious for making genetic improvements in livestock in the future. In this review article, there is an overview and projection of the methodologies and applications that are envisioned for ICSI utilization in these species in the future.


Assuntos
Gado , Sêmen , Humanos , Feminino , Masculino , Bovinos , Animais , Cavalos , Suínos , Injeções de Esperma Intracitoplásmicas/veterinária , Injeções de Esperma Intracitoplásmicas/métodos , Fertilização in vitro/veterinária , Espermatozoides , Ruminantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...