Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55.402
Filtrar
1.
J Food Drug Anal ; 32(2): 227-238, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38934691

RESUMO

We aimed to investigate the therapeutic potential of ibuprofen against type 2 diabetes (T2D) using obese Zucker diabetic fatty (ZDF) rats as type 2 diabetes model. ZDF rats were hyperglycemic, dyslipidemic and expressed proinflammatory markers in contrast to lean controls, thus reflecting the relationship between obesity and chronic inflammation promoting T2D. Chronic treatment with ibuprofen (2-(4-Isobutylphenyl)propanoic acid) was used to study the impact on pathological T2D conditions as compared to metformin (1,1-dimethylbiguanide) treated ZDF as well as lean controls. Ibuprofen decreased A1c but induced a high insulin release with improved glucose tolerance only after early time points (i.g., 15 and 30 min) resulting in a non-significant decline of AUC values and translating into a high HOMA-IR. In addition, ibuprofen significantly lowered cholesterol, free fatty acids and HDL-C. Some of these effects by ibuprofen might be based on its anti-inflammatory effects through inhibition of cytokine/chemokine signaling (i.g., COX-2, ICAM-1 and TNF-α) as measured in whole blood and epididymal adipose tissue by TaqMan and/or upregulation of anti-inflammatory cytokines (i.g., IL-4 and IL-13) by ELISA analysis in blood. In conclusion, our ZDF animal study showed positive effects of ibuprofen against diabetic complications such as inflammation and dyslipidemia but also demonstrated the risk of causing insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2 , Ibuprofeno , Ratos Zucker , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Ibuprofeno/farmacologia , Ibuprofeno/administração & dosagem , Ratos , Masculino , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Humanos , Modelos Animais de Doenças , Insulina/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Citocinas/metabolismo , Resistência à Insulina
2.
Mol Biol Rep ; 51(1): 753, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874636

RESUMO

BACKGROUND: The diagnosis of neonatal diabetes can be problematic in preterm infants with fetal growth restriction (FGR). Growth restricted fetuses may have impaired insulin production and secretion; low birthweight infants may have a reduced response to insulin. We report a novel missense ABCC8 variant associated with a clinical phenotype compatible with transient neonatal diabetes mellitus (TNDM) in a fetal growth restricted preterm infant. METHODS AND RESULTS: A preterm growth restricted infant experienced hyperglycemia from the first day of life, requiring insulin therapy on the 13th and 15th day of life and leading to the diagnosis of TNDM. Glycemic values normalized from the 35th day of life onwards. Genetic screening was performed by next generation sequencing, using a Clinical Exon panel of 4800 genes, filtered for those associated with the clinical presentation and by means of methylation-specific multiplex ligation-dependent probe amplification analysis to identify chromosomal aberrations at 6q24. Genetic tests excluded defects at 6q24 and were negative for KCNJ11, SLC2A2 (GLUT-2) and HNF1B, but revealed the presence of the heterozygous missense variant c.2959T > C (p.Ser987Pro) in ABCC8 gene. The presence of the variant was excluded in parents' DNA and the proband variant was then considered de novo. CONCLUSIONS: In our infant, the persistence of hyperglycemia beyond 3 weeks of life led us to the diagnosis of TNDM and to hypothesize a possible genetic cause. The genetic variant we found could be, most likely, the main cause of both FGR and TNDM.


Assuntos
Diabetes Mellitus , Retardo do Crescimento Fetal , Mutação de Sentido Incorreto , Receptores de Sulfonilureias , Humanos , Retardo do Crescimento Fetal/genética , Mutação de Sentido Incorreto/genética , Receptores de Sulfonilureias/genética , Recém-Nascido , Diabetes Mellitus/genética , Feminino , Masculino , Recém-Nascido Prematuro , Insulina/metabolismo , Doenças do Recém-Nascido/genética , Doenças do Recém-Nascido/diagnóstico
3.
Food Res Int ; 188: 114517, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823849

RESUMO

Slowing the rate of carbohydrate digestion leads to low postprandial glucose and insulin responses, which are associated with reduced risk of type 2 diabetes. There is increasing evidence that food structure plays a crucial role in influencing the bioaccessibility and digestion kinetics of macronutrients. The aims of this study were to compare the effects of two hummus meals, with different degrees of cell wall integrity, on postprandial metabolic responses in relation to the microstructural and rheological characteristics of the meals. A randomised crossover trial in 15 healthy participants was designed to compare the acute effect of 27 g of starch, provided as hummus made from either intact chickpea cells (ICC) or ruptured chickpea cells (RCC), on postprandial metabolic responses. In vitro starch digestibility, microstructural and rheological experiments were also conducted to evaluate differences between the two chickpea hummus meals. Blood insulin and GIP concentrations were significantly lower (P < 0.02, P < 0.03) after the consumption of the ICC meal than the meal containing RCC. In vitro starch digestion for 90 min was slower in ICC than in RCC. Microscopic examination of hummus samples digested in vitro for 90 min revealed more intact chickpea cells in ICC compared to the RCC sample. Rheological experiments showed that fracture for ICC hummus samples occurred at smaller strains compared to RCC samples. However, the storage modulus for ICC was higher than RCC, which may be explained by the presence of intact cells in ICC. Food structure can affect the rate and extent of starch bioaccessibility and digestion and may explain the difference in the time course of metabolic responses between meals. The rheological properties were measured on the two types of meals before ingestion, showing significant differences that may point to different breakdown mechanisms during subsequent digestion. This trial was registered at clinicaltrial.gov as NCT03424187.


Assuntos
Glicemia , Cicer , Estudos Cross-Over , Digestão , Insulina , Período Pós-Prandial , Reologia , Humanos , Cicer/química , Período Pós-Prandial/fisiologia , Insulina/sangue , Insulina/metabolismo , Glicemia/metabolismo , Adulto , Masculino , Feminino , Adulto Jovem , Amido/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Polipeptídeo Inibidor Gástrico/sangue , Voluntários Saudáveis , Cinética
4.
Clin Epigenetics ; 16(1): 78, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862980

RESUMO

Diabetes mellitus is a chronic disease that impairs metabolism, and its prevalence has reached an epidemic proportion globally. Most people affected are with type 2 diabetes mellitus (T2DM), which is caused by a decline in the numbers or functioning of pancreatic endocrine islet cells, specifically the ß-cells that release insulin in sufficient quantity to overcome any insulin resistance of the metabolic tissues. Genetic and epigenetic factors have been implicated as the main contributors to the T2DM. Epigenetic modifiers, histone deacetylases (HDACs), are enzymes that remove acetyl groups from histones and play an important role in a variety of molecular processes, including pancreatic cell destiny, insulin release, insulin production, insulin signalling, and glucose metabolism. HDACs also govern other regulatory processes related to diabetes, such as oxidative stress, inflammation, apoptosis, and fibrosis, revealed by network and functional analysis. This review explains the current understanding of the function of HDACs in diabetic pathophysiology, the inhibitory role of various HDAC inhibitors (HDACi), and their functional importance as biomarkers and possible therapeutic targets for T2DM. While their role in T2DM is still emerging, a better understanding of the role of HDACi may be relevant in improving insulin sensitivity, protecting ß-cells and reducing T2DM-associated complications, among others.


Assuntos
Diabetes Mellitus Tipo 2 , Epigênese Genética , Inibidores de Histona Desacetilases , Histona Desacetilases , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/fisiopatologia , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Epigênese Genética/efeitos dos fármacos , Resistência à Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Animais , Estresse Oxidativo/efeitos dos fármacos , Insulina/metabolismo
5.
J ASEAN Fed Endocr Soc ; 39(1): 79-83, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863915

RESUMO

Background: Insulinoma is one of the causes of recurrent hypoglycemia, one of the chief complaints for emergency department admission. The gold standard in diagnosing insulinoma is a 72-hour fasting test which is inconvenient and inefficient as it requires hospitalization. Research has found that measurement of insulin and C-peptide during OGTT may help diagnose insulinoma. We aimed to assess the diagnostic value of OGTT in diagnosing insulinoma. Methodology: The literature search was conducted on 19 August 2022 using several databases (MEDLINE, Scopus, Embase, and ScienceDirect). All studies that measured OGTT as diagnostic tools in diagnosing insulinoma and 72-hour fasting test as reference standard were included. The quality assessment of the selected studies was based on the Centre of Evidence-Based Medicine University of Oxford and the Quality Assessment of Diagnostic Accuracy-2 tool (QUADAS-2). Analysis of the included studies was performed qualitatively. This study was registered on PROSPERO (CRD42022360205). Results: A total of two case-control studies (106 patients) were included, which were at risk of bias and low concern of applicability. Both studies demonstrated that the combination of insulin and C-peptide levels measured during OGTT had high specificity, sensitivity, positive predictive value, and negative predictive value in diagnosing insulinoma compared to the reference standard. A logistic regression model of 8.305 - (0.441 × insulin 2-h/0-h) - (1.679 × C-peptide 1-h/0-h) >0.351 has the highest diagnostic value in one study (AUC 0.97, Sensitivity 86.5%, Specificity 95.2%, PPV 94.1, NPV 88.9). Conclusion: The measurement of 0-h and 2-h insulin and C-peptide levels during 2-h OGTT was found in two small case-control studies with a total of 106 patients to have good sensitivity and specificity. However, due to these limitations, future research is still needed to validate the potential use of OGTT for the diagnosis of insulinoma.


Assuntos
Peptídeo C , Teste de Tolerância a Glucose , Insulina , Insulinoma , Neoplasias Pancreáticas , Humanos , Peptídeo C/sangue , Insulinoma/diagnóstico , Insulinoma/sangue , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/sangue , Insulina/sangue , Insulina/metabolismo , Sensibilidade e Especificidade , Secreção de Insulina
6.
Phytomedicine ; 130: 155546, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38833790

RESUMO

BACKGROUND: Diabetes mellitus (DM) is a chronic metabolic disease characterized by hyperglycemia, and its increasing prevalence is a global concern. Early diagnostic markers and therapeutic targets are essential for DM prevention and treatment. Pueraria, derived from kudzu root, is used clinically for various symptoms, and its active compound, Puerarin, shows promise in improving insulin resistance and reducing inflammation. PURPOSE: This study aims to evaluate the protective effects of metformin and Puerarin at different doses in an STZ-induced DM mouse model. The intricate metabolites within the serum of STZ-induced diabetic mice were subjected to thorough investigation, thus elucidating the intricate mechanism through which Puerarin demonstrates notable efficacy in the treatment of diabetes. METHODS: An STZ-induced DM mouse model is established. Mice are treated with metformin and puerarin at varying doses. Physiological, biochemical, and histomorphological assessments are performed. Metabolomics analysis is carried out on serum samples from control, DM, metformin, and medium-dose Puerarin groups. Western blot and qRT-PCR technologies are used to validate the mechanisms. RESULTS: The DM mouse model replicates abnormal blood glucose, insulin levels, physiological, biochemical irregularities, as well as liver and pancreas damage. Treatment with metformin and Puerarin restores these abnormalities, reduces organ injury, and modulates AMPK, PPARγ, mTOR, and NF-κB protein and mRNA expression. Puerarin activates the AMPK-mTOR and PPARγ-NF-κB signaling pathways, regulating insulin signaling, glucolipid metabolism, and mitigating inflammatory damage. CONCLUSION: This study demonstrates that Puerarin has the potential to treat diabetes by modulating key signaling pathways. The focus was on the finding that Puerarin has been shown to improve insulin signaling, glucolipid metabolism and attenuate inflammatory damage through the modulation of the AMPK-mTOR and PPARγ-NF-κB pathways. The discovery of Puerarin's favorable protective effect and extremely complex mechanism highlights its prospect in the treatment of diabetes and provides theoretical support for its comprehensive development and utilization.


Assuntos
Proteínas Quinases Ativadas por AMP , Glicemia , Diabetes Mellitus Experimental , Hipoglicemiantes , Isoflavonas , Metformina , NF-kappa B , PPAR gama , Pueraria , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Isoflavonas/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/farmacologia , NF-kappa B/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Metformina/farmacologia , PPAR gama/metabolismo , Pueraria/química , Camundongos , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Metabolômica , Insulina/sangue , Insulina/metabolismo
7.
Life Sci ; 350: 122762, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38843994

RESUMO

Type 1 diabetes (T1D) is a chronic autoimmune condition characterized by the destruction of pancreatic ß cells, recently estimated to affect approximately 8.75 million individuals worldwide. At variance with conventional management of T1D, which relies on exogenous insulin replacement and insulinotropic drugs, emerging therapeutic strategies include transplantation of insulin-producing cells (IPCs) derived from stem cells or fully reprogrammed differentiated cells. Through the in-depth analysis of the microRNAs (miRNAs) involved in the differentiation of human embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs), into insulin-producing cells, this review provides a comprehensive overview of the molecular mechanisms orchestrating the transformation of precursors to cells producing insulin. In addition to miR-375, involved in all differentiation processes, and to miR-7, mir-145 and miR-9, common to the generation of insulin-producing cells from at least two different sources, the literature reveals panels of miRNAs closely related to precursor cells and associated with specific events of the physiological ß cell maturation. Since the forced modulation of miRNAs can direct cells development towards insulin-producing cells or modify their fate, a more comprehensive knowledge of the miRNAs involved in the cellular events leading to obtain efficient ß cells could improve the diagnostic, prognostic, and therapeutic approaches to diabetes.


Assuntos
Diferenciação Celular , Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Insulina , MicroRNAs , Humanos , MicroRNAs/genética , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/genética , Insulina/metabolismo , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia
8.
Sci Rep ; 14(1): 13992, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38886475

RESUMO

Obesity is a complex disease associated with augmented risk of metabolic disorder development and cellular dysfunction in various species. The goal of the present study was to investigate the impacts of obesity on the metabolic health of old mares as well as test the ability of diet supplementation with either a complex blend of nutrients designed to improve equine metabolism and gastrointestinal health or L-carnitine alone to mitigate negative effects of obesity. Mares (n = 19, 17.9 ± 3.7 years) were placed into one of three group: normal-weight (NW, n = 6), obese (OB, n = 7) or obese fed a complex diet supplement for 12 weeks (OBD, n = 6). After 12 weeks and completion of sample collections, OB mares received L-carnitine alone for an additional 6 weeks. Obesity in mares was significantly associated with insulin dysregulation, reduced muscle mitochondrial function, and decreased skeletal muscle oxidative capacity with greater ROS production when compared to NW. Obese mares fed the complex diet supplement had better insulin sensivity, greater cell lipid metabolism, and higher muscle oxidative capacity with reduced ROS production than OB. L-carnitine supplementation alone did not significantly alter insulin signaling, but improved lipid metabolism and muscle oxidative capacity with reduced ROS. In conclusion, obesity is associated with insulin dysregulation and altered skeletal muscle metabolism in older mares. However, dietary interventions are an effective strategy to improve metabolic status and skeletal muscle mitochondrial function in older mares.


Assuntos
Adiposidade , Carnitina , Suplementos Nutricionais , Insulina , Obesidade , Animais , Cavalos , Feminino , Insulina/metabolismo , Insulina/sangue , Carnitina/metabolismo , Carnitina/farmacologia , Obesidade/metabolismo , Obesidade/dietoterapia , Adiposidade/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Doenças dos Cavalos/metabolismo , Doenças dos Cavalos/dietoterapia , Doenças dos Cavalos/etiologia , Resistência à Insulina , Espécies Reativas de Oxigênio/metabolismo
9.
Cells ; 13(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38891081

RESUMO

This study unveils verapamil's compelling cytoprotective and proliferative effects on pancreatic ß-cells amidst diabetic stressors, spotlighting its unforeseen role in augmenting cholecystokinin (CCK) expression. Through rigorous investigations employing MIN6 ß-cells and zebrafish models under type 1 and type 2 diabetic conditions, we demonstrate verapamil's capacity to significantly boost ß-cell proliferation, enhance glucose-stimulated insulin secretion, and fortify cellular resilience. A pivotal revelation of our research is verapamil's induction of CCK, a peptide hormone known for its role in nutrient digestion and insulin secretion, which signifies a novel pathway through which verapamil exerts its therapeutic effects. Furthermore, our mechanistic insights reveal that verapamil orchestrates a broad spectrum of gene and protein expressions pivotal for ß-cell survival and adaptation to immune-metabolic challenges. In vivo validation in a zebrafish larvae model confirms verapamil's efficacy in fostering ß-cell recovery post-metronidazole infliction. Collectively, our findings advocate for verapamil's reevaluation as a multifaceted agent in diabetes therapy, highlighting its novel function in CCK upregulation alongside enhancing ß-cell proliferation, glucose sensing, and oxidative respiration. This research enriches the therapeutic landscape, proposing verapamil not only as a cytoprotector but also as a promoter of ß-cell regeneration, thereby offering fresh avenues for diabetes management strategies aimed at preserving and augmenting ß-cell functionality.


Assuntos
Proliferação de Células , Colecistocinina , Células Secretoras de Insulina , Verapamil , Peixe-Zebra , Animais , Verapamil/farmacologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Colecistocinina/metabolismo , Colecistocinina/farmacologia , Proliferação de Células/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Linhagem Celular , Camundongos , Modelos Animais de Doenças , Insulina/metabolismo , Glucose/metabolismo
10.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892122

RESUMO

Pancreatic islet isolation is critical for type 2 diabetes research. Although -omics approaches have shed light on islet molecular profiles, inconsistencies persist; on the other hand, functional studies are essential, but they require reliable and standardized isolation methods. Here, we propose a simplified protocol applied to very small-sized samples collected from partially pancreatectomized living donors. Islet isolation was performed by digesting tissue specimens collected during surgery within a collagenase P solution, followed by a Lympholyte density gradient separation; finally, functional assays and staining with dithizone were carried out. Isolated pancreatic islets exhibited functional responses to glucose and arginine stimulation mirroring donors' metabolic profiles, with insulin secretion significantly decreasing in diabetic islets compared to non-diabetic islets; conversely, proinsulin secretion showed an increasing trend from non-diabetic to diabetic islets. This novel islet isolation method from living patients undergoing partial pancreatectomy offers a valuable opportunity for targeted study of islet physiology, with the primary advantage of being time-effective and successfully preserving islet viability and functionality. It enables the generation of islet preparations that closely reflect donors' clinical profiles, simplifying the isolation process and eliminating the need for a Ricordi chamber. Thus, this method holds promises for advancing our understanding of diabetes and for new personalized pharmacological approaches.


Assuntos
Separação Celular , Ilhotas Pancreáticas , Humanos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/citologia , Separação Celular/métodos , Doadores Vivos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Insulina/metabolismo , Glucose/metabolismo , Secreção de Insulina
11.
Biomed Pharmacother ; 176: 116836, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850660

RESUMO

Alzheimer's disease (AD) is a devastating neurological condition characterized by cognitive decline, motor coordination impairment, and amyloid plaque accumulation. The underlying molecular mechanisms involve oxidative stress, inflammation, and neuronal degeneration. This study aimed to investigate the therapeutic effects of mesenchymal stem cell-derived exosomes (MSC-exos) on AD and explore the molecular pathways involved, including the PI3K/Akt/mTOR axis, autophagy, and neuroinflammation. To assess the potential of MSC-exos for the treatment of AD, rats were treated with AlCl3 (17 mg/kg/once/day) for 8 weeks, followed by the administration of an autophagy activator (rapamycin), or MSC-exos with or without an autophagy inhibitor (3-methyladenin; 3-MA+ chloroquine) for 4 weeks. Memory impairment was tested, and brain tissues were collected for gene expression analyses, western blotting, histological studies, immunohistochemistry, and transmission electron microscopy. Remarkably, the administration of MSC-exos improved memory performance in AD rats and reduced the accumulation of amyloid-beta (Aß) plaques and tau phosphorylation. Furthermore, MSC-exos promoted neurogenesis, enhanced synaptic function, and mitigated astrogliosis in AD brain tissues. These beneficial effects were associated with the modulation of autophagy and the PI3K/Akt/mTOR signalling pathway, as well as the inhibition of neuroinflammation. Additionally, MSC-exos were found to regulate specific microRNAs, including miRNA-21, miRNA-155, miRNA-17-5p, and miRNA-126-3p, further supporting their therapeutic potential. Histopathological and bioinformatic analyses confirmed these findings. This study provides compelling evidence that MSC-exos hold promise as a potential therapeutic approach for AD. By modulating the PI3K/Akt/mTOR axis, autophagy, and neuroinflammation, MSC-exos have the potential to improve memory, reduce Aß accumulation, enhance neurogenesis, and mitigate astrogliosis. These findings shed light on the therapeutic potential of MSC-exos and highlight their role in combating AD.


Assuntos
Doença de Alzheimer , Autofagia , Exossomos , Células-Tronco Mesenquimais , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Exossomos/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Masculino , Ratos , Células-Tronco Mesenquimais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Insulina/metabolismo , Modelos Animais de Doenças
12.
Sci Total Environ ; 942: 173746, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38851356

RESUMO

As a member of biodegradable plastics, exposure risk of polylactic acid microplastic (PLA-MP) has received attention recently. Toxicity of PLA-MP at parental generation (P0-G) has been observed in some organisms; however, its possible transgenerational toxicity and underlying mechanisms remain unclear. In Caenorhabditis elegans, 10 and 100 µg/L PLA-MP resulted in transgenerational inhibition in reproductive capacity and transgenerational damage on gonad development. Meanwhile, transgenerational increase in germline apoptosis was detected after PLA-MP exposure at P0-G, which was associated with transgenerational dysregulation in expressions of genes governing apoptosis (ced-3, ced-4, egl-1, and ced-9) and DNA damage related genes (cep-1, mrt-2, hus-1, and clk-2). Among secreted ligand genes, PLA-MP exposure induced transgenerational increase in expression of ins-39 and wrt-3, and RNAi of ins-39 and wrt-3 inhibited germline apoptosis in PLA-MP exposed nematodes. Additionally, PLA-MP caused transgenerational increase in expression of met-2 and set-6 encoding histone methylation transferases, and germline apoptosis induced by PLA-MP could be suppressed by RNAi of met-2 and set-6. Dysregulated expressions of some apoptosis and DNA damage related genes caused by PLA-MP were reversed by RNAi of ins-39, wrt-3, met-2, and set-6. Moreover, in PLA-MP exposed animals, expression of ins-39 and wrt-3 could be further inhibited by RNAi of met-2 and set-6. Therefore, PLA-MP potentially induced reproductive toxicity across multiple generations, which was under the control of MET-2 and SET-6 activated ligands of INS-39 and WRT-3.


Assuntos
Caenorhabditis elegans , Microplásticos , Reprodução , Animais , Caenorhabditis elegans/efeitos dos fármacos , Microplásticos/toxicidade , Reprodução/efeitos dos fármacos , Poliésteres , Insulina/metabolismo , Ligantes , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Apoptose/efeitos dos fármacos
13.
Sci Rep ; 14(1): 12639, 2024 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825593

RESUMO

Chronic feeding of a high fat diet (HFD) in preclinical species induces broad metabolic dysfunction characterized by body weight gain, hyperinsulinemia, dyslipidemia and impaired insulin sensitivity. The plasma lipidome is not well characterized in dogs with HFD-induced metabolic dysfunction. We therefore aimed to describe the alterations that occur in the plasma lipid composition of dogs that are fed a HFD and examine the association of these changes with the clinical signs of metabolic dysfunction. Dogs were fed a normal diet (ND) or HFD for 12 weeks. Insulin sensitivity (SI) and beta cell compensation (AIRG) were assessed through an intravenous glucose tolerance test (IVGTT) and serum biochemistry was analyzed before the introduction of HFD and again after 12 weeks of continued ND or HFD feeding. Plasma lipidomics were conducted prior to the introduction of HFD and again at week 8 in both ND and HFD-fed dogs. 12 weeks of HFD feeding resulted in impaired insulin sensitivity and increased beta cell compensation measured by SI (ND mean: 11.5 [mU/l]-1 min-1, HFD mean: 4.7 [mU/l]-1 min-1) and AIRG (ND mean: 167.0 [mU/l]min, HFD mean: 260.2 [mU/l]min), respectively, compared to dogs fed ND over the same duration. Chronic HFD feeding increased concentrations of plasma lipid species and deleterious fatty acids compared to dogs fed a ND. Saturated fatty acid (SFA) concentrations were significantly associated with fasting insulin (R2 = 0.29), SI (R2 = 0.49) and AIRG (R2 = 0.37) in all dogs after 12 weeks, irrespective of diet. Our results demonstrate that chronic HFD feeding leads to significant changes in plasma lipid composition and fatty acid concentrations associated with metabolic dysfunction. High SFA concentrations may be predictive of deteriorated insulin sensitivity in dogs.


Assuntos
Dieta Hiperlipídica , Ácidos Graxos , Resistência à Insulina , Células Secretoras de Insulina , Animais , Cães , Células Secretoras de Insulina/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/sangue , Dieta Hiperlipídica/efeitos adversos , Masculino , Teste de Tolerância a Glucose , Insulina/sangue , Insulina/metabolismo , Feminino , Lipidômica/métodos
14.
Cell Rep ; 43(6): 114346, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38850534

RESUMO

Histopathological heterogeneity in the human pancreas is well documented; however, functional evidence at the tissue level is scarce. Herein, we investigate in situ glucose-stimulated islet and carbachol-stimulated acinar cell secretion across the pancreas head (PH), body (PB), and tail (PT) regions in donors without diabetes (ND; n = 15), positive for one islet autoantibody (1AAb+; n = 7), and with type 1 diabetes (T1D; <14 months duration, n = 5). Insulin, glucagon, pancreatic amylase, lipase, and trypsinogen secretion along with 3D tissue morphometrical features are comparable across regions in ND. In T1D, insulin secretion and beta-cell volume are significantly reduced within all regions, while glucagon and enzymes are unaltered. Beta-cell volume is lower despite normal insulin secretion in 1AAb+, resulting in increased volume-adjusted insulin secretion versus ND. Islet and acinar cell secretion in 1AAb+ are consistent across the PH, PB, and PT. This study supports low inter-regional variation in pancreas slice function and, potentially, increased metabolic demand in 1AAb+.


Assuntos
Diabetes Mellitus Tipo 1 , Insulina , Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/metabolismo , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Masculino , Insulina/metabolismo , Feminino , Secreção de Insulina/efeitos dos fármacos , Adulto , Pessoa de Meia-Idade , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Células Acinares/metabolismo , Células Acinares/patologia , Glucagon/metabolismo , Glucose/metabolismo , Autoanticorpos/imunologia , Amilases/metabolismo
15.
Commun Biol ; 7(1): 776, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937578

RESUMO

Aggregation of the human islet amyloid polypeptide (hIAPP) contributes to the development and progression of Type 2 Diabetes (T2D). hIAPP aggregates within a few hours at few micromolar concentration in vitro but exists at millimolar concentrations in vivo. Natively occurring inhibitors of hIAPP aggregation might therefore provide a model for drug design against amyloid formation associated with T2D. Here, we describe the combined ability of low pH, zinc, and insulin to inhibit hIAPP fibrillation. Insulin dose-dependently slows hIAPP aggregation near neutral pH but had less effect on the aggregation kinetics at acidic pH. We determine that insulin alters hIAPP aggregation in two manners. First, insulin diverts the aggregation pathway to large nonfibrillar aggregates with ThT-positive molecular structure, rather than to amyloid fibrils. Second, soluble insulin suppresses hIAPP dimer formation, which is an important early aggregation event. Further, we observe that zinc significantly modulates the inhibition of hIAPP aggregation by insulin. We hypothesize that this effect arose from controlling the oligomeric state of insulin and show that hIAPP interacts more strongly with monomeric than oligomeric insulin.


Assuntos
Insulina , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Agregados Proteicos , Zinco , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Concentração de Íons de Hidrogênio , Humanos , Zinco/farmacologia , Zinco/metabolismo , Zinco/química , Insulina/metabolismo , Agregados Proteicos/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Cinética , Amiloide/metabolismo , Amiloide/química , Agregação Patológica de Proteínas/metabolismo
16.
Sci Rep ; 14(1): 14534, 2024 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914694

RESUMO

High sugar consumption is associated with cardiovascular diseases and diabetes. Current sugar substitutes may cause taste sensations and gastrointestinal symptoms. ENSO 16 is a combination of 16 different sugar substitutes and plant fibers and has been designed as a sugar alternative. The impact on plasma glucose metabolism as well as on gastrointestinal tolerance has not been investigated yet. 17 healthy participants were enrolled in this randomized, double-blind trial. Participants received a single oral dose of 30 g glucose or 30 g ENSO 16 and crossed over to the alternate treatment after a 7 day wash out period. The study endpoint was the effect on plasma glucose, insulin, C-peptide concentrations and gastrointestinal disorders. A questionnaire regarding gastrointestinal symptoms was used for individual subjective scoring. The mean baseline adjusted plasma glucose AUC0-180 min was significantly greater after glucose administration compared to ENSO 16 (n = 15, p = 0.0128, paired t-test). Maximum plasma glucose elevation over baseline was 117 mg*dl-1 and 20 mg*dl-1 after oral glucose or ENSO 16, respectively. Insulin and C-peptide AUC0-180 min were significantly greater after glucose compared to ENSO 16 intake (p < 0.01, Wilcoxon rank sum test). The mean maximal concentrations of plasma glucose, insulin and C-peptide after glucose intake were 1.5, 4.6 and 2.7-fold greater after glucose intake compared to ENSO 16 intake, respectively. Adverse reactions were mostly mild and not different between treatments. Conclusion. ENSO 16 has only a small impact on plasma glucose metabolism. This may be of interest in a dietary context and may help to reduce calory intake.Trail registration NCT05457400. First registration: 14/07/2022. https://clinicaltrials.gov/study/NCT05457400 .


Assuntos
Glicemia , Peptídeo C , Estudos Cross-Over , Insulina , Humanos , Masculino , Feminino , Adulto , Glicemia/metabolismo , Método Duplo-Cego , Peptídeo C/sangue , Insulina/sangue , Insulina/metabolismo , Glucose/metabolismo , Voluntários Saudáveis , Adulto Jovem , Pessoa de Meia-Idade
17.
Nutrients ; 16(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38931156

RESUMO

Nucleotides (NTs) act as pivotal regulatory factors in numerous biological processes, playing indispensable roles in growth, development, and metabolism across organisms. This study delves into the effects of exogenous NTs on hepatic insulin resistance using palmitic-acid-induced HepG2 cells, administering interventions at three distinct dosage levels of exogenous NTs. The findings underscore that exogenous NT intervention augments glucose consumption in HepG2 cells, modulates the expression of glycogen-synthesis-related enzymes (glycogen synthase kinase 3ß and glycogen synthase), and influences glycogen content. Additionally, it governs the expression levels of hepatic enzymes (hexokinase, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase). Moreover, exogenous NT intervention orchestrates insulin signaling pathway (insulin receptor substrate-1, protein kinase B, and forkhead box protein O1) and AMP-activated protein kinase (AMPK) activity in HepG2 cells. Furthermore, exogenous NT intervention fine-tunes the expression levels of oxidative stress-related markers (malondialdehyde, glutathione peroxidase, and NADPH oxidase 4) and the expression of inflammation-related nuclear transcription factor (NF-κB). Lastly, exogenous NT intervention regulates the expression levels of glucose transporter proteins (GLUTs). Consequently, exogenous NTs ameliorate insulin resistance in HepG2 cells by modulating the IRS-1/AKT/FOXO1 pathways and regulate glucose consumption, glycogen content, insulin signaling pathways, AMPK activity, oxidative stress, and inflammatory status.


Assuntos
Proteína Forkhead Box O1 , Proteínas Substratos do Receptor de Insulina , Resistência à Insulina , Ácido Palmítico , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Humanos , Células Hep G2 , Ácido Palmítico/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Proteína Forkhead Box O1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Nucleotídeos/metabolismo , Nucleotídeos/farmacologia , Glucose/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Glicogênio/metabolismo , Insulina/metabolismo
18.
Nutrients ; 16(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38931177

RESUMO

CONTEXT/OBJECTIVE: In order to better understand which metabolic differences are related to insulin resistance in metabolic syndrome (MetSyn), we used hyperinsulinemic-euglycemic (HE) clamps in individuals with MetSyn and related peripheral insulin resistance to circulating biomarkers. DESIGN/METHODS: In this cross-sectional study, HE-clamps were performed in treatment-naive men (n = 97) with MetSyn. Subjects were defined as insulin-resistant based on the rate of disappearance (Rd). Machine learning models and conventional statistics were used to identify biomarkers of insulin resistance. Findings were replicated in a cohort with n = 282 obese men and women with (n = 156) and without (n = 126) MetSyn. In addition to this, the relation between biomarkers and adipose tissue was assessed by nuclear magnetic resonance imaging. RESULTS: Peripheral insulin resistance is marked by changes in proteins related to inflammatory processes such as IL-1 and TNF-receptor and superfamily members. These proteins can distinguish between insulin-resistant and insulin-sensitive individuals (AUC = 0.72 ± 0.10) with MetSyn. These proteins were also associated with IFG, liver fat (rho 0.36, p = 1.79 × 10-9) and visceral adipose tissue (rho = 0.35, p = 6.80 × 10-9). Interestingly, these proteins had the strongest association in the MetSyn subgroup compared to individuals without MetSyn. CONCLUSIONS: MetSyn associated with insulin resistance is characterized by protein changes related to body fat content, insulin signaling and pro-inflammatory processes. These findings provide novel targets for intervention studies and should be the focus of future in vitro and in vivo studies.


Assuntos
Biomarcadores , Resistência à Insulina , Síndrome Metabólica , Proteoma , Humanos , Síndrome Metabólica/metabolismo , Masculino , Feminino , Estudos Transversais , Pessoa de Meia-Idade , Adulto , Biomarcadores/sangue , Técnica Clamp de Glucose , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Insulina/sangue , Insulina/metabolismo , Gordura Intra-Abdominal/metabolismo
19.
Nutrients ; 16(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38931226

RESUMO

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease which seriously affects public health. Gut microbiota remains a dynamic balance state in healthy individuals, and its disorder may affect health status and even results in metabolic diseases. Quercetin, a natural flavonoid, has been shown to have biological activities that can be used in the prevention and treatment of metabolic diseases. This study aimed to explore the mechanism of quercetin in alleviating T2DM based on gut microbiota. db/db mice were adopted as the model for T2DM in this study. After 10 weeks of administration, quercetin could significantly decrease the levels of body weight, fasting blood glucose (FBG), serum insulin (INS), the homeostasis model assessment of insulin resistance (HOMA-IR), monocyte chemoattractant protein-1 (MCP-1), D-lactic acid (D-LA), and lipopolysaccharide (LPS) in db/db mice. 16S rRNA gene sequencing and untargeted metabolomics analysis were performed to compare the differences of gut microbiota and metabolites among the groups. The results demonstrated that quercetin decreased the abundance of Proteobacteria, Bacteroides, Escherichia-Shigella and Escherichia_coli. Moreover, metabolomics analysis showed that the levels of L-Dopa and S-Adenosyl-L-methionine (SAM) were significantly increased, but 3-Methoxytyramine (3-MET), L-Aspartic acid, L-Glutamic acid, and Androstenedione were significantly decreased under quercetin intervention. Taken together, quercetin could exert its hypoglycemic effect, alleviate insulin resistance, repair the intestinal barrier, remodel the intestinal microbiota, and alter the metabolites of db/db mice.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Resistência à Insulina , Quercetina , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Quercetina/farmacologia , Quercetina/análogos & derivados , Camundongos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Masculino , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Modelos Animais de Doenças , Insulina/sangue , Insulina/metabolismo
20.
Nat Commun ; 15(1): 5394, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918428

RESUMO

Adipose tissue macrophages (ATMs) influence obesity-associated metabolic dysfunction, but the mechanisms by which they do so are not well understood. We show that miR-6236 is a bona fide miRNA that is secreted by ATMs during obesity. Global or myeloid cell-specific deletion of miR-6236 aggravates obesity-associated adipose tissue insulin resistance, hyperglycemia, hyperinsulinemia, and hyperlipidemia. miR-6236 augments adipocyte insulin sensitivity by inhibiting translation of negative regulators of insulin signaling, including PTEN. The human genome harbors a miR-6236 homolog that is highly expressed in the serum and adipose tissue of obese people. hsa-MIR-6236 expression negatively correlates with hyperglycemia and glucose intolerance, and positively correlates with insulin sensitivity. Together, our findings establish miR-6236 as an ATM-secreted miRNA that potentiates adipocyte insulin signaling and protects against metabolic dysfunction during obesity.


Assuntos
Adipócitos , Hiperglicemia , Resistência à Insulina , Insulina , MicroRNAs , Obesidade , PTEN Fosfo-Hidrolase , Transdução de Sinais , MicroRNAs/metabolismo , MicroRNAs/genética , Obesidade/metabolismo , Obesidade/genética , Animais , Adipócitos/metabolismo , Hiperglicemia/metabolismo , Hiperglicemia/genética , Humanos , Insulina/metabolismo , Resistência à Insulina/genética , Camundongos , Masculino , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Camundongos Endogâmicos C57BL , Macrófagos/metabolismo , Tecido Adiposo/metabolismo , Células Mieloides/metabolismo , Camundongos Knockout , Hiperinsulinismo/metabolismo , Hiperinsulinismo/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...