Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.909
Filtrar
1.
PLoS Negl Trop Dis ; 18(5): e0012165, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38771858

RESUMO

The infectious inoculum of a sand fly, apart from its metacyclic promastigotes, is composed of factors derived from both the parasite and the vector. Vector-derived factors, including salivary proteins and the gut microbiota, are essential for the establishment and enhancement of infection. However, the type and the number of bacteria egested during salivation is unclear. In the present study, sand flies of Phlebotomus papatasi were gathered from three locations in hyperendemic focus of zoonotic cutaneous leishmaniasis (ZCL) in Isfahan Province, Iran. By using the forced salivation assay and targeting the 16S rRNA barcode gene, egested bacteria were characterized in 99 (44%) out of 224 sand flies. Culture-dependent and culture-independent methods identified the members of Enterobacter cloacae and Spiroplasma species as dominant taxa, respectively. Ten top genera of Spiroplasma, Ralstonia, Acinetobacter, Reyranella, Undibacterium, Bryobacter, Corynebacterium, Cutibacterium, Psychrobacter, and Wolbachia constituted >80% of the saliva microbiome. Phylogenetic analysis displayed the presence of only one bacterial species for the Spiroplasma, Ralstonia, Reyranella, Bryobacter and Wolbachia, two distinct species for Cutibacterium, three for Undibacterium and Psychrobacter, 16 for Acinetobacter, and 27 for Corynebacterium, in the saliva. The abundance of microbes in P. papatasi saliva was determined by incorporating the data on the read counts and the copy number of 16S rRNA gene, about 9,000 bacterial cells, per sand fly. Both microbiological and metagenomic data indicate that bacteria are constant companions of Leishmania, from the intestine of the vector to the vertebrate host. This is the first forced salivation experiment in a sand fly, addressing key questions on infectious bite and competent vectors.


Assuntos
Bactérias , Phlebotomus , Filogenia , RNA Ribossômico 16S , Saliva , Animais , Phlebotomus/microbiologia , RNA Ribossômico 16S/genética , Saliva/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Irã (Geográfico) , Insetos Vetores/microbiologia , Insetos Vetores/fisiologia , Feminino , Microbiota , Leishmaniose Cutânea/transmissão , Leishmaniose Cutânea/microbiologia , Leishmaniose Cutânea/parasitologia , Masculino
2.
PLoS Biol ; 22(5): e3002625, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38771885

RESUMO

Yersinia pestis, the causative agent of plague, is a highly lethal vector-borne pathogen responsible for killing large portions of Europe's population during the Black Death of the Middle Ages. In the wild, Y. pestis cycles between fleas and rodents; occasionally spilling over into humans bitten by infectious fleas. For this reason, fleas and the rats harboring them have been considered the main epidemiological drivers of previous plague pandemics. Human ectoparasites, such as the body louse (Pediculus humanus humanus), have largely been discounted due to their reputation as inefficient vectors of plague bacilli. Using a membrane-feeder adapted strain of body lice, we show that the digestive tract of some body lice become chronically infected with Y. pestis at bacteremia as low as 1 × 105 CFU/ml, and these lice routinely defecate Y. pestis. At higher bacteremia (≥1 × 107 CFU/ml), a subset of the lice develop an infection within the Pawlowsky glands (PGs), a pair of putative accessory salivary glands in the louse head. Lice that developed PG infection transmitted Y. pestis more consistently than those with bacteria only in the digestive tract. These glands are thought to secrete lubricant onto the mouthparts, and we hypothesize that when infected, their secretions contaminate the mouthparts prior to feeding, resulting in bite-based transmission of Y. pestis. The body louse's high level of susceptibility to infection by gram-negative bacteria and their potential to transmit plague bacilli by multiple mechanisms supports the hypothesis that they may have played a role in previous human plague pandemics and local outbreaks.


Assuntos
Pediculus , Peste , Yersinia pestis , Animais , Yersinia pestis/patogenicidade , Yersinia pestis/fisiologia , Pediculus/microbiologia , Pediculus/fisiologia , Humanos , Peste/transmissão , Peste/microbiologia , Insetos Vetores/microbiologia , Insetos Vetores/parasitologia , Mordeduras e Picadas de Insetos/microbiologia , Feminino , Masculino
3.
PLoS Negl Trop Dis ; 18(5): e0012194, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38814945

RESUMO

Haemophilus ducreyi was historically known as the causative agent of chancroid, a sexually-transmitted disease causing painful genital ulcers endemic in many low/middle-income nations. In recent years the species has been implicated as the causative agent of nongenital cutaneous ulcers affecting children of the South Pacific Islands and West African countries. Much is still unknown about the mechanism of H. ducreyi transmission in these areas, and recent studies have identified local insect species, namely flies, as potential transmission vectors. H. ducreyi DNA has been detected on the surface and in homogenates of fly species sampled from Lihir Island, Papua New Guinea. The current study develops a model system using Musca domestica, the common house fly, as a model organism to demonstrate proof of concept that flies are a potential vector for the transmission of viable H. ducreyi. Utilizing a green fluorescent protein (GFP)-tagged strain of H. ducreyi and three separate exposure methods, we detected the transmission of viable H. ducreyi by 86.11% ± 22.53% of flies sampled. Additionally, the duration of H. ducreyi viability was found to be directly related to the bacterial concentration, and transmission of H. ducreyi was largely undetectable within one hour of initial exposure. Push testing, Gram staining, and PCR were used to confirm the identity and presence of GFP colonies as H. ducreyi. This study confirms that flies are capable of mechanically transmitting viable H. ducreyi, illuminating the importance of investigating insects as vectors of cutaneous ulcerative diseases.


Assuntos
Cancroide , Haemophilus ducreyi , Moscas Domésticas , Animais , Moscas Domésticas/microbiologia , Haemophilus ducreyi/genética , Haemophilus ducreyi/isolamento & purificação , Cancroide/transmissão , Cancroide/microbiologia , Papua Nova Guiné , Insetos Vetores/microbiologia , Feminino , Masculino
4.
Proc Natl Acad Sci U S A ; 121(22): e2402911121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38776366

RESUMO

Leaf yellowing is a well-known phenotype that attracts phloem-feeding insects. However, it remains unclear how insect-vectored plant pathogens induce host leaf yellowing to facilitate their own transmission by insect vectors. Here, we report that an effector protein secreted by rice orange leaf phytoplasma (ROLP) inhibits chlorophyll biosynthesis and induces leaf yellowing to attract leafhopper vectors, thereby presumably promoting pathogen transmission. This effector, designated secreted ROLP protein 1 (SRP1), first secreted into rice phloem by ROLP, was subsequently translocated to chloroplasts by interacting with the chloroplastic glutamine synthetase (GS2). The direct interaction between SRP1 and GS2 disrupts the decamer formation of the GS2 holoenzyme, attenuating its enzymatic activity, thereby suppressing the synthesis of chlorophyll precursors glutamate and glutamine. Transgenic expression of SRP1 in rice plants decreased GS2 activity and chlorophyll precursor accumulation, finally inducing leaf yellowing. This process is correlated with the previous evidence that the knockout of GS2 expression in rice plants causes a similar yellow chlorosis phenotype. Consistently, these yellowing leaves attracted higher numbers of leafhopper vectors, caused the vectors to probe more frequently, and presumably facilitate more efficient phytoplasma transmission. Together, these results uncover the mechanism used by phytoplasmas to manipulate the leaf color of infected plants for the purpose of enhancing attractiveness to insect vectors.


Assuntos
Cloroplastos , Glutamato-Amônia Ligase , Hemípteros , Insetos Vetores , Oryza , Phytoplasma , Folhas de Planta , Animais , Hemípteros/microbiologia , Glutamato-Amônia Ligase/metabolismo , Glutamato-Amônia Ligase/genética , Phytoplasma/fisiologia , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Oryza/microbiologia , Oryza/genética , Insetos Vetores/microbiologia , Cloroplastos/metabolismo , Doenças das Plantas/microbiologia , Clorofila/metabolismo , Plantas Geneticamente Modificadas , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
5.
Curr Opin Insect Sci ; 63: 101203, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38705385

RESUMO

Vector-borne diseases are globally prevalent and represent a major socioeconomic problem worldwide. Blood-sucking arthropods transmit most pathogenic agents that cause these human infections. The pathogens transmission to their vertebrate hosts depends on how efficiently they infect their vector, which is particularly impacted by the microbiota residing in the intestinal lumen, as well as its cells or internal organs such as ovaries. The balance between costs and benefits provided by these interactions ultimately determines the outcome of the relationship. Here, we will explore aspects concerning the nature of microbe-vector interactions, including the adaptive traits required for their establishment, the varied outcomes of symbiotic interactions, as well as the factors influencing the transition of these relationships across a continuum from parasitism to mutualism.


Assuntos
Simbiose , Animais , Insetos Vetores/microbiologia , Insetos Vetores/fisiologia , Doenças Transmitidas por Vetores/transmissão , Vetores Artrópodes/microbiologia
6.
Phytopathology ; 114(5): 869-884, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38557216

RESUMO

An unprecedented plant health emergency in olives has been registered over the last decade in Italy, arguably more severe than what occurred repeatedly in grapes in the United States in the last 140 years. These emergencies are epidemics caused by a stealthy pathogen, the xylem-limited, insect-transmitted bacterium Xylella fastidiosa. Although these epidemics spurred research that answered many questions about the biology and management of this pathogen, many gaps in knowledge remain. For this review, we set out to represent both the U.S. and European perspectives on the most pressing challenges that need to be addressed. These are presented in 10 sections that we hope will stimulate discussion and interdisciplinary research. We reviewed intrinsic problems that arise from the fastidious growth of X. fastidiosa, the lack of specificity for insect transmission, and the economic and social importance of perennial mature woody plant hosts. Epidemiological models and predictions of pathogen establishment and disease expansion, vital for preparedness, are based on very limited data. Most of the current knowledge has been gathered from a few pathosystems, whereas several hundred remain to be studied, probably including those that will become the center of the next epidemic. Unfortunately, aspects of a particular pathosystem are not always transferable to others. We recommend diversification of research topics of both fundamental and applied nature addressing multiple pathosystems. Increasing preparedness through knowledge acquisition is the best strategy to anticipate and manage diseases caused by this pathogen, described as "the most dangerous plant bacterium known worldwide."


Assuntos
Insetos Vetores , Doenças das Plantas , Xylella , Xilema , Xylella/fisiologia , Xylella/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Xilema/microbiologia , Animais , Insetos Vetores/microbiologia , Olea/microbiologia , Insetos/microbiologia , Estados Unidos , Vitis/microbiologia
7.
J Invertebr Pathol ; 204: 108078, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38438078

RESUMO

The spittlebug Philaenus spumarius (Hemiptera: Aphrophoridae) is the predominant vector of Xylella fastidiosa (Xanthomonadales: Xanthomonadaceae) in Apulia, Italy and the rest of Europe. Current control strategies of the insect vector rely on mechanical management of nymphal stages and insecticide application against adult populations. Entomopathogenic fungi (EPF) are biological control agents naturally attacking spittlebugs and may effectively reduce population levels of host species. Different experimental trials in controlled conditions have been performed to i) identify naturally occurring EPF on P, spumarius in Northwestern Italy, and ii) evaluate the potential for biocontrol of the isolated strains on both nymphal and adult stages of the spittlebug. Four EPF species were isolated from dead P. spumarius collected in semi-field conditions: Beauveria bassiana, Conidiobolus coronatus, Fusarium equiseti and Lecanicillium aphanocladii. All the fungal isolates showed entomopathogenic potential against nymphal stages of P. spumarius (≈ 45 % mortality), except for F. equiseti, in preliminary trials. No induced mortality was observed on adult stage. Lecanicillium aphanocladii was the most promising fungus and its pathogenicity against spittlebug nymphs was further tested in different formulations (conidia vs blastospores) and with natural adjuvants. Blastospore formulation was the most effective in killing nymphal instars and reducing the emergence rate of P, spumarius adults, reaching mortality levels (90%) similar to those of the commercial product Naturalis®, while no or adverse effect of natural adjuvants was recorded. The encouraging results of this study pave way for testing EPF isolates against P, spumarius in field conditions and find new environmentally friendly control strategies against insect vectors of X. fastidiosa.


Assuntos
Hemípteros , Ninfa , Controle Biológico de Vetores , Animais , Ninfa/microbiologia , Ninfa/crescimento & desenvolvimento , Controle Biológico de Vetores/métodos , Hemípteros/microbiologia , Beauveria/patogenicidade , Beauveria/fisiologia , Insetos Vetores/microbiologia , Fusarium , Itália , Xylella/fisiologia , Hypocreales/fisiologia , Hypocreales/patogenicidade
8.
J Med Entomol ; 61(1): 201-211, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38038662

RESUMO

Plague is a zoonotic vector-borne disease caused by the bacterium Yersinia pestis. In Madagascar, it persists in identified foci, where it is a threat to public health generally from September to April. A more complete understanding of how the disease persists could guide control strategies. Fleas are the main vector for transmission between small mammal hosts and humans, and fleas likely play a role in the maintenance of plague. This study characterized the dynamics of flea populations in plague foci alongside the occurrence of human cases. From 2018 to 2020, small mammals were trapped at sites in the central Highlands of Madagascar. A total of 2,762 small mammals were captured and 5,295 fleas were collected. The analysis examines 2 plague vector species in Madagascar (Synopsyllus fonquerniei and Xenopsylla cheopis). Generalized linear models were used to relate flea abundance to abiotic factors, with adjustments for trap location and flea species. We observed significant effects of abiotic factors on the abundance, intensity, and infestation rate by the outdoor-associated flea species, S. fonquerniei, but weak seasonality for the indoor-associated flea species, X. cheopis. A difference in the timing of peak abundance was observed between the 2 flea species during and outside the plague season. While the present study did not identify a clear link between flea population dynamics and plague maintenance, as only one collected X. cheopis was infected, the results presented herein can be used by local health authorities to improve monitoring and control strategies of plague vector fleas in Madagascar.


Assuntos
Infestações por Pulgas , Peste , Sifonápteros , Yersinia pestis , Animais , Humanos , Peste/microbiologia , Sifonápteros/microbiologia , Insetos Vetores/microbiologia , Infestações por Pulgas/epidemiologia , Infestações por Pulgas/veterinária , Mamíferos , Dinâmica Populacional
9.
PLoS One ; 18(10): e0291734, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37792900

RESUMO

A comprehensive list of all known host plant species utilised by the Meadow Spittlebug (Philaenus spumarius (L.)) is presented, compiled from published and unpublished sources. P. spumarius feeds on 1311 host plants in 631 genera and 117 families. This appears, by a large margin, to be the greatest number of host species exploited by any herbivorous insect. The Asteraceae (222 species) and Rosaceae (110) together account for 25% of all host species. The Fabaceae (76) and Poaceae (73), are nearly tied for third and fourth place and these four families, combined with the Lamiaceae (62), Apiaceae (50), Brassicaceae (43) and Caprifoliaceae (34), comprise about half of all host species. Hosts are concentrated among herbaceous dicots but range from ferns and grasses to shrubs and trees. Philaenus spumarius is an "extreme polyphage", which appears to have evolved from a monophage ancestor in the past 3.7 to 7.9 million years. It is also the primary European vector of the emerging plant pathogen Xylella fastidiosa. Its vast host range suggests that it has the potential to spread X. fastidiosa among multiple hosts in any environment in which both the spittlebug and bacterium are present. Fully 47.9% of all known hosts were recorded in the Xylella-inspired BRIGIT citizen science P. spumarius host survey, including 358 hosts new to the documentary record, 27.3% of the 1311 total. This is a strong demonstration of the power of organized amateur observers to contribute to scientific knowledge.


Assuntos
Hemípteros , Herbivoria , Humanos , Animais , Insetos Vetores/microbiologia , Hemípteros/microbiologia , Especificidade de Hospedeiro , Poaceae , Árvores
10.
Phytopathology ; 113(10): 1805-1816, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37160668

RESUMO

Plant bacterial pathogens transmitted by hemipteran vectors pose a large threat to the agricultural industry worldwide. Although virus-vector relationships have been widely investigated, a significant gap exists in our understanding of the molecular interactions between circulative bacteria and their insect vectors, mainly leafhoppers and psyllids. In this review, we will describe how these bacterial pathogens adhere, invade, and proliferate inside their insect vectors. We will also highlight the different transmission routes and molecular factors of phloem-limited bacteria that maintain an effective relationship with the insect host. Understanding the pathogen-vector relationship at the molecular level will help in the management of vector-borne bacterial diseases.


Assuntos
Hemípteros , Doenças das Plantas , Animais , Doenças das Plantas/microbiologia , Hemípteros/microbiologia , Bactérias/genética , Insetos Vetores/microbiologia
11.
Environ Entomol ; 52(2): 243-253, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36869841

RESUMO

Insects often harbor bacterial endosymbionts that provide them with nutritional benefit or with protection against natural enemies, plant defenses, insecticides, and abiotic stresses. Certain endosymbionts may also alter acquisition and transmission of plant pathogens by insect vectors. We identified bacterial endosymbionts from four leafhopper vectors (Hemiptera: Cicadellidae) of 'Candidatus Phytoplasma' species by direct sequencing 16S rDNA and confirmed endosymbiont presence and identity by species-specific conventional PCR. We examined three vectors of Ca. Phytoplasma pruni, causal agent of cherry X-disease [Colladonus geminatus (Van Duzee), Colladonus montanus reductus (Van Duzee), Euscelidius variegatus (Kirschbaum)] - and a vector of Ca. Phytoplasma trifolii, the causal agent of potato purple top disease [Circulifer tenellus (Baker)]. Direct sequencing of 16S identified the two obligate endosymbionts of leafhoppers, 'Ca. Sulcia' and 'Ca. Nasuia', which are known to produce essential amino acids lacking in the leafhoppers' phloem sap diet. About 57% of C. geminatus also harbored endosymbiotic Rickettsia. We identified 'Ca. Yamatotoia cicadellidicola' in Euscelidius variegatus, providing just the second host record for this endosymbiont. Circulifer tenellus harbored the facultative endosymbiont Wolbachia, although the average infection rate was only 13% and all males were Wolbachia-uninfected. A significantly greater percentage of Wolbachia-infected Ci. tenellus adults than uninfected adults carried Ca. P. trifolii, suggesting that Wolbachia may increase this insect's ability to tolerate or acquire this pathogen. Results of our study provide a foundation for continued work on interactions between leafhoppers, bacterial endosymbionts, and phytoplasma.


Assuntos
Hemípteros , Phytoplasma , Masculino , Animais , Hemípteros/genética , Phytoplasma/genética , Bactérias/genética , Reação em Cadeia da Polimerase , Insetos Vetores/microbiologia , Doenças das Plantas/microbiologia
12.
Appl Environ Microbiol ; 89(4): e0209122, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36939324

RESUMO

Yersinia pestis (the agent of flea-borne plague) must obstruct the flea's proventriculus to maintain transmission to a mammalian host. To this end, Y. pestis must consolidate a mass that entrapped Y. pestis within the proventriculus very early after its ingestion. We developed a semiautomated fluorescent image analysis method and used it to monitor and compare colonization of the flea proventriculus by a fully competent flea-blocking Y. pestis strain, a partially competent strain, and a noncompetent strain. Our data suggested that flea blockage results primarily from the replication of Y. pestis trapped in the anterior half of the proventriculus. However, consolidation of the bacteria-entrapping mass and colonization of the entire proventricular lumen increased the likelihood of flea blockage. The data also showed that consolidation of the bacterial mass is not a prerequisite for colonization of the proventriculus but allowed Y. pestis to maintain itself in a large flea population for an extended period of time. Taken as the whole, the data suggest that a strategy targeting bacterial mass consolidation could significantly reduce the likelihood of Y. pestis being transmitted by fleas (due to gut blockage), but also the possibility of using fleas as a long-term reservoir. IMPORTANCE Yersinia pestis (the causative agent of plague) is one of the deadliest bacterial pathogens. It circulates primarily among rodent populations and their fleas. Better knowledge of the mechanisms leading to the flea-borne transmission of Y. pestis is likely to generate strategies for controlling or even eradicating this bacillus. It is known that Y. pestis obstructs the flea's foregut so that the insect starves, frantically bites its mammalian host, and regurgitates Y. pestis at the bite site. Here, we developed a semiautomated fluorescent image analysis method and used it to document and compare foregut colonization and disease progression in fleas infected with a fully competent flea-blocking Y. pestis strain, a partially competent strain, and a noncompetent strain. Overall, our data provided new insights into Y. pestis' obstruction of the proventriculus for transmission but also the ecology of plague.


Assuntos
Peste , Sifonápteros , Yersinia pestis , Animais , Sifonápteros/microbiologia , Peste/microbiologia , Proventrículo , Microscopia , Insetos Vetores/microbiologia , Mamíferos
13.
Phytopathology ; 113(9): 1686-1696, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36774557

RESUMO

The bacterium Xylella fastidiosa is mainly transmitted by the meadow spittlebug Philaenus spumarius in Europe, where it has caused significant economic damage to olive and almond trees. Understanding the factors that determine disease dynamics in pathosystems that share similarities can help to design control strategies focused on minimizing transmission chains. Here, we introduce a compartmental model for X. fastidiosa-caused diseases in Europe that accounts for the main relevant epidemiological processes, including the seasonal dynamics of P. spumarius. The model was confronted with epidemiological data from the two major outbreaks of X. fastidiosa in Europe, the olive quick disease syndrome in Apulia, Italy, caused by the subspecies pauca, and the almond leaf scorch disease in Mallorca, Spain, caused by subspecies multiplex and fastidiosa. Using a Bayesian inference framework, we show how the model successfully reproduces the general field data in both diseases. In a global sensitivity analysis, the vector-to-plant and plant-to-vector transmission rates, together with the vector removal rate, were the most influential parameters in determining the time of the infectious host population peak, the incidence peak, and the final number of dead hosts. We also used our model to check different vector-based control strategies, showing that a joint strategy focused on increasing the rate of vector removal while lowering the number of annual newborn vectors is optimal for disease control. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Olea , Prunus dulcis , Xylella , Animais , Modelos Epidemiológicos , Estações do Ano , Teorema de Bayes , Doenças das Plantas/microbiologia , Insetos Vetores/microbiologia , Olea/microbiologia
14.
Sci Rep ; 13(1): 2211, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750707

RESUMO

To perform its propagative and circulative cycle into its insect vector, the flavescence dorée phytoplasma invades different cell types. Clathrin-mediated endocytosis is used by a wide range of bacteria to infect eukaryote cells. Among the insect proteins interacting with the phytoplasma adhesin VmpA, we identified the adaptor protein complex AP-1 and AP-2 suggesting that phytoplasmas could enter the insect cells via clathrin-mediated endocytosis. By infection assays of insect cells in culture, we showed that phytoplasmas entry into Drosophila S2 cells was more efficient than infection of the Euva cell line developed from the insect vector Euscelidius variegatus. Chlorpromazine, cytochalasin D and knockdown of clathrin heavy chain (chc) gene expression using RNA interference inhibited entry of phytoplasmas into S2 cells. During invasion of S2 cells, phytoplasmas were observed very closed to recombinant GFP-labelled clathrin light chain. To verify the role of clathrin in the insect colonization by phytoplasmas, RNAi was performed via artificial feeding of chc dsRNA by the vector E. variegatus. This decreased the expression of chc gene in the midgut and heads of E. variegatus. The chc lower expression correlated to a decreased of midgut and salivary gland cells colonization after the insects had ingested phytoplasmas from infected plants. In conclusion, results indicate that clathrin is important for the FD phytoplasma to enter insect cells and colonize its insect vector.


Assuntos
Hemípteros , Phytoplasma , Animais , Phytoplasma/genética , Adesinas Bacterianas/metabolismo , Hemípteros/microbiologia , Endocitose , Insetos Vetores/microbiologia , Doenças das Plantas/microbiologia
15.
Sci Total Environ ; 860: 160375, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36423847

RESUMO

Biological invasions represent a major threat for biodiversity and agriculture. Despite efforts to restrict the spread of alien species, preventing their introduction remains the best strategy for an efficient control. In that context preparedness of phytosanitary authorities is very important and estimating the geographical range of alien species becomes a key information. The present study investigates the potential geographical range of the glassy-winged sharpshooter (Homalodisca vitripennis), a very efficient insect vector of Xylella fastidiosa, one of the most dangerous plant-pathogenic bacteria worldwide. We use species distribution modeling (SDM) to analyse the climate factors driving the insect distribution and we evaluate its potential distribution in its native range (USA) and in Europe according to current climate and different scenarios of climate change: 6 General Circulation Models (GCM), 4 shared socioeconomic pathways of gas emission and 4 time periods (2030, 2050, 2070, 2090). The first result is that the climate conditions of the European continent are suitable to the glassy-winged sharpshooter, in particular around the Mediterranean basin where X. fastidiosa is present. Projections according to future climate conditions indicate displacement of climatically suitable areas towards the north in both North America and Europe. Globally, suitable areas will decrease in North America and increase in Europe in the coming decades. SDM outputs vary according to the GCM considered and this variability indicated areas of uncertainty in the species potential range. Both potential distribution and its uncertainty associated to future climate projections are important information for improved preparedness of phytosanitary authorities.


Assuntos
Mudança Climática , Hemípteros , Animais , Doenças das Plantas/microbiologia , Insetos Vetores/microbiologia , Espécies Introduzidas
16.
Pest Manag Sci ; 79(2): 719-728, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36256490

RESUMO

BACKGROUND: The meadow spittlebug Philaenus spumarius L. is the vector for the bacterium Xylella fastidiosa subspecies pauca, involved in olive quick decline syndrome (OQDS) in Salento (Italy). Control of P. spumarius is key to limiting transmission of the bacterium, and an innovative approach can be based on effective natural compounds and biocontrol agents. Entomopathogenic fungi are an important source of bioactive natural molecules that play a role in the relationship between microorganisms and insects. RESULTS: Pathogenicity bioassays, performed by dipping adults of P. spumarius in either fungal culture suspension (120 mg mL-1 ) or cell-free culture supernatant of Trichoderma chlorosporum GJS 91-150, showed, respectively, 97% and 87% death within 24 h. The effect was dose-dependent. In laboratory bioassays, the powdered fungal culture of T. chlorosporum GJS 91-150 did not exhibit pathogenic activity when injected into nymph spittle. CONCLUSIONS: T. chlorosporum GJS 91-150 affected the survival of P. spumarius adults. The lethal effect was not associated with the development of mycelium on the cuticle, but seems due, at least partly, to fungal metabolites released in the culture medium. The fungus tested here has good potential for the development of effective low-environmental impact control strategies for P. spumarius and suppression of X. fastidiosa. © 2022 Society of Chemical Industry.


Assuntos
Hemípteros , Trichoderma , Xylella , Animais , Quarentena , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Hemípteros/microbiologia , Insetos Vetores/microbiologia
17.
PLoS Pathog ; 18(12): e1010996, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36520713

RESUMO

Yersinia pestis, the bacterial agent of plague, is enzootic in many parts of the world within wild rodent populations and is transmitted by different flea vectors. The ecology of plague is complex, with rodent hosts exhibiting varying susceptibilities to overt disease and their fleas exhibiting varying levels of vector competence. A long-standing question in plague ecology concerns the conditions that lead to occasional epizootics among susceptible rodents. Many factors are involved, but a major one is the transmission efficiency of the flea vector. In this study, using Oropsylla montana (a ground squirrel flea that is a major plague vector in the western United States), we comparatively quantified the efficiency of the two basic modes of flea-borne transmission. Transmission efficiency by the early-phase mechanism was strongly affected by the host blood source. Subsequent biofilm-dependent transmission by blocked fleas was less influenced by host blood and was more efficient. Mathematical modeling predicted that early-phase transmission could drive an epizootic only among highly susceptible rodents with certain blood characteristics, but that transmission by blocked O. montana could do so in more resistant hosts irrespective of their blood characteristics. The models further suggested that for most wild rodents, exposure to sublethal doses of Y. pestis transmitted during the early phase may restrain rapid epizootic spread by increasing the number of immune, resistant individuals in the population.


Assuntos
Peste , Sifonápteros , Yersinia pestis , Animais , Insetos Vetores/microbiologia , Sifonápteros/microbiologia , Roedores
18.
J Econ Entomol ; 115(6): 1852-1858, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36356033

RESUMO

The sharpshooter Cicadella viridis L. (Hemiptera: Cicadellidae) is the most common sharpshooter in Europe and, given its xylem feeding behavior, is considered a potential vector of the plant pathogenic bacterium Xylella fastidiosa Wells et al. (Xanthomonadales: Xanthomonadaceae). We tested X. fastidiosa subsp. pauca ST53 (Xfp) transmission capabilities of C. viridis adults, namely 1) acquisition efficiency from four host plant species-periwinkle, milkwort, lavender, alfalfa-and from two artificial diets (PD3 and Xfm), 2) inoculation efficiency to periwinkle at different times post acquisition from different plant and artificial diet sources. The main European vector species-Philaenus spumarius L. (Hemiptera: Aphrophoridae)-was used as a control. C. viridis was able to acquire Xfp from periwinkle, milkwort, and lavender, although with low efficiency (3-16%) and from artificial diets (23-25%). Successful inoculation on periwinkle was extremely rare, being observed only three times, following feeding on milkwort plant and PD3 artificial diet sources. Our study shows that C. viridis is not a relevant vector of Xfp, given the very low transmission rate in controlled conditions, and the inability to feed on olive. The low efficiency reported here correlates with ecological constraints of the vector (mainly monocots host plants, humid environments) that make it difficult to forecast a relevant role in dispersing X. fastidiosa, at least within the present distribution of the exotic bacterium in Europe. However, a possible role of this species in spreading Xf in other agroecosystems, e.g., vineyard and stone fruits grown in humid areas, cannot be excluded.


Assuntos
Hemípteros , Xylella , Animais , Insetos Vetores/microbiologia , Doenças das Plantas/microbiologia , Hemípteros/microbiologia , Dieta
19.
J Invertebr Pathol ; 195: 107850, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36347390

RESUMO

A significant amount of work has been devoted towards understanding the cellular and humoral immune responses in arthropod vectors. Although fleas (Siphonaptera) are vectors of numerous bacterial pathogens, few studies have examined how these insects defend themselves from infection. In this study, we investigated the immune defense mechanisms in the hemocoel of cat fleas (Ctenocephalides felis), currently the most important flea pest of humans and many domestic animals. Using model species of bacteria (Micrococcus luteus, Serratia marcescens, and Escherichia coli), we delivered a systemic infection and measured the following: antimicrobial activity of hemolymph, levels of free radicals resulting from the induction of oxidase-based pathways, number of circulating hemocytes, phagocytosis activity of circulating hemocytes, and in vivo bacteria killing efficiency when phagocytosis activity is limited. Our results show that the antimicrobial activity of flea hemolymph increases in response to certain species of bacteria; yet, a systemic infection with the same bacterial species did not influence levels of hydrogen peroxide (H2O2), a reactive intermediate of oxygen, at the same time. Additionally, the number of circulating hemocytes increases in response to E. coli infection, and these cells display strong phagocytic activity against this bacterium. Moreover, limiting phagocytosis by injecting polystyrene beads subsequently increases flea susceptibility to E. coli infection when compared to injury controls; however, impairing the cellular immune response itself did not increase flea susceptibility to infection when compared to untreated fleas. Overall, this work yields significant insight into how fleas interact with bacterial pathogens in their hemocoel, and suggests that cellular and humoral immune responses cooperate to combat systemic bacterial infections.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Doenças do Gato , Ctenocephalides , Infecções por Escherichia coli , Infestações por Pulgas , Gatos , Humanos , Animais , Ctenocephalides/microbiologia , Escherichia coli , Peróxido de Hidrogênio , Insetos Vetores/microbiologia , Bactérias , Infecções por Escherichia coli/veterinária , Mecanismos de Defesa
20.
Pest Manag Sci ; 78(12): 5164-5171, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36114796

RESUMO

BACKGROUND: Asian citrus psyllid (ACP), also known as Diaphorina citri, is the natural vector of Candidatus Liberibacter asiaticus (CLas), which is responsible for Huanglongbing (HLB), a devastating citrus disease. Previously, the pathogen was successfully excluded from diseased citrus plants by using the indigenous endophyte Bacillus subtilis L1-21. However, the pathogen elimination and colonization potential of B. subtilis L1-21 in the carrier vector ACP, as well as the recruitment of native microbial communities of psyllid in the presence of endophytes, are still unknown. RESULTS: Initially, we suggested that endophyte L1-21 reduced the CLas copies in ACP from 6.58 × 106 to 5.04 × 104 per insect after 48 h, however, the pathogen copies remained stable in the negative control. The endophyte was stable for 48 h after application. Among the bacterial genera those highlighted in ACP were Candidatus Liberibacter, Pseudomonas, Candidatus Profftella, Methylobacterium-Methylorubrum, Pantoea, Curtobacterium, Wolbachia, Actinomycetospora, and Bacillus. Interestingly, B. subtilis L1-21 easily colonizes the midgut of ACP but cannot be detected in eggs. When ACP with endophyte L1-21 was allowed to feed on new citrus leaves, the highest colonization was observed. We also found that psyllids carrying endophyte L1-21 after feeding on citrus leaves reduced the CLas copies in leaves on the 0, 3rd and 5th day from 8.18 × 10,4 2.6 × 10,3 and 0 pathogen copies/g fresh midvein, respectively. CONCLUSIONS: We propose that B. subtilis L1-21 is a native endophyte in citrus and psyllid, which efficiently reduces the CLas pathogen in both citrus and psyllids, provides a more protective effect by increasing the number of cultivable endophytes, and successfully colonizes the midgut of ACP. © 2022 Society of Chemical Industry.


Assuntos
Citrus , Hemípteros , Rhizobiaceae , Animais , Hemípteros/microbiologia , Citrus/microbiologia , Endófitos , Bacillus subtilis , Liberibacter , Insetos Vetores/microbiologia , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...