Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 4(1): 330, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712691

RESUMO

Despite conserved catalytic integration mechanisms, retroviral intasomes composed of integrase (IN) and viral DNA possess diverse structures with variable numbers of IN subunits. To investigate intasome assembly mechanisms, we employed the Rous sarcoma virus (RSV) IN dimer that assembles a precursor tetrameric structure in transit to the mature octameric intasome. We determined the structure of RSV octameric intasome stabilized by a HIV-1 IN strand transfer inhibitor using single particle cryo-electron microscopy. The structure revealed significant flexibility of the two non-catalytic distal IN dimers along with previously unrecognized movement of the conserved intasome core, suggesting ordered conformational transitions between intermediates that may be important to capture the target DNA. Single amino acid substitutions within the IN C-terminal domain affected intasome assembly and function in vitro and infectivity of pseudotyped RSV virions. Unexpectedly, 17 C-terminal amino acids of IN were dispensable for virus infection despite regulating the transition of the tetrameric intasome to the octameric form in vitro. We speculate that this region may regulate the binding of highly flexible distal IN dimers to the intasome core to form the octameric complex. Our studies reveal key steps in the assembly of RSV intasomes.


Assuntos
Microscopia Crioeletrônica , DNA Viral/ultraestrutura , Integrases/ultraestrutura , Vírus do Sarcoma de Rous/ultraestrutura , Imagem Individual de Molécula , Integração Viral , DNA Viral/metabolismo , Integrase de HIV/ultraestrutura , Inibidores de Integrase/farmacologia , Integrases/metabolismo , Simulação de Acoplamento Molecular , Conformação Proteica , Multimerização Proteica , Vírus do Sarcoma de Rous/efeitos dos fármacos , Vírus do Sarcoma de Rous/enzimologia , Vírus do Sarcoma de Rous/genética , Integração Viral/efeitos dos fármacos , Replicação Viral
2.
Sci Rep ; 9(1): 4718, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886338

RESUMO

According to the 2018 report of the United Nations Programme on HIV/AIDS (UNAIDS), acquired immune deficiency syndrome (AIDS), a disease caused by the human immunodeficiency virus (HIV), remains a significant public health problem. The non-existence of a cure or effective vaccine for the disease and the associated emergence of resistant viral strains imply an urgent need for the discovery of novel anti-HIV drug candidates. The current study aimed to identify potential anti-retroviral compounds from Alchornea cordifolia. Bioactive compounds were identified using several chromatographic and spectroscopic techniques and subsequently evaluated for cytotoxicity and anti-HIV properties. Molecular modelling studies against HIV-1 integrase (HIV-1 IN) were performed to decipher the mode of action of methylgallate, the most potent compound (IC50 = 3.7 nM) and its analogues from ZINC database. Cytotoxicity assays showed that neither the isolated compounds nor the crude methanolic extract displayed cytotoxicity effects on the HeLa cell line. A strong correlation between the in vitro and in silico results was observed and important HIV-1 IN residues interacting with the different compounds were identified. These current results indicate that methylgallate is the main anti-HIV-1 compound in A. cordifolia stem bark, and could be a potential platform for the development of new HIV-1 IN inhibitors.


Assuntos
Síndrome da Imunodeficiência Adquirida/tratamento farmacológico , Euphorbiaceae/química , Ácido Gálico/análogos & derivados , Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/metabolismo , Síndrome da Imunodeficiência Adquirida/virologia , Avaliação Pré-Clínica de Medicamentos , Ácido Gálico/química , Ácido Gálico/isolamento & purificação , Ácido Gálico/farmacologia , Ácido Gálico/uso terapêutico , Integrase de HIV/ultraestrutura , Inibidores de Integrase de HIV/química , Inibidores de Integrase de HIV/isolamento & purificação , Inibidores de Integrase de HIV/uso terapêutico , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Células HeLa , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Casca de Planta/química , Caules de Planta/química , Domínios Proteicos , Proteínas Recombinantes , Testes de Toxicidade
3.
Science ; 355(6320): 89-92, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28059769

RESUMO

Like all retroviruses, HIV-1 irreversibly inserts a viral DNA (vDNA) copy of its RNA genome into host target DNA (tDNA). The intasome, a higher-order nucleoprotein complex composed of viral integrase (IN) and the ends of linear vDNA, mediates integration. Productive integration into host chromatin results in the formation of the strand transfer complex (STC) containing catalytically joined vDNA and tDNA. HIV-1 intasomes have been refractory to high-resolution structural studies. We used a soluble IN fusion protein to facilitate structural studies, through which we present a high-resolution cryo-electron microscopy (cryo-EM) structure of the core tetrameric HIV-1 STC and a higher-order form that adopts carboxyl-terminal domain rearrangements. The distinct STC structures highlight how HIV-1 can use the common retroviral intasome core architecture to accommodate different IN domain modules for assembly.


Assuntos
HIV-1/química , Integração Viral , Microscopia Crioeletrônica , Cristalografia por Raios X , DNA Viral/química , DNA Viral/ultraestrutura , Integrase de HIV/química , Integrase de HIV/ultraestrutura , HIV-1/fisiologia , HIV-1/ultraestrutura , Humanos , Modelos Moleculares , Nucleoproteínas/química , Nucleoproteínas/ultraestrutura , Domínios Proteicos , RNA Viral/química , RNA Viral/ultraestrutura
4.
Science ; 355(6320): 93-95, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28059770

RESUMO

Retroviral integrase (IN) functions within the intasome nucleoprotein complex to catalyze insertion of viral DNA into cellular chromatin. Using cryo-electron microscopy, we now visualize the functional maedi-visna lentivirus intasome at 4.9 angstrom resolution. The intasome comprises a homo-hexadecamer of IN with a tetramer-of-tetramers architecture featuring eight structurally distinct types of IN protomers supporting two catalytically competent subunits. The conserved intasomal core, previously observed in simpler retroviral systems, is formed between two IN tetramers, with a pair of C-terminal domains from flanking tetramers completing the synaptic interface. Our results explain how HIV-1 IN, which self-associates into higher-order multimers, can form a functional intasome, reconcile the bulk of early HIV-1 IN biochemical and structural data, and provide a lentiviral platform for design of HIV-1 IN inhibitors.


Assuntos
Integrase de HIV/química , HIV-1/química , Integração Viral , Domínio Catalítico , Microscopia Crioeletrônica , DNA Viral/química , DNA Viral/ultraestrutura , Desenho de Fármacos , Integrase de HIV/ultraestrutura , Inibidores de Integrase de HIV/química , HIV-1/enzimologia , HIV-1/ultraestrutura , Humanos , Modelos Moleculares , Domínios Proteicos , Eletricidade Estática , Montagem de Vírus
5.
Biophys J ; 94(7): 2443-51, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17981909

RESUMO

Integrase (IN) is one of the three human immunodeficiency virus type 1 (HIV-1) enzymes essential for effective viral replication. Recently, mutation studies have been reported that have shown that a certain degree of viral resistance to diketo acids (DKAs) appears when some amino acid residues of the IN active site are mutated. Mutations represent a fascinating experimental challenge, and we invite theoretical simulations for the disclosure of still unexplored features of enzyme reactions. The aim of this work is to understand the molecular mechanisms of HIV-1 IN drug resistance, which will be useful for designing anti-HIV inhibitors with unique resistance profiles. In this study, we use molecular dynamics simulations, within the hybrid quantum mechanics/molecular mechanics (QM/MM) approach, to determine the protein-ligand interaction energy for wild-type and N155S mutant HIV-1 IN, both complexed with a DKA. This hybrid methodology has the advantage of the inclusion of quantum effects such as ligand polarization upon binding, which can be very important when highly polarizable groups are embedded in anisotropic environments, for example in metal-containing active sites. Furthermore, an energy terms decomposition analysis was performed to determine contributions of individual residues to the enzyme-inhibitor interactions. The results reveal that there is a strong interaction between the Lys-159, Lys-156, and Asn-155 residues and Mg(2+) cation and the DKA inhibitor. Our calculations show that the binding energy is higher in wild-type than in the N155S mutant, in accordance with the experimental results. The role of the mutated residue has thus been checked as maintaining the structure of the ternary complex formed by the protein, the Mg(2+) cation, and the inhibitor. These results might be useful to design compounds with more interesting anti-HIV-1 IN activity on the basis of its three-dimensional structure.


Assuntos
Aminobutiratos/química , Integrase de HIV/química , Integrase de HIV/ultraestrutura , Inibidores de Integrase/química , Modelos Químicos , Modelos Moleculares , Sítios de Ligação , Simulação por Computador , Integrase de HIV/genética , Magnésio/química , Mecânica , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Mutagênese Sítio-Dirigida , Fenilbutiratos , Ligação Proteica , Conformação Proteica , Teoria Quântica
6.
Nucleic Acids Res ; 27(10): 2202-10, 1999 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-10219094

RESUMO

Integration of the human immunodeficiency virus type 1 (HIV-1) cDNA into the genome of a human cell is an essential step in the viral replication cycle. Understanding of the integration process has been facilitated by the development of in vitro assays using specific oligonucleotides and recombinant integrase. However, understanding of the biology of retroviral integration will require in vitro and in vivo model systems using long DNA substrates that mimic the HIV cDNA. We have now studied the activity of recombinant HIV-1 integrase on a linear 4.7 kb double-stranded DNA, containing flanking regions of approximately 200 bp that represent the intact ends of the HIV-1 long terminal repeat (LTR) sequences (mini-HIV). The strand transfer products of the integration reaction can be directly visualized after separation in agarose gels by ethidium bromide staining. The most prominent reaction product resulted from integration of one LTR end into another LTR end (U5 into U5 and U5 into U3). Sequence analysis of the reaction products showed them to be products of legitimate integration preceded by correct processing of the viral LTR ends. Hotspots for integration were detected. Electron microscopy revealed the presence of a range of reaction products resulting from single or multiple integration events. The binding of HIV-1 integrase to mini-HIV DNA was visualized. Oligomers of integrase seem to induce DNA looping whereby the enzyme often appears to be bound to the DNA substrate that adopts the structure of a three-site synapsis that is reminiscent of the Mu phage transposase complex.


Assuntos
DNA Viral/metabolismo , Integrase de HIV/metabolismo , HIV-1/enzimologia , Sequência de Bases , Primers do DNA/genética , DNA Viral/genética , DNA Viral/ultraestrutura , Integrase de HIV/genética , Integrase de HIV/ultraestrutura , Repetição Terminal Longa de HIV , HIV-1/genética , Humanos , Substâncias Macromoleculares , Microscopia Eletrônica , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Integração Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...