Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.219
Filtrar
1.
J Ovarian Res ; 17(1): 103, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760837

RESUMO

BACKGROUND: Fragile X-associated primary ovarian insufficiency (FXPOI), characterized by amenorrhea before age 40 years, occurs in 20% of female FMR1 premutation carriers. Presently, there are no molecular or biomarkers that can help predicting which FMR1 premutation women will develop FXPOI. We previously demonstrated that high FMR4 levels can discriminate between FMR1 premutation carriers with and without FXPOI. In the present study the relationship between the expression levels of FMR4 and the ovarian reserve markers was assessed in female FMR1 premutation carriers under age of 35 years. METHODS: We examined the association between FMR4 transcript levels and the measures of total antral follicle count (AFC) and serum anti-müllerian hormone (AMH) levels as markers of ovarian follicle reserve. RESULTS: Results revealed a negative association between FMR4 levels and AMH (r = 0.45) and AFC (r = 0.64). Statistically significant higher FMR4 transcript levels were found among those FMR1 premutation women with both, low AFCs and AMH levels. CONCLUSIONS: These findings reinforce previous studies supporting the association between high levels of FMR4 and the risk of developing FXPOI in FMR1 premutation carriers.


Assuntos
Hormônio Antimülleriano , Biomarcadores , Proteína do X Frágil da Deficiência Intelectual , Reserva Ovariana , Insuficiência Ovariana Primária , Humanos , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Reserva Ovariana/genética , Adulto , Biomarcadores/sangue , Hormônio Antimülleriano/sangue , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/sangue , Heterozigoto , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/sangue , Mutação , Folículo Ovariano/metabolismo , Adulto Jovem
2.
Front Endocrinol (Lausanne) ; 15: 1307944, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737546

RESUMO

Background: Primary ovarian insufficiency (POI) is a common clinical endocrine disorder with a high heterogeneity in both endocrine hormones and etiological phenotypes. However, the etiology of POI remains unclear. Herein, we unraveled the causality of genetically determined metabolites (GDMs) on POI through Mendelian randomization (MR) study with the overarching goal of disclosing underlying mechanisms. Methods: Genetic links with 486 metabolites were retrieved from GWAS data of 7824 European participants as exposures, while GWAS data concerning POI were utilized as the outcome. Via MR analysis, we selected inverse-variance weighted (IVW) method for primary analysis and several additional MR methods (MR-Egger, weighted median, and MR-PRESSO) for sensitivity analyses. MR-Egger intercept and Cochran's Q statistical analysis were conducted to assess potential heterogeneity and pleiotropy. In addition, genetic variations in the key target metabolite were scrutinized further. We conducted replication, meta-analysis, and linkage disequilibrium score regression (LDSC) to reinforce our findings. The MR Steiger test and reverse MR analysis were utilized to assess the robustness of genetic directionality. Furthermore, to deeply explore causality, we performed colocalization analysis and metabolic pathway analysis. Results: Via IVW methods, our study identified 33 metabolites that might exert a causal effect on POI development. X-11437 showed a robustly significant relationship with POI in four MR analysis methods (P IVW=0.0119; P weighted-median =0.0145; PMR-Egger =0.0499; PMR-PRESSO =0.0248). Among the identified metabolites, N-acetylalanine emerged as the most significant in the primary MR analysis using IVW method, reinforcing its pivotal status as a serum biomarker indicative of an elevated POI risk with the most notable P-value (P IVW=0.0007; PMR-PRESSO =0.0022). Multiple analyses were implemented to further demonstrate the reliability and stability of our deduction of causality. Reverse MR analysis did not provide evidence for the causal effects of POI on 33 metabolites. Colocalization analysis revealed that some causal associations between metabolites and POI might be driven by shared genetic variants. Conclusion: By incorporating genomics with metabolomics, this study sought to offer a comprehensive analysis in causal impact of serum metabolome phenotypes on risks of POI with implications for underlying mechanisms, disease screening and prevention.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Metabolômica , Insuficiência Ovariana Primária , Humanos , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/sangue , Insuficiência Ovariana Primária/metabolismo , Feminino , Metabolômica/métodos , Polimorfismo de Nucleotídeo Único , Metaboloma , Biomarcadores/sangue
3.
Front Endocrinol (Lausanne) ; 15: 1340993, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818501

RESUMO

Background: The causal relationship between juvenile idiopathic arthritis (JIA) and primary ovarian failure (POF) remains uncertain. To elucidate this relationship, we employed a two-sample Mendelian randomization analysis. Methods: The single nucleotide polymorphisms (SNPs) associated with JIA were obtained from a previously published genome-wide association study (GWAS), while the pooled data for POF originated from the FinnGen consortium. The study populations consisted exclusively of individuals of European descent. In our Mendelian randomization analysis, we performed inverse-variance weighted analysis, weighted-median analysis, weighted-mode analysis and Mendelian randomization-Egger regression analysis, supplemented by sensitivity analyses to validate the accuracy and robustness of the findings. Results: The IVW (OR = 1.23, 95% CI 1.06-1.43; P = 0.007) and weighted median (OR = 1.25, 95% CI 1.06-1.47; P = 0.009), along with sensitivity analysis validation, provide compelling evidence of a significant causal association between JIA and POF. Conclusion: The study revealed a significant causal association between genetically predicted JIA and POF, indicating that JIA significantly elevates the risk of developing POF. Therefore, it is recommended to implement screening for premature ovarian failure in women diagnosed with JIA.


Assuntos
Artrite Juvenil , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Insuficiência Ovariana Primária , Humanos , Análise da Randomização Mendeliana/métodos , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/epidemiologia , Feminino , Artrite Juvenil/genética , Artrite Juvenil/epidemiologia , Estudos de Coortes , Masculino , Predisposição Genética para Doença
4.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 226-232, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38814209

RESUMO

This study aims to analyze the active components and mechanism of Bushen Huoxue (BSHX) formula on the autoimmune premature ovarian insufficiency (POI) by combining network pharmacology and Transcriptomics. The active components and targets of BSHXF were screened through Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). POI-related targets were identified through Therapeutic Targets Database (TTD), DisGeNET and drugbank database. The Veen diagram was performed to obtain the action targets. The active compound-target network and Protein-Protein Interaction (PPI) network were built by using STRING database and Cytoscape software. Key targets and active compounds were further identified by topological analysis. Molecular docking shows that Kaempferol, Isorhamnetin and Anhydroicaritin have strong binding to AKT. Finally, a zp3-induced autoimmune ovarian function deficiency mouse model was used to explore the potential mechanism of POI. The potential pathways of BSHXF for the treatment of POI were identified by Transcriptomic analysis. PI3K-AKT and NF-kb pathways were the common pathways between network pharmacology and transcriptomics. Our results revealed that BSHXF could reduce the FSH expression levels and raise the E2, and AMH levels in the serum. Western bloting demonstrates that BSHXF could upregulate the expression of p-PI3K and p-AKT.


Assuntos
Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Insuficiência Ovariana Primária , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Insuficiência Ovariana Primária/tratamento farmacológico , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/metabolismo , Feminino , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Mapas de Interação de Proteínas/efeitos dos fármacos , Camundongos , Perfilação da Expressão Gênica , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Modelos Animais de Doenças , Humanos
5.
J Steroid Biochem Mol Biol ; 242: 106547, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38754522

RESUMO

Premature ovarian insufficiency (POI) presents a substantial challenge to women's physiological and psychological well-being. Hormone replacement therapy, as the preferred therapeutic approach, involves solely exogenous supplementation of estrogen. Moxibustion, a traditional Chinese external treatment, has been investigated in our previous studies. It not only improves hormone levels and clinical symptoms in POI patients but also safeguards ovarian reserve. This study aims to explore the regulatory mechanisms by which moxibustion modulates hormone levels and restores ovarian function in POI. A POI rat model was established using cyclophosphamide, and moxibustion treatment was applied at acupoints "CV4" and "SP6" for a total of four courses. Subsequently, ovaries from each group were subjected to transcriptome sequencing (Bulk RNA-seq). Target pathways and key genes were selected through enrichment analysis and GSVA scoring, with validation using various techniques including electron microscopy, ELISA, Western blot, and immunohistochemistry. The results demonstrated that moxibustion restored the estrous cycle in POI rats, improved sex hormone levels, reduced the number of atretic follicles, and increased the count of dominant follicles (P<0.05). Bulk RNA-seq analysis revealed that moxibustion downregulated pathways associated with ovarian dysfunction, infertility, and immune responses, upregulated pathways related to follicular development and ovarian steroidogenesis. Furthermore, our data confirmed that moxibustion significantly increased the number of ovarian granulosa cells (GCs) and upregulated the expression of proteins related to steroidogenesis in GCs, including FSHR, P450 arom, cAMP, PKA, and CREB (P<0.05), with no significant effect observed on proteins related to steroidogenesis in theca cells. These outcomes aligned with the RNA-seq results. In conclusion, these findings propose that moxibustion enhances steroidogenesis in GCs through the activation of the cAMP/PKA/CREB pathway, consequently improving impaired ovarian function in POI rats. This study provides robust evidence supporting moxibustion as a targeted intervention for treating POI by specifically regulating steroidogenesis in GCs.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Proteínas Quinases Dependentes de AMP Cíclico , AMP Cíclico , Células da Granulosa , Moxibustão , Insuficiência Ovariana Primária , Ratos Sprague-Dawley , Animais , Feminino , Insuficiência Ovariana Primária/terapia , Insuficiência Ovariana Primária/metabolismo , Insuficiência Ovariana Primária/genética , Ratos , Células da Granulosa/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , AMP Cíclico/metabolismo , Ovário/metabolismo , Transdução de Sinais
6.
Cell Biol Toxicol ; 40(1): 29, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700571

RESUMO

Premature ovarian failure (POF) affects many adult women less than 40 years of age and leads to infertility. Mesenchymal stem cells-derived small extracellular vesicles (MSCs-sEVs) are attractive candidates for ovarian function restoration and folliculogenesis for POF due to their safety and efficacy, however, the key mediator in MSCs-sEVs that modulates this response and underlying mechanisms remains elusive. Herein, we reported that YB-1 protein was markedly downregulated in vitro and in vivo models of POF induced with H2O2 and CTX respectively, accompanied by granulosa cells (GCs) senescence phenotype. Notably, BMSCs-sEVs transplantation upregulated YB-1, attenuated oxidative damage-induced cellular senescence in GCs, and significantly improved the ovarian function of POF rats, but that was reversed by YB-1 depletion. Moreover, YB-1 showed an obvious decline in serum and GCs in POF patients. Mechanistically, YB-1 as an RNA-binding protein (RBP) physically interacted with a long non-coding RNA, MALAT1, and increased its stability, further, MALAT1 acted as a competing endogenous RNA (ceRNA) to elevate FOXO3 levels by sequestering miR-211-5p to prevent its degradation, leading to repair of ovarian function. In summary, we demonstrated that BMSCs-sEVs improve ovarian function by releasing YB-1, which mediates MALAT1/miR-211-5p/FOXO3 axis regulation, providing a possible therapeutic target for patients with POF.


Assuntos
Exossomos , Proteína Forkhead Box O3 , Células da Granulosa , Células-Tronco Mesenquimais , MicroRNAs , Insuficiência Ovariana Primária , RNA Longo não Codificante , Proteína 1 de Ligação a Y-Box , Animais , Feminino , Humanos , Ratos , Senescência Celular , Exossomos/metabolismo , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Células da Granulosa/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Ovário/metabolismo , Insuficiência Ovariana Primária/metabolismo , Insuficiência Ovariana Primária/genética , Ratos Sprague-Dawley , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Proteína 1 de Ligação a Y-Box/genética
7.
PeerJ ; 12: e17251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646488

RESUMO

The occupational chemical 4-Vinylcyclohexene diepoxide (VCD) is a reproductively toxic environmental pollutant that causes follicular failure, leading to premature ovarian insufficiency (POI), which significantly impacts a woman's physical health and fertility. Investigating VCD's pathogenic mechanisms can offer insights for the prevention of ovarian impairment and the treatment of POI. This study established a mouse model of POI through intraperitoneal injection of VCD into female C57BL/6 mice for 15 days. The results were then compared with those of the control group, including a comparison of phenotypic characteristics and transcriptome differences, at two time points: day 15 and day 30. Through a comprehensive analysis of differentially expressed genes (DEGs), key genes were identified and validated some using RT-PCR. The results revealed significant impacts on sex hormone levels, follicle number, and the estrous cycle in VCD-induced POI mice on both day 15 and day 30. The DEGs and enrichment results obtained on day 15 were not as significant as those obtained on day 30. The results of this study provide a preliminary indication that steroid hormone synthesis, DNA damage repair, and impaired oocyte mitosis are pivotal in VCD-mediated ovarian dysfunction. This dysfunction may have been caused by VCD damage to the primordial follicular pool, impairing follicular development and aggravating ovarian damage over time, making it gradually difficult for the ovaries to perform their normal functions.


Assuntos
Cicloexenos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Camundongos Endogâmicos C57BL , Insuficiência Ovariana Primária , Compostos de Vinila , Animais , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/patologia , Feminino , Compostos de Vinila/toxicidade , Camundongos , Transcriptoma/efeitos dos fármacos , Ciclo Estral/efeitos dos fármacos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Folículo Ovariano/patologia , Ovário/efeitos dos fármacos , Ovário/patologia , Ovário/metabolismo
8.
Sci Rep ; 14(1): 9413, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658584

RESUMO

Previous studies investigating the relationship between systemic lupus erythematosus (SLE) and primary ovarian failure (POF) generated conflicting results. To data, no mendelian randomization study has been applied to examine this association. In this study, genetic instruments for exposure (SLE) were selected from a GWAS study with 5201 cases and 9066 noncases. Outcome data for POF and three reproductive traits (age at menarche, age at menopause, and age at first live birth) were obtained from other eligible GWASs. To estimate causal association, the inverse-variance weighted (IVW) method (the main analyse), MR Egger test, weighted median, simple mode, and weighted mode were applied. Moreover, sensitivity analyses were conducted to ensure the robustness of the results. Estimated by the IVW method, SLE was suggested to be causally related to the risk of POF (OR = 1.166, 95% CI 1.055-1.289, P = 0.003) and delayed age at first live birth (OR = 1.006, 95% CI 1.002-1.010, P = 0.007), with no evidence of a causal association between SLE and age at menopause or menarche. The estimates were robust according to sensitivity analysis. In conclusion, the two-sample MR study supported a causal association between SLE and POF from a genetic aspect.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Lúpus Eritematoso Sistêmico , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Insuficiência Ovariana Primária , Humanos , Lúpus Eritematoso Sistêmico/genética , Insuficiência Ovariana Primária/genética , Feminino , Menarca/genética , Fatores de Risco , Menopausa/genética , Adulto
9.
BMC Med Genomics ; 17(1): 98, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649916

RESUMO

BACKGROUND: Premature ovarian insuffiency (POI) is one of the main cause behind infertility. The genetic analysis of POI should be part of the clinical diagnostics, as several genes have been implicated in the genetic background of it. The aim of our study was to analyse the genetic background of POI in a Hungarian cohort. METHODS: The age of onset was between 15 and 39 years. All patients had the 46,XX karyotype and they were prescreened for the most frequent POI associated FMR1 premutation. To identify genetic alterations next-generation sequencing (NGS) of 31 genes which were previously associated to POI were carried out in 48 unrelated patients from Hungary. RESULTS: Monogenic defect was identified in 16.7% (8 of 48) and a potential genetic risk factor was found in 29.2% (14 of 48) and susceptible oligogenic effect was described in 12.5% (6 of 48) of women with POI using the customized targeted panel sequencing. The genetic analysis identified 8 heterozygous damaging and 4 potentially damaging variants in POI-associated genes. Further 10 potential genetic risk factors were detected in seven genes, from which EIF2B and GALT were the most frequent. These variants were related to 15 genes: AIRE, ATM, DACH2, DAZL, EIF2B2, EIF2B4, FMR1, GALT, GDF9, HS6ST2, LHCGR, NOBOX, POLG, USP9X and XPNPEP2. In six cases, two or three coexisting damaging mutations and risk variants were identified. CONCLUSIONS: POI is characterized by heterogenous phenotypic features with complex genetic background that contains increasing number of genes. Deleterious variants, which were detected in our cohort, related to gonadal development (oogenesis and folliculogenesis), meiosis and DNA repair, hormonal signaling, immune function, and metabolism which were previously associated with the POI phenotype. This is the first genetic epidemiology study targeting POI associated genes in Hungary. The frequency of variants in different POI associated genes were similar to the literature, except EIF2B and GALT. Both of these genes potential risk factor were detected which could influence the phenotype, although it is unlikely that they can be responsible for the development of the disease by themselves. Advances of sequencing technologies make it possible to aid diagnostics of POI Since individual patients show high phenotypic variance because of the complex network controlling human folliculogenesis. Comprehensive NGS screening by widening the scope to genes which were previously linked to infertility may facilitate more accurate, quicker and cheaper genetic diagnoses for POI. The investigation of patient's genotype could support clinical decision-making process and pave the way for future clinical trials and therapies.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Insuficiência Ovariana Primária , Humanos , Feminino , Insuficiência Ovariana Primária/genética , Adulto , Hungria , Adolescente , Adulto Jovem , Testes Genéticos , Predisposição Genética para Doença , Mutação
10.
Nat Aging ; 4(4): 527-545, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38594460

RESUMO

Limited understanding exists regarding how aging impacts the cellular and molecular aspects of the human ovary. This study combines single-cell RNA sequencing and spatial transcriptomics to systematically characterize human ovarian aging. Spatiotemporal molecular signatures of the eight types of ovarian cells during aging are observed. An analysis of age-associated changes in gene expression reveals that DNA damage response may be a key biological pathway in oocyte aging. Three granulosa cells subtypes and five theca and stromal cells subtypes, as well as their spatiotemporal transcriptomics changes during aging, are identified. FOXP1 emerges as a regulator of ovarian aging, declining with age and inhibiting CDKN1A transcription. Silencing FOXP1 results in premature ovarian insufficiency in mice. These findings offer a comprehensive understanding of spatiotemporal variability in human ovarian aging, aiding the prioritization of potential diagnostic biomarkers and therapeutic strategies.


Assuntos
Fatores de Transcrição Forkhead , Ovário , Animais , Feminino , Humanos , Camundongos , Fatores de Transcrição Forkhead/genética , Perfilação da Expressão Gênica , Células da Granulosa/metabolismo , Oócitos/metabolismo , Ovário/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Envelhecimento/genética
11.
J Ovarian Res ; 17(1): 75, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575997

RESUMO

Umbilical cord-derived mesenchymal stem cell (UCMSC) transplantation has been deeply explored for premature ovarian insufficiency (POI) disease. However, the associated mechanism remains to be researched. To explore whether and how the microRNA 21 (miR-21) functions in POI mice with UCMSCs transplantation, the autoimmune-induced POI mice model was built up, transplanted with or without UCMSCs transfect with the LV-hsa-miR-21-5p/LV-hsa-miR-21-5p-inhibition, with the transfection efficiency analyzed by QRT-PCR. Mice hormone secretion and the anti-Zona pellucida antibody (AZPAb) levels were analyzed, the ovarian morphological changes and folliculogenesis were observed, and the ovarian apoptosis cells were detected to evaluate ovarian function. The expression and localization of the PTEN/Akt/FOXO3a signal pathway-related cytokines were analyzed in mice ovaries.Additionally, the spleen levels of CD8 + CD28-T cells were tested and qualified with its significant secretory factor, interleukin 10 (IL-10). We found that with the LV-hsa-miR-21-5p-inhibition-UCMSCs transplantation, the mice ovarian function can be hardly recovered than mice with LV-NC-UCMSCs transplantation, and the PTEN/Akt/FOXO3a signal pathway was activated. The expression levels of the CD8 + CD28-T cells were decreased, with the decreased levels of the IL-10 expression. In contrast, in mice with the LV-hsa-miR-21-5p-UCMSCs transplantation, the injured ovarian function can be reversed, and the PTEN/AKT/FOXO3a signal pathway was detected activated, with the increased levels of the CD8 + CD28-T cells, and the increased serum levels of IL-10. In conclusion, miR-21 improves the ovarian function recovery of POI mice with UCMSCs transplantation, and the mechanisms may be through suppressing the PTEN/AKT/FOXO3a signal pathway and up-regulating the circulating of the CD8 + CD28-T cells.


Assuntos
Menopausa Precoce , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , MicroRNAs , Insuficiência Ovariana Primária , Animais , Feminino , Camundongos , Antígenos CD28 , Interleucina-10/genética , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/terapia , Insuficiência Ovariana Primária/induzido quimicamente , Proteínas Proto-Oncogênicas c-akt
12.
Reprod Biomed Online ; 48(6): 103815, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582043

RESUMO

RESEARCH QUESTION: What is the effect of micro-RNA (miR)-21-5p-loaded bone marrow mesenchymal stem cell-derived exosomes (miR-21-Exo) on autoimmune premature ovarian insufficiency (POI)? DESIGN: The Cell Counting Kit 8 (CCK8) assay, fluorescence-activated cell sorting, western blotting, quantitative reverse transcriptase (qRT)-PCR and enzyme-linked immunosorbent assay (ELISA) verified the effect of miR-21-Exo on interferon-γ (IFN-γ)-induced KGN cells. qRT-PCR, western blotting and dual-luciferase reporter gene assays verified that miR-21-Exo mediated Msh homeobox 1 (MSX1) regulation of the Notch signalling pathway and that miR-21 interacted directly with MSX1. The effects of miR-21-Exo on the ovaries were verified by monitoring of the oestrous cycle, haematoxylin and eosin staining, follicle counts, ELISA, immunohistochemistry, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL), western blotting and qRT-PCR. RESULTS: The results showed that miR-21-Exo promoted IFN-γ-induced KGN cell proliferation and hormone synthesis, and inhibited apoptosis. Using dual-luciferase reporter gene assays, miR-21 and MSX1 were shown to have direct interactions. Moreover, the findings elucidated that miR-21-Exo inhibited cell apoptosis and promoted hormone synthesis by mediating MSX1 to regulate the Notch signalling pathway. miR-21-Exo restored the ovarian structure in a mouse model of autoimmune POI, promoted endocrine function and proliferation, and inhibited apoptosis and inflammation in vivo. CONCLUSIONS: This study demonstrates that miR-21-Exo regulates the MSX1-mediated Notch signalling pathway to inhibit granulosa cell apoptosis and improve hormone synthesis function, providing insight into a potential mechanism of molecular therapy for the treatment of autoimmune POI.


Assuntos
Exossomos , Fator de Transcrição MSX1 , Células-Tronco Mesenquimais , MicroRNAs , Insuficiência Ovariana Primária , Feminino , MicroRNAs/metabolismo , MicroRNAs/genética , Insuficiência Ovariana Primária/metabolismo , Insuficiência Ovariana Primária/genética , Animais , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Fator de Transcrição MSX1/metabolismo , Fator de Transcrição MSX1/genética , Humanos , Ovário/metabolismo , Doenças Autoimunes/metabolismo , Apoptose , Proliferação de Células
13.
Clin Genet ; 106(1): 102-108, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38558253

RESUMO

Pathogenic germline variants in the FOXL2 gene are associated with Blepharophimosis, Ptosis, and Epicanthus Inversus syndrome (BPES) in humans, an autosomal dominant condition. Two forms of BPES have emerged: (i) type I (BPES-I), characterized by ocular signs and primary ovarian failure (POI), and (ii) type II (BPES-II) with no systemic associations. This study aimed to compare the distribution of FOXL2 variants in idiopathic POI/DOR (diminished ovarian reserve) and both types of BPES, and to determine the involvement of FOXL2 in non-syndromic forms of POI/DOR. We studied the whole coding region of the FOXL2 gene using next-generation sequencing in 1282 patients with non-syndromic POI/DOR. Each identified FOXL2 variant was compared to its frequency in the general population, considering ethnicity. Screening of the entire coding region of the FOXL2 gene allowed us to identify 10 different variants, including nine missense variants. Of the patients with POI/DOR, 14 (1%) carried a FOXL2 variant. Significantly, six out of nine missense variants (67%) were overrepresented in our POI/DOR cohort compared to the general or specific ethnic subgroups. Our findings strongly suggest that five rare missense variants, mainly located in the C-terminal region of FOXL2 are high-risk factors for non-syndromic POI/DOR, though FOXL2 gene implication accounts for approximately 0.54% of non-syndromic POI/DOR cases. These results support the implementation of routine genetic screening for patients with POI/DOR in clinical settings.


Assuntos
Blefarofimose , Proteína Forkhead Box L2 , Mutação de Sentido Incorreto , Insuficiência Ovariana Primária , Humanos , Proteína Forkhead Box L2/genética , Feminino , Insuficiência Ovariana Primária/genética , Mutação de Sentido Incorreto/genética , Blefarofimose/genética , Adulto , Sequenciamento de Nucleotídeos em Larga Escala , Predisposição Genética para Doença , Anormalidades da Pele/genética , Anormalidades Urogenitais/genética , Fatores de Transcrição Forkhead/genética , Fenótipo
14.
Mol Cell Endocrinol ; 587: 112212, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38521400

RESUMO

RESEARCH QUESTION: Premature ovarian insufficiency (POI) is characterised by amenorrhea associated with elevated follicle stimulating hormone (FSH) under the age of 40 years and affects 1-3.7% women. Genetic factors explain 20-30% of POI cases, but most causes remain unknown despite genomic advancements. DESIGN: We used whole exome sequencing (WES) in four Iranian families, validated variants via Sanger sequencing, and conducted the Acyl-cLIP assay to measure HHAT enzyme activity. RESULTS: Despite ethnic homogeneity, WES revealed diverse genetic causes, including a novel homozygous nonsense variant in SYCP2L, impacting synaptonemal complex (SC) assembly, in the first family. Interestingly, the second family had two independent causes for amenorrhea - the mother had POI due to a novel homozygous loss-of-function variant in FANCM (required for chromosomal stability) and her daughter had primary amenorrhea due to a novel homozygous GNRHR (required for gonadotropic signalling) frameshift variant. WES analysis also provided cytogenetic insights. WES revealed one individual was in fact 46, XY and had a novel homozygous missense variant of uncertain significance in HHAT, potentially responsible for complete sex reversal although functional assays did not support impaired HHAT activity. In the remaining individual, WES indicated likely mosaic Turners with the majority of X chromosome variants having an allelic balance of ∼85% or ∼15%. Microarray validated the individual had 90% 45,XO. CONCLUSIONS: This study demonstrates the diverse causes of amenorrhea in a small, isolated ethnic cohort highlighting how a genetic cause in one individual may not clarify familial cases. We propose that, in time, genomic sequencing may become a single universal test required for the diagnosis of infertility conditions such as POI.


Assuntos
Amenorreia , Insuficiência Ovariana Primária , Humanos , Feminino , Adulto , Masculino , Amenorreia/diagnóstico , Amenorreia/genética , Irã (Geográfico) , Insuficiência Ovariana Primária/genética , Mutação de Sentido Incorreto , Genômica , DNA Helicases/genética
15.
Aging (Albany NY) ; 16(5): 4541-4562, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38428403

RESUMO

Ningxin-Tongyu-Zishen formula (NTZF) is a clinical experience formula for the treatment of premature ovarian insufficiency (POI) in traditional Chinese medicine (TCM), and the potential mechanism is unknown. For in vivo experiments, POI mouse models (C57BL/6 mice), were constructed by subcutaneous injection of D-galactose (D-gal, 200 mg/kg). After treatment of NTZF (10.14, 20.27, 40.54 g/kg;) or estradiol valerate (0.15 mg/kg), ovarian function, oxidative stress (OS) and protein expression of Sirt1/p53 were evaluated. For in vitro experiments, H2O2 (200 µM) was used to treat KGN to construct ovarian granulosa cells (OGCs) cell senescence model. Pretreatment with NTZF (1.06 mg/mL) or p53 inhibitor (Pifithrin-α, 1 µM) was performed before induction of senescence, and further evaluated the cell senescence, OS, mRNA and protein expression of Sirt1/p53. In vivo, NTZF improved ovarian function, alleviated OS and Sirt1/p53 signaling abnormalities in POI mice. In vitro experiments showed that NTZF reduced the level of OS and alleviated the senescence of H2O2-induced KGN. In addition, NTZF activated the protein expression of Sirt1, inhibited the mRNA transcription and protein expression of p53 and p21. Alleviating OGCs senescence and protecting ovarian function through Sirt1/p53 is one of the potential mechanisms of NTZF in the treatment of POI.


Assuntos
Galactose , Insuficiência Ovariana Primária , Humanos , Feminino , Camundongos , Animais , Galactose/toxicidade , Sirtuína 1/genética , Sirtuína 1/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Camundongos Endogâmicos C57BL , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/tratamento farmacológico , Insuficiência Ovariana Primária/genética , Células da Granulosa/metabolismo , Senescência Celular , RNA Mensageiro/metabolismo
16.
J Ovarian Res ; 17(1): 67, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528613

RESUMO

BACKGROUND: Premature ovarian insufficiency (POI) is a severe disorder leading to female infertility. Genetic mutations are important factors causing POI. TP63-truncating mutation has been reported to cause POI by increasing germ cell apoptosis, however what factors mediate this apoptosis remains unclear. METHODS: Ninety-three patients with POI were recruited from Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Whole-exome sequencing (WES) was performed for each patient. Sanger sequencing was used to confirm potential causative genetic variants. A minigene assay was performed to determine splicing effects of TP63 variants. A TP63-truncating plasmid was constructed. Real-time quantitative PCR, western blot analyses, dual luciferase reporter assays, immunofluorescence staining, and cell apoptosis assays were used to study the underlying mechanism of a TP63-truncating mutation causing POI. RESULTS: By WES of 93 sporadic patients with POI, we found a 14-bp deletion covering the splice site in the TP63 gene. A minigene assay demonstrated that the 14-bp deletion variant led to exon 13 skipping during TP63 mRNA splicing, resulting in the generation of a truncated TP63 protein (TP63-mut). Overexpression of TP63-mut accelerated cell apoptosis. Mechanistically, the TP63-mut protein could bind to the promoter region of CLCA2 and activate the transcription of CLCA2 several times compared to that of the TP63 wild-type protein. Silencing CLCA2 using a specific small interfering RNA (siRNA) or inhibiting the Ataxia Telangiectasia Mutated (ATM) pathway using the KU55933 inhibitor attenuated cell apoptosis caused by TP63-mut protein expression. CONCLUSION: Our findings revealed a crucial role for CLCA2 in mediating apoptosis in POI pathogenesis, and suggested that CLCA2 is a potential therapeutic target for POI.


Assuntos
Menopausa Precoce , Insuficiência Ovariana Primária , Fatores de Transcrição , Proteínas Supressoras de Tumor , Feminino , Humanos , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Éxons , Menopausa Precoce/genética , Mutação , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Proteínas Supressoras de Tumor/genética
17.
Genes (Basel) ; 15(3)2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38540391

RESUMO

Disruption of meiosis and DNA repair genes is associated with female fertility disorders like premature ovarian insufficiency (POI). In this study, we identified a homozygous missense variant in the HELQ gene (c.596 A>C; p.Gln199Pro) through whole exome sequencing in a POI patient, a condition associated with disrupted ovarian function and female infertility. HELQ, an enzyme involved in DNA repair, plays a crucial role in repairing DNA cross-links and has been linked to germ cell maintenance, fertility, and tumour suppression in mice. To explore the potential association of the HELQ variant with POI, we used CRISPR/Cas9 to create a knock-in mouse model harbouring the equivalent of the human HELQ variant identified in the POI patient. Surprisingly, Helq knock-in mice showed no discernible phenotype, with fertility levels, histological features, and follicle development similar to wild-type mice. Despite the lack of observable effects in mice, the potential role of HELQ in human fertility, especially in the context of POI, should not be dismissed. Larger studies encompassing diverse ethnic populations and alternative functional approaches will be necessary to further examine the role of HELQ in POI. Our results underscore the potential uncertainties associated with genomic variants and the limitations of in vivo animal modelling.


Assuntos
Infertilidade Feminina , Insuficiência Ovariana Primária , Animais , Feminino , Humanos , Camundongos , DNA Helicases/genética , Homozigoto , Infertilidade Feminina/genética , Mutação de Sentido Incorreto , Insuficiência Ovariana Primária/genética
18.
Women Health ; 64(4): 308-316, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38468162

RESUMO

Around 70 percent of cases of Primary Ovarian Insufficiency (POI) etiology remain unexplained. The aim of our study is to contribute to the etiology and genetic background of POI. A total of 37 POI patients and 30 women in the reproductive period were included in this prospective, case-control study between August 2020 and December 2021. The women were examined for 36 genes with next-generation sequencing (NGS) panel. Gene variations were detected in 59.5 percent of the patients in the case group. FSHR p.S680N (rs6166, c.2039 G>A) and FSHR p.A307T (rs6165, c.919 G>A) gene variants, which are most frequently located in exon 10 of the FSHR gene, were detected in both groups. Although it was not found that these gene variants were significantly different between the groups, it was also found that they were significantly different in POI patients under 30 years of age and in those with a family history of POI. Variations were detected in 12 genes in POI patients. Two gene variants (FGFR1 [c.386A>C, rs765615419] and KISS1 [c.58 G>A, rs12998]) were detected in both groups, and the remaining gene variants were detected only in POI patients. No differences were detected between the groups in terms of gene variations. However, the gene variations detected only in POI patients may play a role in the etiology of POI.


Assuntos
Variação Genética , Insuficiência Ovariana Primária , Humanos , Feminino , Insuficiência Ovariana Primária/genética , Estudos de Casos e Controles , Estudos Prospectivos , Adulto , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Receptores do FSH/genética
19.
Hum Genet ; 143(3): 357-369, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483614

RESUMO

Premature ovarian insufficiency (POI) is a common reproductive aging disorder due to a dramatic decline of ovarian function before 40 years of age. Accumulating evidence reveals that genetic defects, particularly those related to DNA damage response, are a crucial contributing factor to POI. We have demonstrated that the functional Fanconi anemia (FA) pathway maintains the rapid proliferation of primordial germ cells to establish a sufficient reproductive reserve by counteracting replication stress, but the clinical implications of this function in human ovarian function remain to be established. Here, we screened the FANCI gene, which encodes a key component for FA pathway activation, in our whole-exome sequencing database of 1030 patients with idiopathic POI, and identified two pairs of novel compound heterozygous variants, c.[97C > T];[1865C > T] and c.[158-2A > G];[c.959A > G], in two POI patients, respectively. The missense variants did not alter FANCI protein expression and nuclear localization, apart from the variant c.158-2A > G causing abnormal splicing and leading to a truncated mutant p.(S54Pfs*5). Furthermore, the four variants all diminished FANCD2 ubiquitination levels and increased DNA damage under replication stress, suggesting that the FANCI variants impaired FA pathway activation and replication stress response. This study first links replication stress response defects with the pathogenesis of human POI, providing a new insight into the essential roles of the FA genes in ovarian function.


Assuntos
Proteínas de Grupos de Complementação da Anemia de Fanconi , Heterozigoto , Insuficiência Ovariana Primária , Humanos , Insuficiência Ovariana Primária/genética , Feminino , Adulto , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Sequenciamento do Exoma , Dano ao DNA , Anemia de Fanconi/genética , Mutação de Sentido Incorreto
20.
Arch Gynecol Obstet ; 309(6): 2853-2861, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38551704

RESUMO

PURPOSE: The simultaneous occurrence of primary ovarian insufficiency (POI) and autoimmune diseases has been noted and debated in some epidemiological research. This bidirectional two-sample Mendelian randomization (MR) study aimed to investigate the causal relationships between autoimmune diseases and POI. METHODS: We obtained summary-level data for ten autoimmune diseases and POI from published large-scale genome-wide association studies and the FinnGen consortium of European ancestry. A series of filtering steps was performed to discern independent genetic variants. Causal estimates were mainly calculated by the inverse variance weighting method and verified through multiple sensitivity analyses. RESULTS: Of the ten autoimmune diseases, genetically predicted Addison's disease (odds ratio [OR] = 1.26, 95% confidence interval [CI]: 1.09-1.47, P = 0.003) and systemic lupus erythematosus (OR = 1.12, 95% CI 1.02-1.24, P = 0.021) were associated with an increased risk of POI, and sensitivity analyses confirmed the robustness of the results. In addition, there were weak associations between liability to POI and elevated risks of type 1 diabetes (OR = 1.05, 95% CI 1.00-1.10, P = 0.046) and autoimmune thyroid disease (OR = 1.03, 95% CI 1.01-1.05, P = 0.015). CONCLUSION: This study revealed that Addison's disease and systemic lupus erythematosus are potential risk factors for POI, underscoring the necessity to consider the impact of autoimmune factors in the diagnosis and treatment of POI.


Assuntos
Doenças Autoimunes , Estudo de Associação Genômica Ampla , Lúpus Eritematoso Sistêmico , Análise da Randomização Mendeliana , Insuficiência Ovariana Primária , Humanos , Insuficiência Ovariana Primária/genética , Feminino , Doenças Autoimunes/genética , Doenças Autoimunes/epidemiologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/complicações , Doença de Addison/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...