Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 378
Filtrar
1.
J Ovarian Res ; 17(1): 141, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982490

RESUMO

INTRODUCTION: Premature ovarian insufficiency (POI) is one of the causes of female infertility. Unexplained POI is increasingly affecting women in their reproductive years. However, the etiology of POI is diverse and remains elusive. We and others have shown that brain-derived neurotrophic factor (BDNF) plays an important role in adult ovarian function. Here, we report on a novel role of BDNF in the Developmental Origins of POI. METHODS: Placental BDNF knockout mice were created using CRISPR/CAS9. Homozygous knockout (cKO(HO)) mice didn't survive, while heterozygous knockout (cKO(HE)) mice did. BDNF reduction in cKO(HE) mice was confirmed via immunohistochemistry and Western blots. Ovaries were collected from cKO(HE) mice at various ages, analyzing ovarian metrics, FSH expression, and litter sizes. In one-month-old mice, oocyte numbers were assessed using super-ovulation, and oocyte gene expression was analyzed with smart RNAseq. Ovaries of P7 mice were studied with SEM, and gene expression was confirmed with RT-qPCR. Alkaline phosphatase staining at E11.5 and immunofluorescence for cyclinD1 assessed germ cell number and cell proliferation. RESULTS: cKO(HE) mice had decreased ovarian function and litter size in adulthood. They were insensitive to ovulation induction drugs manifested by lower oocyte release after superovulation in one-month-old cKO(HE) mice. The transcriptome and SEM results indicate that mitochondria-mediated cell death or aging might occur in cKO(HE) ovaries. Decreased placental BDNF led to diminished primordial germ cell proliferation at E11.5 and ovarian reserve which may underlie POI in adulthood. CONCLUSION: The current results showed decreased placental BDNF diminished primordial germ cell proliferation in female fetuses during pregnancy and POI in adulthood. Our findings can provide insights into understanding the underlying mechanisms of POI.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Camundongos Knockout , Placenta , Insuficiência Ovariana Primária , Animais , Insuficiência Ovariana Primária/metabolismo , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Feminino , Camundongos , Gravidez , Placenta/metabolismo , Ovário/metabolismo , Ovário/patologia , Modelos Animais de Doenças , Oócitos/metabolismo
2.
Reproduction ; 168(2)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38912966

RESUMO

In brief: This study reveals that orthotopic transplantation of 3D hUC-MSC spheroids is more effective than monolayer-cultured hUC-MSCs in improving POF and distinctly reducing oxidative stress through the paracrine effect, thereby preventing apoptosis and autophagy of GCs. Abstract: Premature ovarian failure (POF) is a common reproductive disease in women younger than 40 years old, and studies have demonstrated that the application of human umbilical cord mesenchymal stem cells (hUC-MSCs) is a promising therapy strategy for POF. Given the previously established therapeutic advantages of 3D MSC spheroids, and to evaluate their effectiveness, both 3D hUC-MSC spheroids and monolayer-cultured hUC-MSCs were employed to treat a cyclophosphamide-induced POF rat model through orthotopic transplantation. The effects of these two forms on POF were subsequently assessed by examining apoptosis, autophagy, and oxidative damage in ovarian granulosa cells (GCs). The results indicated that hUC-MSC spheroids exhibited superior treatment effects on resisting autophagy, apoptosis, and oxidative damage in GCs compared to monolayer-cultured hUC-MSCs. To further elucidate the impact of hUC-MSC spheroids in vitro, a H2O2-induced KGN cells model was established and co-cultured with both forms of hUC-MSCs. As expected, the hUC-MSC spheroids also exhibited superior effects in resisting apoptosis and autophagy caused by oxidative damage. Therefore, this study demonstrates that 3D hUC-MSC spheroids have potential advantages in POF therapy; however, the detailed mechanisms need to be further investigated. Furthermore, this study will provide a reference for the clinical treatment strategy of POF.


Assuntos
Apoptose , Autofagia , Modelos Animais de Doenças , Células da Granulosa , Células-Tronco Mesenquimais , Estresse Oxidativo , Insuficiência Ovariana Primária , Esferoides Celulares , Feminino , Animais , Ratos , Células da Granulosa/patologia , Células da Granulosa/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Insuficiência Ovariana Primária/patologia , Insuficiência Ovariana Primária/terapia , Insuficiência Ovariana Primária/induzido quimicamente , Humanos , Transplante de Células-Tronco Mesenquimais , Ratos Sprague-Dawley , Cordão Umbilical/citologia , Células Cultivadas
3.
Toxicol Appl Pharmacol ; 488: 116989, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38825044

RESUMO

BACKGROUND AND AIM: Cyclophosphamide (CP) chemotherapy is a significant iatrogenic component of premature ovarian failure (POF). The aim of this work was to evaluate the potential protective effects of donepezil, a centrally acting acetylcholinesterase (AChE) inhibitor, on CP-induced POF in mice. METHODS: 40 female Swiss albino mice were split into 5 equal groups: group 1 (control), group 2 (CP-POF); induced by intraperitoneal injection of CP on 8th day of the experiment, and group (3-5); mice received oral donepezil daily (1, 2, or 4 mg/kg, respectively) 8 days before CP injection. Mice were euthanized after 24 h of CP injection, and blood samples were collected to assay serum anti-Mullerian hormone (AMH) levels. Ovarian tissues were dissected, and the right ovary was processed for further assays of nitric oxide (NO), tumor necrosis factor-α (TNF-α), interlukin-6 (IL-6), nucleotide-binding domain-like receptor family, the Pyrin domain-containing 3 (NLRP3) inflammasome, and Toll-like receptor 4 (TLR-4), while the left one was processed for histopathological and immunohistochemical examination of nuclear factor-Kappa beta (NF-κB) and caspase-3. RESULTS: Donepezil, in a dose-dependent manner particularly (4 mg/kg), has an inhibitory action on NO (40 ± 2.85 vs. 28.20 ± 2.23, P < 0.001), proinflammatory cytokines (P < 0.001), the TLR-4/ NF-κB / NLRP3 inflammasome pathway (P < 0.001), and apoptosis (P < 0.001), with a significant elevation in the AMH levels (4.57 ± 1.08 vs. 8.57 ± 0.97, P < 0.001) versus CP-POF group. CONCLUSION: Donepezil may be a potential protective agent against CP-induced POF in mice, but further research is needed to fully understand its therapeutic function experimentally and clinically.


Assuntos
Inibidores da Colinesterase , Ciclofosfamida , Citocinas , Donepezila , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Insuficiência Ovariana Primária , Receptor 4 Toll-Like , Animais , Feminino , Donepezila/farmacologia , Camundongos , Receptor 4 Toll-Like/metabolismo , Ciclofosfamida/toxicidade , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Citocinas/metabolismo , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/prevenção & controle , Insuficiência Ovariana Primária/patologia , Inibidores da Colinesterase/farmacologia , Ovário/efeitos dos fármacos , Ovário/metabolismo , Ovário/patologia , Transdução de Sinais/efeitos dos fármacos
4.
J Assist Reprod Genet ; 41(6): 1619-1635, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38695984

RESUMO

PURPOSE: With advances in immunology, increasing evidence suggests that immunity is involved in premature ovarian insufficiency (POI) pathogenesis. This study investigated the roles of immune checkpoint genes and immune cell infiltration in POI pathogenesis and development. METHODS: The GSE39501 dataset and immune checkpoint genes were obtained from the Gene Expression Omnibus database and related literature. The two datasets were intersected to obtain immune checkpoint-related differentially expressed genes (ICRDEGs), which were analyzed using Gene Ontology and Kyoto Encyclopedia of Gene and Genomes enrichment analysis, weighted correlation network analysis, protein-protein interaction and related microRNAs, transcription factors, and RNA binding proteins. The immune cell infiltration of ICRDEGs was explored, and receiver operating characteristic curves were used to validate the diagnostic value of ICRDEGs in POI. RESULTS: We performed ICRDEG functional enrichment analysis and found that these genes were closely related to immune processes, such as T cell activation. Specifically, they are enriched in various biological processes and pathways, such as cell adhesion molecule and T cell receptor signaling pathways. Weighted correlation network analysis identified seven hub genes: Cd200, Cd274, Cd28, neurociliary protein-1, Cd276, Cd40lg, and Cd47. Furthermore, we identified 112 microRNAs, 17 RNA-binding proteins, and 101 transcription factors. Finally, immune infiltration analysis showed a clear positive correlation between hub genes and multiple immune cell types. CONCLUSION: Bioinformatic analysis identified seven potential ICRDEGs associated with POI, among which the immune checkpoint molecules CD200 and neurociliary protein-1 may be involved in the pathogenesis of POI.


Assuntos
Biologia Computacional , Redes Reguladoras de Genes , Insuficiência Ovariana Primária , Humanos , Feminino , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/imunologia , Insuficiência Ovariana Primária/patologia , MicroRNAs/genética , Mapas de Interação de Proteínas/genética , Ontologia Genética , Proteínas de Checkpoint Imunológico/genética , Perfilação da Expressão Gênica , Bases de Dados Genéticas , Transdução de Sinais/genética
5.
Stem Cell Res Ther ; 15(1): 97, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581065

RESUMO

BACKGROUND: DNA damage and oxidative stress induced by chemotherapy are important factors in the onset of premature ovarian insufficiency (POI). Studies have shown that mitochondria derived from mesenchymal stem cells (MSC-Mito) are beneficial for age-related diseases, but their efficacy alone is limited. Pyrroloquinoline quinone (PQQ) is a potent antioxidant with significant antiaging and fertility enhancement effects. This study aimed to investigate the therapeutic effect of MSC-Mito in combination with PQQ on POI and the underlying mechanisms involved. METHODS: A POI animal model was established in C57BL/6J mice by cyclophosphamide and busulfan. The effects of MSC-Mito and PQQ administration on the estrous cycle, ovarian pathological damage, sex hormone secretion, and oxidative stress in mice were evaluated using methods such as vaginal smears and ELISAs. Western blotting and immunohistochemistry were used to assess the expression of SIRT1, PGC-1α, and ATM/p53 pathway proteins in ovarian tissues. A cell model was constructed using KGN cells treated with phosphoramide mustard to investigate DNA damage and apoptosis through comet assays and flow cytometry. SIRT1 siRNA was transfected into KGN cells to further explore the role of the SIRT1/ATM/p53 pathway in combination therapy with MSC-Mito and PQQ for POI. RESULTS: The combined treatment of MSC-Mito and PQQ significantly restored ovarian function and antioxidant capacity in mice with POI. This treatment also reduced the loss of follicles at various stages, improving the disrupted estrous cycle. In vitro experiments demonstrated that PQQ facilitated the proliferation of MitoTracker-labelled MSC-Mito, synergistically restoring mitochondrial function and inhibiting oxidative stress in combination with MSC-Mito. Both in vivo and in vitro, the combination of MSC-Mito and PQQ increased mitochondrial biogenesis mediated by SIRT1 and PGC-1α while inhibiting the activation of ATM and p53, consequently reducing DNA damage-mediated cell apoptosis. Furthermore, pretreatment of KGN cells with SIRT1 siRNA reversed nearly all the aforementioned changes induced by the combined treatment. CONCLUSIONS: Our research findings indicate that PQQ facilitates MSC-Mito proliferation and, in combination with MSC-Mito, ameliorates chemotherapy-induced POI through the SIRT1/ATM/p53 signaling pathway.


Assuntos
Células-Tronco Mesenquimais , Insuficiência Ovariana Primária , Animais , Feminino , Humanos , Camundongos , Antioxidantes/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Cofator PQQ/farmacologia , Insuficiência Ovariana Primária/patologia , RNA Interferente Pequeno/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
J Pediatr Endocrinol Metab ; 37(5): 482-485, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38618883

RESUMO

OBJECTIVES: Childhood cancer survivors are at risk for premature ovarian insufficiency, especially after treatment with alkylating agents. The objective of this report is to highlight a case in which this phenomenon caused a false-positive pregnancy test. CASE PRESENTATION: A workup was performed in a 14-year-old girl with a positive pregnancy test. She was diagnosed with stage IV neuroblastoma of the left adrenal gland at the age of 4 years. She received extensive treatment, including alkylating agents, and had been diagnosed with premature ovarian insufficiency. An LH/hCG suppression test was performed using high dose 17 bèta-estradiol: hCG levels normalized. CONCLUSIONS: The pregnancy test was false-positive due to production of low amounts of hCG by the pituitary gland as a result of high LH concentrations following premature ovarian insufficiency. It may be helpful to perform the LH/hCG suppression test to prove pituitary origin of the hCG overproduction.


Assuntos
Insuficiência Ovariana Primária , Humanos , Feminino , Insuficiência Ovariana Primária/diagnóstico , Insuficiência Ovariana Primária/patologia , Adolescente , Gravidez , Testes de Gravidez , Neuroblastoma/complicações , Neuroblastoma/patologia , Neuroblastoma/tratamento farmacológico , Neoplasias das Glândulas Suprarrenais/complicações , Neoplasias das Glândulas Suprarrenais/patologia , Neoplasias das Glândulas Suprarrenais/diagnóstico , Reações Falso-Positivas , Hormônio Luteinizante/sangue , Prognóstico
7.
Mol Cell Endocrinol ; 589: 112248, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38663484

RESUMO

Young women undergoing anticancer treatment are at risk of premature ovarian failure (POF). Endometrial-derived stem cells (EnSCs) have demonstrated significant therapeutic potential for treating ovarian insufficiency, although the underlying mechanisms remain to be fully understood. This study aims to further investigate the therapeutic effects of EnSCs, particularly through the paracrine action of fibroblast growth factor 2 (FGF2), on POF. The findings show that exogenous FGF2 enhances the survival of ovarian granulosa cells damaged by cisplatin. FGF2 stimulates the proliferation of these damaged cells by suppressing the Hippo signaling pathway and activating YAP expression. In vivo experiments also revealed that FGF2 treatment significantly improves ovarian reserve and endocrine function in mice with POF. These results suggest that FGF2 can boost the proliferative capacity of damaged ovarian granulosa cells through the Hippo-YAP signaling pathway, providing a theoretical foundation for using EnSCs and FGF2 in clinical treatments for POF.


Assuntos
Proliferação de Células , Fator 2 de Crescimento de Fibroblastos , Células da Granulosa , Via de Sinalização Hippo , Insuficiência Ovariana Primária , Transdução de Sinais , Proteínas de Sinalização YAP , Insuficiência Ovariana Primária/metabolismo , Insuficiência Ovariana Primária/patologia , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Células da Granulosa/metabolismo , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/patologia , Animais , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Humanos , Camundongos , Proteínas de Sinalização YAP/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Cisplatino/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética
8.
PeerJ ; 12: e17251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646488

RESUMO

The occupational chemical 4-Vinylcyclohexene diepoxide (VCD) is a reproductively toxic environmental pollutant that causes follicular failure, leading to premature ovarian insufficiency (POI), which significantly impacts a woman's physical health and fertility. Investigating VCD's pathogenic mechanisms can offer insights for the prevention of ovarian impairment and the treatment of POI. This study established a mouse model of POI through intraperitoneal injection of VCD into female C57BL/6 mice for 15 days. The results were then compared with those of the control group, including a comparison of phenotypic characteristics and transcriptome differences, at two time points: day 15 and day 30. Through a comprehensive analysis of differentially expressed genes (DEGs), key genes were identified and validated some using RT-PCR. The results revealed significant impacts on sex hormone levels, follicle number, and the estrous cycle in VCD-induced POI mice on both day 15 and day 30. The DEGs and enrichment results obtained on day 15 were not as significant as those obtained on day 30. The results of this study provide a preliminary indication that steroid hormone synthesis, DNA damage repair, and impaired oocyte mitosis are pivotal in VCD-mediated ovarian dysfunction. This dysfunction may have been caused by VCD damage to the primordial follicular pool, impairing follicular development and aggravating ovarian damage over time, making it gradually difficult for the ovaries to perform their normal functions.


Assuntos
Cicloexenos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Camundongos Endogâmicos C57BL , Insuficiência Ovariana Primária , Compostos de Vinila , Animais , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/patologia , Feminino , Compostos de Vinila/toxicidade , Camundongos , Transcriptoma/efeitos dos fármacos , Ciclo Estral/efeitos dos fármacos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Folículo Ovariano/patologia , Ovário/efeitos dos fármacos , Ovário/patologia , Ovário/metabolismo
9.
Stem Cell Res Ther ; 15(1): 102, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589967

RESUMO

BACKGROUND: Premature ovarian insufficiency (POI) is a major cause of infertility. In this study, we aimed to investigate the effects of the combination of bone marrow mesenchymal stem cells (BMSCs) and moxibustion (BMSCs-MOX) on POI and evaluate the underlying mechanisms. METHODS: A POI rat model was established by injecting different doses of cyclophosphamide (Cy). The modeling of POI and the effects of the treatments were assessed by evaluating estrous cycle, serum hormone levels, ovarian weight, ovarian index, and ovarian histopathological analysis. The effects of moxibustion on BMSCs migration were evaluated by tracking DiR-labeled BMSCs and analyzing the expression of chemokines stromal cell-derived factor 1 (Sdf1) and chemokine receptor type 4 (Cxcr4). Mitochondrial function and mitophagy were assessed by measuring the levels of reactive oxygen species (ROS), mitochondrial membrane potential (MMP), ATP, and the mitophagy markers (Drp1, Pink1, and Parkin). Furthermore, the mitophagy inhibitor Mdivi-1 and the mitophagy activator CCCP were used to confirm the role of mitophagy in Cy-induced ovarian injury and the underlying mechanism of combination therapy. RESULTS: A suitable rat model of POI was established using Cy injection. Compared to moxibustion or BMSCs transplantation alone, BMSCs-MOX showed improved outcomes, such as reduced estrous cycle disorders, improved ovarian weight and index, normalized serum hormone levels, increased ovarian reserve, and reduced follicle atresia. Moxibustion enhanced Sdf1 and Cxcr4 expression, promoting BMSCs migration. BMSCs-MOX reduced ROS levels; upregulated MMP and ATP levels in ovarian granulosa cells (GCs); and downregulated Drp1, Pink1, and Parkin expression in ovarian tissues. Mdivi-1 significantly mitigated mitochondrial dysfunction in ovarian GCs and improved ovarian function. CCCP inhibited the ability of BMSCs-MOX treatment to regulate mitophagy and ameliorate Cy-induced ovarian injury. CONCLUSIONS: Moxibustion enhanced the migration and homing of BMSCs following transplantation and improves their ability to repair ovarian damage. The combination of BMSCs and moxibustion effectively reduced the excessive activation of mitophagy, which helped prevent mitochondrial damage, ultimately improving ovarian function. These findings provide a novel approach for the treatment of pathological ovarian aging and offer new insights into enhancing the efficacy of stem cell therapy for POI patients.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Moxibustão , Insuficiência Ovariana Primária , Humanos , Feminino , Ratos , Animais , Mitofagia , Espécies Reativas de Oxigênio/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/efeitos adversos , Carbonil Cianeto m-Clorofenil Hidrazona/metabolismo , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/terapia , Insuficiência Ovariana Primária/patologia , Ciclofosfamida/efeitos adversos , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases/metabolismo , Hormônios/efeitos adversos , Hormônios/metabolismo , Trifosfato de Adenosina/metabolismo
10.
Free Radic Biol Med ; 220: 1-14, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677487

RESUMO

Primary ovarian insufficiency (POI) in younger women (under 40) manifests as irregular periods, high follicle-stimulating hormone (FSH), and low estradiol (E2), often triggered by chemotherapy. Though mesenchymal stem cell (MSC) therapy shows promise in treating POI, its exact mechanism remains unclear. This study reveals that human umbilical cord-derived MSCs (hUC-MSCs) can protect ovarian granulosa cells (GCs) from cyclophosphamide (CTX)-induced ferroptosis, a form of cell death driven by iron accumulation. CTX, commonly used to induce POI animal model, triggered ferroptosis in GCs, while hUC-MSCs treatment mitigated this effect, both in vivo and in vitro. Further investigations using ferroptosis and autophagy inhibitors suggest that hUC-MSCs act by suppressing ferroptosis in GCs. Interestingly, hUC-MSCs activate a protective antioxidant pathway in GCs via NRF2, a stress-response regulator. Overall, our findings suggest that hUC-MSCs improve ovarian function in CTX-induced POI by reducing ferroptosis in GCs. This study not only clarifies the mechanism behind the benefits of hUC-MSCs but also strengthens the case for their clinical use in treating POI. Additionally, it opens up a new avenue for protecting ovaries from chemotherapy-induced damage by regulating ferroptosis.


Assuntos
Autofagia , Ciclofosfamida , Modelos Animais de Doenças , Ferroptose , Células da Granulosa , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Insuficiência Ovariana Primária , Cordão Umbilical , Feminino , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/terapia , Insuficiência Ovariana Primária/metabolismo , Insuficiência Ovariana Primária/patologia , Animais , Ferroptose/efeitos dos fármacos , Células da Granulosa/metabolismo , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/patologia , Humanos , Camundongos , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/citologia , Ciclofosfamida/efeitos adversos , Transplante de Células-Tronco Mesenquimais/métodos , Autofagia/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Ferritinas/metabolismo
11.
Free Radic Res ; 58(2): 107-116, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38408280

RESUMO

BACKGROUND: Oxidative stress injury is an important pathological factor of premature ovarian failure (POF). Salidroside, extracted from the Chinese herb-Rhodiola rosea, has advantages in antioxidant characteristics. However, their therapeutic efficacy and mechanisms in POF have not been explored. PURPOSE: This study aims to assess the therapeutic effects of salidroside in chemotherapy-induced ovarian failure rats. METHODS: A POF rat model was established by injection of cyclophosphamide, followed by treatment with salidroside. The therapeutic effect of salidroside was evaluated based on hormone levels, follicle count, and reproductive ability. Oxidative stress injury was assessed by the detection of SOD enzyme activity and MDA levels. Differential gene expression of Keap1, Nrf2, HMOX1, NQO1, AMH, BMP15, and GDF9, were identified by qRT­PCR. The protein expression of Keap1, Nrf2, P53, and Bcl-2 were detected by western blot. RESULTS: Salidroside treatment markedly restored FSH, E2, and AMH hormone secretion levels, reduced follicular atresia, and increased antral follicle numbers in POF rats. In addition, salidroside improves fertility in POF rats, activates the Nrf2 signaling pathway, and reduces the level of oxidative stress. The recovery function of high dose salidroside (50 mg/kg) in a reproductive assay was significantly improved than that of lower dose salidroside (25 mg/kg). Meanwhile, the safety evaluation of salidroside treatment in rats showed that salidroside was safe for POF rats at doses of 25-50 mg/kg. CONCLUSIONS: Salidroside therapy improved premature ovarian failure significantly through antioxidant function and activating Nrf2 signaling.


Assuntos
Glucosídeos , Fenóis , Insuficiência Ovariana Primária , Humanos , Ratos , Feminino , Animais , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/tratamento farmacológico , Insuficiência Ovariana Primária/patologia , Proteína 1 Associada a ECH Semelhante a Kelch , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Fator 2 Relacionado a NF-E2 , Atresia Folicular , Ciclofosfamida/efeitos adversos , Hormônios
12.
J Assist Reprod Genet ; 41(4): 989-998, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38315420

RESUMO

A systematic review and meta-analysis were performed to identify if there is a subset of patients with POI who are more likely to show follicular growth after ovarian fragmentation for follicular activation (OFFA) or in vitro activation (IVA). Five studies met inclusion criteria for meta-analysis with a total of 164 patients. Forty-three patients showed follicle development (26.21%). Of those, the pregnancy rate was 35.58% (11/43) and the live birth rate was 20.93% (9/43). Our meta-analysis showed that age was not associated with follicle growth. However, lower baseline FSH, lower duration of amenorrhea/diagnosis, and presence of follicles remaining in biopsy were statistically significant for follicle development. Patients with basal characteristics mentioned before may have more chances to show follicle growth after OFFA or IVA. Taking into account that approximately 20% of patients with follicle growth had live birth, these results are very promising. Given the overall certainty of evidence, future studies are needed to confirm said results.


Assuntos
Fertilização in vitro , Folículo Ovariano , Indução da Ovulação , Taxa de Gravidez , Humanos , Feminino , Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/patologia , Gravidez , Indução da Ovulação/métodos , Fertilização in vitro/métodos , Nascido Vivo/epidemiologia , Insuficiência Ovariana Primária/patologia , Hormônio Foliculoestimulante
13.
Mol Reprod Dev ; 91(2): e23731, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38404010

RESUMO

Premature ovarian insufficiency (POI) patients experience a decline in ovarian function and a reduction in serum reproductive hormones, leading to a significant impact on the outcomes of assisted reproductive technology. Despite the absence of an effective clinical treatment to restore fertility in POI patients, recent research has indicated that cord blood plasma (CBP) derived from human umbilical cord blood (hUCB) may offer therapeutic benefits for various degenerative diseases. The primary aim of this study is to explore approaches for enhancing ovarian function and serum reproductive hormones through the administration of CBP in a murine model. Initially, hUCB was utilized to obtain CBP (CBP), which was subsequently analyzed for cytokine and growth factor profiles in comparison to adult blood plasma (ABP) by use of flow cytometry. Subsequently, POI mouse models were established through the induction of 4-vinylcyclohexene diepoxide, followed by the injection of CBP into the tail. At 7, 14, and 21 days posttreatment, mouse ovaries and blood were collected, and their estrus cycle, body weight, and ovarian weights were evaluated using precise electronic balance. Finally, ovarian morphology and follicle number were assessed through HE staining, while serum levels of anti-Müllerian hormone (AMH), estradiol (E2) and follicle-stimulating hormone (FSH) were determined by ELISA. Our study revealed that individuals with CBP exhibited significantly lower concentrations of proinflammatory cytokines, including IL-ß (p < 0.01) and IL-2 (p < 0.05), while displaying elevated levels of anti-inflammatory cytokines and chemokines, such as IL-2, IL-4, IL-6, IL-8, IL-12P70, IL-17A, IP-10, interferon-γ, and tumor necrosis factor-α (p < 0.01). Furthermore, CBP demonstrated remarkably higher levels of growth factors, including transforming growth factor-ß1, vascular endothelial growth factor, and insulin-like growth factor-1 (p < 0.01) than ABP. Notably, our investigation also revealed that CBP restored the content of serum reproductive hormones, such as AMH, E2, and FSH (p < 0.05), and increased the number of primordial and primary follicles (p < 0.01) and decreased the number of luteal and atretic follicles (p < 0.01) in vivo. Our findings suggested that CBP-secreted cytokines and growth factors could be restored POI ovarian function, enhanced serum reproductive hormones and rescued follicular development in vivo. These findings further support the potential of CBP as a promising strategy in clinical applications for POI related infertility.


Assuntos
Citocinas , Insuficiência Ovariana Primária , Feminino , Adulto , Humanos , Camundongos , Animais , Sangue Fetal , Fator A de Crescimento do Endotélio Vascular , Interleucina-2 , Insuficiência Ovariana Primária/terapia , Insuficiência Ovariana Primária/patologia , Estradiol , Hormônio Foliculoestimulante , Peptídeos e Proteínas de Sinalização Intercelular , Plasma
14.
Adv Med Sci ; 69(1): 70-80, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387407

RESUMO

PURPOSE: Metformin (MET), a first-line treatment for type 2 diabetes mellitus, restores ovarian function in women with polycystic ovary syndrome. MET has been shown to increase the rate of success for in vitro fertilization when utilized in assisted reproductive technologies. This study was designed to examine the impact of MET on ovarian function and fertility in a mouse model of galactose-induced premature ovarian insufficiency (POI). We further investigated the underlying mechanisms. MATERIALS AND METHODS: Female mice were divided into 4 groups: saline, d-galactose, d-galactose â€‹+ â€‹MET, and MET. Body weight, ovarian index, and fertility were assessed. The hormonal profile was done. Advanced glycation end products (AGEPs), receptor for advanced glycation end products (RAGE), phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), forkhead box O3a (FOXO3a) expression were measured. Ovarian follicle counting and morphology were analyzed. Immunohistochemistry of cleaved caspase-3 expression was performed. RESULTS: Our findings demonstrated that MET reversed irregularities in the estrus cycle, enhanced the ovarian index, and improved the abnormal levels of hormones and AGEs induced by d-galactose. Furthermore, the expression levels of PI3K, Akt, FOXO3a, and RAGE were upregulated with d-galactose. However, MET attenuated their expression levels. The primordial follicles ratio was improved, whereas atretic follicles and apoptotic-related cleaved caspase-3 expression were decreased in the d-galactose â€‹+ â€‹MET group compared to the d-galactose group. CONCLUSION: This study demonstrates that MET partially rescued ovarian dysfunction and apoptosis induced by d-galactose via a mechanism involving PI3K-Akt-FOXO3a pathway. Our finding proposed that MET may be a promising alternative treatment for POI.


Assuntos
Proteína Forkhead Box O3 , Galactose , Metformina , Fosfatidilinositol 3-Quinases , Insuficiência Ovariana Primária , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Feminino , Animais , Insuficiência Ovariana Primária/tratamento farmacológico , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/metabolismo , Insuficiência Ovariana Primária/patologia , Proteína Forkhead Box O3/metabolismo , Camundongos , Metformina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Modelos Animais de Doenças , Apoptose/efeitos dos fármacos
15.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38139022

RESUMO

Young female cancer patients can develop chemotherapy-induced primary ovarian insufficiency (POI). Cyclophosphamide (Cy) is one of the most widely used chemotherapies and has the highest risk of damaging the ovaries. Recent studies elucidated the pivotal roles of cellular senescence, which is characterized by permanent cell growth arrest, in the pathologies of various diseases. Moreover, several promising senolytics, including dasatinib and quercetin (DQ), which remove senescent cells, are being developed. In the present study, we investigated whether cellular senescence is involved in Cy-induced POI and whether DQ treatment rescues Cy-induced ovarian damage. Expression of the cellular senescence markers p16, p21, p53, and γH2AX was upregulated in granulosa cells of POI mice and in human granulosa cells treated with Cy, which was abrogated by DQ treatment. The administration of Cy decreased the numbers of primordial and primary follicles, with a concomitant increase in the ratio of growing to dormant follicles, which was partially rescued by DQ. Moreover, DQ treatment significantly improved the response to ovulation induction and fertility in POI mice by extending reproductive life. Thus, cellular senescence plays critical roles in Cy-induced POI, and targeting senescent cells with senolytics, such as DQ, might be a promising strategy to protect against Cy-induced ovarian damage.


Assuntos
Insuficiência Ovariana Primária , Humanos , Camundongos , Feminino , Animais , Insuficiência Ovariana Primária/patologia , Senoterapia , Ciclofosfamida/toxicidade , Dasatinibe/efeitos adversos , Senescência Celular
16.
Gynecol Endocrinol ; 39(1): 2265507, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37839437

RESUMO

OBJECTIVE: This study aimed to identify novel pathogenic genes and variants in a Chinese family with premature ovarian insufficiency (POI). METHODS: A Chinese POI family was enrolled in this study. Whole exome sequencing was performed on the proband and her mother to identify the potential causative genes and variants and Sanger sequencing was used to confirm the finally identified potential pathogenic variant in the family. RESULTS: An assessment of the family pedigree suggested that POI was inherited in an autosomal dominant manner in this family. A novel missense variant of the laminin subunit gamma-1 gene (LAMC1; NM_002293.4: c.3281A > T, p.D1094V) was finally identified in the proband and her affected mother. This variant was not found in any public databases. In silico analysis indicated the amino acid encoded at the variant site was highly conserved among mammals and associated with decreased protein stability and disrupted protein function. Its presence in the POI family was confirmed by Sanger sequencing. CONCLUSIONS: This study firstly reported a novel missense variant of LAMC1 in a Chinese POI family, which was inherited in an autosomal dominant manner. This variant may result in the development of POI. Our results provide supporting evidence for a causative role for LAMC1 variants in POI.


Assuntos
Menopausa Precoce , Insuficiência Ovariana Primária , Humanos , Feminino , Animais , Sequenciamento do Exoma , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/patologia , Menopausa Precoce/genética , Mutação de Sentido Incorreto , Proteínas de Ligação a DNA , Linhagem , Mamíferos/genética
17.
Chin J Physiol ; 66(4): 200-208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635479

RESUMO

Premature ovarian failure (POF) affects many adult women less than 40 years of age and leads to infertility. This study was aimed at exploring the improving effects of miR-22-3p on the symptoms of POF in mice by inhibiting chemokine-like receptor 1 (CMKLR1) expression. Female mice were intraperitoneally injected with cyclophosphamide to construct POF mice models. Lentiviral vectors containing miR-22-3p, short hairpin RNA (sh)-CMKLR1, and overexpression (oe)-CMKLR1, respectively, or in combination, were injected into the ovaries of both sides of POF mice. miR-22-3p and CMKLR1 expression in ovarian tissues of mice was assessed, and the targeting relationship between miR-22-3p and CMKLR1 was predicted and verified. Serum estradiol (E2), anti-Mullerian hormone, and follicle-stimulating hormone levels were assessed. Ovarian weight was weighed, and pathological changes and the number of primordial follicles, primary follicles, secondary follicles, and atresia follicles were observed. Apoptosis of ovarian tissues was determined. In ovarian tissues of POF mice, miR-22-3p expression was decreased while CMKLR1 expression was increased. miR-22-3p up-regulation or CMKLR1 down-regulation restored sex hormone levels, improved ovarian weight and the number of primordial follicles, primary follicles, and secondary follicles, and reduced the number of atresia follicle and ovarian granulosa cell apoptosis in POF mice. miR-22-3p targeted CMKLR1, and overexpressing CMKLR1 reversed the ameliorative effects of miR-22-3p overexpression on POF mice. Our research highlights that overexpressed miR-22-3p down-regulates CMKLR1 to ameliorate the symptoms of POF in mice. Therefore, the miR-22-3p/CMKLR1 axis could improve the symptoms of POF.


Assuntos
MicroRNAs , Insuficiência Ovariana Primária , Adulto , Feminino , Camundongos , Humanos , Animais , Insuficiência Ovariana Primária/patologia , Folículo Ovariano/metabolismo , Folículo Ovariano/patologia , Ciclofosfamida/farmacologia , MicroRNAs/metabolismo , Receptores de Quimiocinas
18.
Biomed Pharmacother ; 166: 115319, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37573658

RESUMO

Premature ovarian insufficiency (POI) is clinically irreversible and seriously damages female fertility. We previously demonstrated that menstrual blood stromal cells (MenSCs)-derived exosomes (EXOs) effectively improved ovarian functions in the POI rat model. In this study, we investigated whether TSP1 is the key component in EXOs to ameliorate ovarian functions and further explored the molecular mechanism of EXOs in improving granulosa cell (GCs) activities. Our results demonstrated that knockdown TSP1 significantly debilitated the therapeutic effect of EXOs on estrous cyclicity, ovarian morphology, follicle numbers and pregnancy outcomes in 4-vinylcyclohexene diepoxide (VCD) induced POI rat model. In addition, EXOs treatment significantly promoted the activities and inhibited the apoptosis of VCD induced granulosa cells in vitro. Moreover, EXOs stimulation markedly activated the phosphorylation of SMAD3(Ser425) and AKT(Ser473), up-regulated the expressions of BCL2 and MDM2 as well as down-regulated the expressions of CASPASE3, CASPASE8, P53 and BAX. All these effects were supressed by SIS3, a inhibitor of TGF1/SMAD3. Our study revealed the key role of TSP1 in EXOs in improving POI pathology, restoring ovarian functions and GCs activities, andprovided a promising basis for EXOs in the treatment of ovarian dysfunction.


Assuntos
Exossomos , Menstruação , Insuficiência Ovariana Primária , Células Estromais , Trombospondinas , Animais , Feminino , Humanos , Gravidez , Ratos , Apoptose , Exossomos/metabolismo , Células da Granulosa/metabolismo , Menstruação/sangue , Insuficiência Ovariana Primária/patologia , Insuficiência Ovariana Primária/terapia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Smad3/metabolismo , Células Estromais/metabolismo , Trombospondinas/metabolismo , Proteína Supressora de Tumor p53/metabolismo
19.
Front Endocrinol (Lausanne) ; 14: 1205901, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564988

RESUMO

Premature ovarian insufficiency (POI) induced by chemotherapy is an intractable disorder with a considerable incidence that commonly results in insufficient fertility and concomitant complications in female patients. Due to limitations in the current progress in POI diagnosis and treatment, there is an urgent need to develop novel remedies to improve ovarian function and protect fertility. The ameliorative effect of human umbilical cord mesenchymal stem cells (hUCMSCs) and exosomes derived from them in POI treatment could be a new hope for patients. Herein, we identified exosomes from hUCMSCs (hUCMSC-Exos). Then, systematic infusion of hUCMSC-Exos was accomplished via tail intravenous injection to investigate the feasibility of the treatment of rats with chemotherapy-induced POI by intraperitoneal injection of cyclophosphamide (CTX) and busulfan (BUS). Ovarian functions in the indicated group were evaluated, including oestrous cycle, serum sex hormone levels, follicle counts, ovarian pathological changes, proliferation and apoptosis of granulosa cells (GCs), and reproductive ability testing. Furthermore, the potential influence of hUCMSC-Exos on ovarian tissues was illuminated by conducting RNA-seq and multifaceted bioinformatics analyses. POI rats with hUCMSC-Exos transplantation exhibited a decrease in follicle-stimulating hormone (FSH) and apoptosis of GCs but an increase in oestradiol (E2), anti-Müllerian hormone (AMH), and the number of ovarian follicles and foetuses in the uterus. And the immunomodulation- and cellular vitality-associated gene sets in rats had also undergone moderate changes. Our data indicated the feasibility of hUCMSC-Exos in improving ovarian function and protecting fertility in chemotherapy-induced POI rats. HUCMSC-Exos can improve the local microenvironment of ovarian tissue in POI rats by participating in immune regulation, cellular viability, inflammation regulation, fibrosis and metabolism, and other related signal pathways.


Assuntos
Antineoplásicos , Exossomos , Menopausa Precoce , Insuficiência Ovariana Primária , Ratos , Humanos , Feminino , Animais , Exossomos/metabolismo , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/terapia , Insuficiência Ovariana Primária/patologia , Antineoplásicos/efeitos adversos
20.
Clin Genet ; 104(5): 516-527, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37461298

RESUMO

Premature ovarian insufficiency (POI) is a clinical syndrome of ovarian dysfunction characterized by cessation of menstruation occurring before the age of 40 years. The genetic causes of idiopathic POI remain unclear. Here we recruited a POI patient from a consanguineous family to screen for potential pathogenic variants associated with POI. Genetic variants of the pedigree were screened using whole-exome sequencing analysis and validated through direct Sanger sequencing. A homozygous variant in TUFM (c.524G>C: p.Gly175Ala) was identified in this family. TUFM (Tu translation elongation factor, mitochondrial) is a nuclear-encoded mitochondrial protein translation elongation factor that plays a critical role in maintaining normal mitochondrial function. The variant position was highly conserved among species and predicted to be disease causing. Our in vitro functional studies demonstrated that this variant causes decreased TUFM protein expression, leading to mitochondrial dysfunction and impaired autophagy activation. Moreover, we found that mice with targeted Tufm variant recapitulated the phenotypes of human POI. Thus, this is the first report of a homozygous pathogenic TUFM variant in POI. Our findings highlighted the essential role of mitochondrial genes in folliculogenesis and ovarian function maintenance.


Assuntos
Insuficiência Ovariana Primária , Adulto , Animais , Feminino , Humanos , Camundongos , Consanguinidade , Homozigoto , Mitocôndrias/genética , Mitocôndrias/patologia , Mutação , Insuficiência Ovariana Primária/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...