Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 910
Filtrar
1.
Cells ; 13(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38786077

RESUMO

Patients with COVID-19 have coagulation and platelet disorders, with platelet alterations and thrombocytopenia representing negative prognostic parameters associated with severe forms of the disease and increased lethality. METHODS: The aim of this study was to study the expression of platelet glycoprotein IIIa (CD61), playing a critical role in platelet aggregation, together with TRL-2 as a marker of innate immune activation. RESULTS: A total of 25 patients were investigated, with the majority (24/25, 96%) having co-morbidities and dying from a fatal form of SARS-CoV-2(+) infection (COVID-19+), with 13 men and 12 females ranging in age from 45 to 80 years. When compared to a control group of SARS-CoV-2 (-) negative lungs (COVID-19-), TLR-2 expression was up-regulated in a subset of patients with deadly COVID-19 fatal lung illness. The proportion of Spike-1 (+) patients found by PCR and ISH correlates to the proportion of Spike-S1-positive cases as detected by digital pathology examination. Furthermore, CD61 expression was considerably higher in the lungs of deceased patients. In conclusion, we demonstrate that innate immune prolonged hyperactivation is related to platelet/megakaryocyte over-expression in the lung. CONCLUSIONS: Microthrombosis in deadly COVID-19+ lung disease is associated with an increase in the number of CD61+ platelets and megakaryocytes in the pulmonary interstitium, as well as their functional activation; this phenomenon is associated with increased expression of innate immunity TLR2+ cells, which binds the SARS-CoV-2 E protein, and significantly with the persistence of the Spike-S1 viral sequence.


Assuntos
COVID-19 , Pulmão , Megacariócitos , SARS-CoV-2 , Trombose , Receptor 2 Toll-Like , Regulação para Cima , Humanos , COVID-19/patologia , COVID-19/imunologia , COVID-19/metabolismo , Masculino , Feminino , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Megacariócitos/metabolismo , Megacariócitos/patologia , Megacariócitos/virologia , Idoso , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Pulmão/patologia , Pulmão/virologia , Pulmão/metabolismo , Regulação para Cima/genética , Trombose/patologia , Integrina beta3/metabolismo , Integrina beta3/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Pneumonia Viral/patologia , Pneumonia Viral/imunologia , Pneumonia Viral/mortalidade , Pneumonia Viral/virologia , Pneumonia Viral/metabolismo , Imunidade Inata , Pandemias
2.
J Agric Food Chem ; 72(13): 7043-7054, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38509000

RESUMO

14-3-3ζ protein, the key target in the regulation and control of integrin ß3 outside-in signaling, is an attractive new strategy to inhibit thrombosis without affecting hemostasis. In this study, 4'-O-methylbavachalconeB (4-O-MB) in Psoraleae Fructus was identified as a 14-3-3ζ ligand with antithrombosis activity by target fishing combined with ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) analysis. The competitive inhibition analysis showed that 4-O-MB targeted 14-3-3ζ and blocked the 14-3-3ζ/integrin ß3 interaction with inhibition constant (Ki) values of 9.98 ± 0.22 µM. Molecular docking and amino acid mutation experiments confirmed that 4-O-MB specifically bound to 14-3-3ζ through LSY9 and SER28 to regulate the 14-3-3ζ/integrin ß3 interaction. Besides, 4-O-MB affected the integrin ß3 early outside-in signal by inhibiting AKT and c-Src phosphorylation. Meanwhile, 4-O-MB could inhibit ADP-, collagen-, or thrombin-induced platelet aggregation function but had no effect on platelet adhesion to collagen-coated surfaces in vivo. Administration of 4-O-MB could significantly inhibit thrombosis formation without disturbing hemostasis in mice. These findings provide new prospects for the antithrombotic effects of Psoraleae Fructus and the potential application of 4-O-MB as lead compounds in the therapy of thrombosis by targeting 14-3-3ζ.


Assuntos
Agregação Plaquetária , Trombose , Camundongos , Animais , Integrina beta3/genética , Integrina beta3/química , Integrina beta3/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/farmacologia , Simulação de Acoplamento Molecular , Trombose/tratamento farmacológico , Trombose/genética , Trombose/metabolismo , Colágeno/metabolismo , Plaquetas/metabolismo
3.
Cell Death Dis ; 15(2): 113, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321003

RESUMO

Understanding the mechanisms of breast cancer cell communication underlying cell spreading and metastasis formation is fundamental for developing new therapies. ID4 is a proto-oncogene overexpressed in the basal-like subtype of triple-negative breast cancer (TNBC), where it promotes angiogenesis, cancer stem cells, and BRACA1 misfunction. Here, we show that ID4 expression in BC cells correlates with the activation of motility pathways and promotes the production of VEGFA, which stimulates the interaction of VEGFR2 and integrin ß3 in a paracrine fashion. This interaction induces the downstream focal adhesion pathway favoring migration, invasion, and stress fiber formation. Furthermore, ID4/ VEGFA/ VEGFR2/ integrin ß3 signaling stimulates the nuclear translocation and activation of the Hippo pathway member's YAP and TAZ, two critical executors for cancer initiation and progression. Our study provides new insights into the oncogenic roles of ID4 in tumor cell migration and YAP/TAZ pathway activation, suggesting VEGFA/ VEGFR2/ integrin ß3 axis as a potential target for BC treatment.


Assuntos
Neoplasias da Mama , Integrina beta3 , Humanos , Feminino , Integrina beta3/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Via de Sinalização Hippo , Fator A de Crescimento do Endotélio Vascular , Proteínas Inibidoras de Diferenciação
4.
Oncoimmunology ; 13(1): 2304963, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38235317

RESUMO

Approximately two-thirds of hepatocellular carcinoma (HCC) is considered a "cold tumor" characterized by few tumor-infiltrating T cells and an abundance of immunosuppressive cells. Cilengitide, an integrin αvß3 inhibitor, has failed in clinical trials as a potential anticancer drug. This failure implies that integrin αvß3 may play an important role in immune cells. However, the expression and potential role of integrin αvß3 in T cells of HCC patients remain unknown. Here, we established two HCC models and found that cilengitide had a dual effect on the HCC microenvironment by exerting both antitumor effect and immunosuppressive effect on T cells. This may partly explain the failure of cilengitide in clinical trials. In clinical specimens, HCC-infiltrating T cells exhibited deficient expression and activation of integrin ß3, which was associated with poor T-cell infiltration into tumors. Additionally, integrin ß3 functioned as a positive immunomodulatory molecule to facilitate T-cell infiltration and T helper 1-type immune response in vitro. Furthermore, T cells and platelet-derived microparticles (PMPs) co-culture assay revealed that PMPs adoptively transferred integrin ß3 to T cells and positively regulated T cell immune response. This process was mediated by clathrin-dependent endocytosis and macropinocytosis. Our data demonstrate that integrin ß3 deficiency on HCC-infiltrating T cells may be involved in shaping the immunosuppressive tumor microenvironment. PMPs transfer integrin ß3 to T cells and positively regulate T cell immune response, which may provide a new insight into immune therapy of HCC.


Assuntos
Carcinoma Hepatocelular , Micropartículas Derivadas de Células , Neoplasias Hepáticas , Humanos , Integrina beta3/metabolismo , Integrina beta3/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Integrina alfaVbeta3/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/patologia , Linfócitos T , Microambiente Tumoral
5.
Endocrinology ; 165(3)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38195194

RESUMO

BACKGROUND: Repeated implantation failure (RIF) leads to a waste of high-quality embryos and remains a challenge in assisted reproductive technology. During early human placentation, the invasion of trophoblast cells into the decidua is an essential step for the establishment of maternal-fetal interactions and subsequent successful pregnancy. Bone morphogenetic protein 2 (BMP2) has been reported to regulate endometrial receptivity and promote trophoblast invasion. However, whether there is dysregulation of endometrial BMP2 expression in patients with RIF remains unknown. Additionally, the molecular mechanisms underlying the effects of BMP2 on human trophoblast invasion and early placentation remain to be further elucidated. METHODS: Midluteal phase endometrial samples were biopsied from patients with RIF and from routine control in vitro fertilization followed by quantitative polymerase chain reaction and immunoblotting analyses. Human trophoblast organoids, primary human trophoblast cells, and an immortalized trophoblast cell line (HTR8/SVneo) were used as study models. RESULTS: We found that BMP2 was aberrantly low in midluteal phase endometrial tissues from patients with RIF. Recombinant human BMP2 treatment upregulated integrin ß3 (ITGB3) in a SMAD2/3-SMAD4 signaling-dependent manner in both HTR8/SVneo cells and primary trophoblast cells. siRNA-mediated integrin ß3 downregulation reduced both basal and BMP2-upregulated trophoblast invasion and vascular mimicry in HTR8/SVneo cells. Importantly, shRNA-mediated ITGB3 knockdown significantly decreased the formation ability of human trophoblast organoids. CONCLUSION: Our results demonstrate endometrial BMP2 deficiency in patients with RIF. ITGB3 mediates both basal and BMP2-promoted human trophoblast invasion and is essential for early placentation. These findings broaden our knowledge regarding the regulation of early placentation and provide candidate diagnostic and therapeutic targets for RIF clinical management.


Assuntos
Proteína Morfogenética Óssea 2 , Integrina beta3 , Gravidez , Humanos , Feminino , Integrina beta3/genética , Integrina beta3/metabolismo , Proteína Morfogenética Óssea 2/metabolismo , Trofoblastos/metabolismo , Linhagem Celular , Placentação/fisiologia , RNA Interferente Pequeno/metabolismo , Movimento Celular
6.
Blood Adv ; 8(1): 99-111, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-37939263

RESUMO

ABSTRACT: Aging leads to a decline in function of hematopoietic stem cells (HSCs) and increases susceptibility to hematological disease. We found CD61 to be highly expressed in aged murine HSCs. Here, we investigate the role of CD61 in identifying distinct subpopulations of aged HSCs and assess how expression of CD61 affects stem cell function. We show that HSCs with high expression of CD61 are functionality superior and retain self-renewal capacity in serial transplantations. In primary transplantations, aged CD61High HSCs function similarly to young HSCs. CD61High HSCs are more quiescent than their CD61Low counterparts. We also show that in aged bone marrow, CD61High and CD61Low HSCs are transcriptomically distinct populations. Collectively, our research identifies CD61 as a key player in maintaining stem cell quiescence, ensuring the preservation of their functional integrity and potential during aging. Moreover, CD61 emerges as a marker to prospectively isolate a superior, highly dormant population of young and aged HSCs, making it a valuable tool both in fundamental and clinical research.


Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Animais , Camundongos , Envelhecimento , Células-Tronco Hematopoéticas/metabolismo , Integrina beta3/metabolismo
7.
J Thromb Haemost ; 21(12): 3597-3607, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37604334

RESUMO

BACKGROUND: Glanzmann thrombasthenia (GT) is an autosomal recessive platelet aggregation disorder caused by mutations in ITGA2B or ITGB3. OBJECTIVES: We aimed to assess the phenotype and investigate the genetic etiology of a GT pedigree. METHODS: A patient with bleeding manifestations and mild mental retardation was enrolled. Complete blood count, coagulation, and platelet aggregation tests were performed. Causal mutations were identified via whole exome and genome sequencing and subsequently confirmed through polymerase chain reaction and Sanger sequencing. The transcription of ITGB3 was characterized using RNA sequencing and reverse transcription polymerase chain reaction. The αⅡb and ß3 biosynthesis was investigated via whole blood flow cytometry and in vitro studies. RESULTS: GT was diagnosed in a patient with defective platelet aggregation. Novel compound heterozygous ITGB3 variants were identified, with a maternal nonsense mutation (c.2222G>A, p.Trp741∗) and a paternal SINE-VNTR-Alu (SVA) retrotransposon insertion. The 5' truncated SVA element was inserted in a sense orientation in intron 11 of ITGB3, resulting in aberrant splicing of ITGB3 and significantly reducing ß3 protein content. Meanwhile, both the expression and transportation of ß3 were damaged by the ITGB3 c.2222G>A. Almost no αⅡb and ß3 expressions were detected on the patient's platelets surface. CONCLUSION: Novel compound heterozygous ITGB3 mutations were identified in the GT pedigree, resulting in defects of αⅡbß3 biosynthesis. This is the first report of SVA retrotransposon insertion in the genetic pathogenesis of GT. Our study highlights the importance of combining multiple high-throughput sequencing technologies for the molecular diagnosis of genetic disorders.


Assuntos
Trombastenia , Humanos , Trombastenia/diagnóstico , Trombastenia/genética , Retroelementos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Fenótipo , Plaquetas/metabolismo , Integrina beta3/genética , Integrina beta3/metabolismo
8.
Anal Chem ; 95(33): 12406-12418, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37555842

RESUMO

Due to its key roles in malignant tumor progression and reprograming of the tumor microenvironment, integrin ß3 has attracted great attention as a new target for tumor therapy. However, the structure-function relationship of integrins ß3 remains incompletely understood, leading to the shortage of specific and effective targeting probes. This work uses a purified extracellular domain of integrin ß3 and integrin ß3-positive cells to screen aptamers, specifically targeting integrin ß3 in the native conformation on live cells through the SELEX approach. Following meticulous truncation and characterization of the initial aptamer candidates, the optimized aptamer S10yh2 was produced, exhibiting a low equilibrium dissociation constant (Kd) in the nanomolar range. S10yh2 displays specific recognition of cancer cells with varying levels of integrin ß3 expression and demonstrates favorable stability in serum. Subsequent analysis of docking sites revealed that S10yh2 binds to the seven amino acid residues located in the core region of integrin ß3. The S10yh2 aptamer can downregulate the level of integrin heterodimer αvß3 on integrin ß3 overexpressed cancer cells and partially inhibit cell migration behavior. In summary, S10yh2 is a promising probe with a small size, simple synthesis, good stability, high binding affinity, and selectivity. It therefore holds great potential for investigating the structure-function relationship of integrins.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias , Humanos , Integrina beta3/química , Integrina beta3/metabolismo , Aptâmeros de Nucleotídeos/farmacologia , Integrina alfaVbeta3/metabolismo , Movimento Celular , Microambiente Tumoral
9.
Int J Mol Sci ; 24(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37446286

RESUMO

Tumor tissues often exhibit unique integrin receptor presentation during development, such as high exposures of αvß3 and αIIbß3 integrins. These features are not present in normal tissues. The induction of selective thrombosis and infarction in the tumor-feeding vessels, as well as specific antagonism of αvß3 integrin on the surface of tumor endothelial cells, is a potential novel antitumor strategy. The Echistatin-Annexin V (EAV) fusion protein is a novel Annexin V (ANV) derivative that possesses a high degree of αvß3 and αIIbß3 integrin receptor recognition and binding characteristics while retaining the specific binding ability of the natural ANV molecule for phosphatidylserine (PS). We systematically investigated the biological effects of this novel molecule with superimposed functions on mouse melanoma. We found that EAV inhibited the viability and migration of B16F10 murine melanoma cells in a dose-dependent manner, exhibited good tumor suppressive effects in a xenograft mouse melanoma model, strongly induced tumor tissue necrosis in mice, and targeted the inhibition of angiogenesis in mouse melanoma tumor tissue. EAV exhibited stronger biological effects than natural ANV molecules in inhibiting melanoma in mice. The unique biological effects of EAV are based on its high ß3-type integrin receptor-specific recognition and binding ability, as well as its highly selective binding to PS molecules. Based on these findings, we propose that EAV-mediated tumor suppression is a novel and promising antitumor strategy that targets both PS- and integrin ß3-positive tumor neovascularization and the tumor cells themselves, thus providing a possible mechanism for the treatment of melanoma.


Assuntos
Integrina beta3 , Melanoma , Humanos , Camundongos , Animais , Integrina beta3/metabolismo , Anexina A5/metabolismo , Células Endoteliais/metabolismo , Melanoma/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Integrina alfaVbeta3/metabolismo
10.
Nat Commun ; 14(1): 4168, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443315

RESUMO

Platelet integrin αIIbß3 is maintained in a bent inactive state (low affinity to physiologic ligand), but can rapidly switch to a ligand-competent (high-affinity) state in response to intracellular signals ("inside-out" activation). Once bound, ligands drive proadhesive "outside-in" signaling. Anti-αIIbß3 drugs like eptifibatide can engage the inactive integrin directly, inhibiting thrombosis but inadvertently impairing αIIbß3 hemostatic functions. Bidirectional αIIbß3 signaling is mediated by reorganization of the associated αIIb and ß3 transmembrane α-helices, but the underlying changes remain poorly defined absent the structure of the full-length receptor. We now report the cryo-EM structures of full-length αIIbß3 in its apo and eptifibatide-bound states in native cell-membrane nanoparticles at near-atomic resolution. The apo form adopts the bent inactive state but with separated transmembrane α-helices, and a fully accessible ligand-binding site that challenges the model that this site is occluded by the plasma membrane. Bound eptifibatide triggers dramatic conformational changes that may account for impaired hemostasis. These results advance our understanding of integrin structure and function and may guide development of safer inhibitors.


Assuntos
Plaquetas , Complexo Glicoproteico GPIIb-IIIa de Plaquetas , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Eptifibatida , Ligantes , Microscopia Crioeletrônica , Plaquetas/metabolismo , Integrina beta3/metabolismo , Lipídeos
11.
Thromb Res ; 229: 53-68, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37413892

RESUMO

BACKGROUND: HIV-infected individuals are known to be at higher risk for thrombotic cardiovascular disease (CVD), which may also be differentially affected by components of anti-HIV drugs. To identify the effects of a series of FDA-approved anti-HIV drugs on platelet aggregation in humans, focusing on the novel pharmacological effects of rilpivirine (RPV), a reverse transcriptase inhibitor, on platelet function both in vitro and in vivo and the mechanisms involved. METHODS AND RESULTS: In vitro studies showed that RPV was the only anti-HIV reagent that consistently and efficiently inhibited aggregation elicited by different agonists, exocytosis, morphological extension on fibrinogen, and clot retraction. Treatment of mice with RPV significantly prevented thrombus formation in FeCl3-injured mesenteric vessels, postcava with stenosis surgery, and ADP -induced pulmonary embolism models without defects in platelet viability, tail bleeding, and coagulation activities. RPV also improved cardiac performance in mice with post-ischemic reperfusion. A mechanistic study revealed that RPV preferentially attenuated fibrinogen-stimulated Tyr773 phosphorylation of ß3-integrin by inhibiting Tyr419 autophosphorylation of c-Src. Molecular docking and surface plasmon resonance analyses showed that RPV can bind directly to c-Src. Further mutational analysis showed that the Phe427 residue of c-Src is critical for RPV interaction, suggesting a novel interaction site for targeting c-Src to block ß3-integrin outside-in signaling. CONCLUSION: These results demonstrated that RPV was able to prevent the progression of thrombotic CVDs by interrupting ß3-integrin-mediated outside-in signaling via inhibiting c-Src activation without hemorrhagic side effects, highlighting RPV as a promising reagent for the prevention and therapy of thrombotic CVDs.


Assuntos
Fármacos Anti-HIV , Trombose , Humanos , Camundongos , Animais , Integrina beta3/metabolismo , Fosforilação , Rilpivirina/metabolismo , Rilpivirina/farmacologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Reposicionamento de Medicamentos , Simulação de Acoplamento Molecular , Plaquetas/metabolismo , Trombose/tratamento farmacológico , Trombose/prevenção & controle , Trombose/metabolismo , Fármacos Anti-HIV/metabolismo , Fármacos Anti-HIV/farmacologia , Fibrinogênio/metabolismo
12.
Sci Rep ; 13(1): 9526, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308549

RESUMO

The platelet specific integrin αIIbß3 mediates platelet adhesion, aggregation and plays a central role in thrombosis and hemostasis. In resting platelets, αIIbß3 is expressed on the membrane surface and in intracellular compartments. Upon activation, the number of surface-expressed αIIbß3 is increased by the translocation of internal granule pools to the plasma membrane. The WASH complex is the major endosomal actin polymerization-promoting complex and has been implicated in the generation of actin networks involved in endocytic trafficking of integrins in other cell types. The role of the WASH complex and its subunit Strumpellin in platelet function is still unknown. Here, we report that Strumpellin-deficient murine platelets display an approximately 20% reduction in integrin αIIbß3 surface expression. While exposure of the internal αIIbß3 pool after platelet activation was unaffected, the uptake of the αIIbß3 ligand fibrinogen was delayed. The number of platelet α-granules was slightly but significantly increased in Strumpellin-deficient platelets. Quantitative proteome analysis of isolated αIIbß3-positive vesicular structures revealed an enrichment of protein markers, which are associated with the endoplasmic reticulum, Golgi complex and early endosomes in Strumpellin-deficient platelets. These results point to a so far unidentified role of the WASH complex subunit Strumpellin in integrin αIIbß3 trafficking in murine platelets.


Assuntos
Integrina alfa2 , Integrina beta3 , Peptídeos e Proteínas de Sinalização Intracelular , Animais , Camundongos , Plaquetas/metabolismo , Integrina alfa2/metabolismo , Integrina beta3/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Megacariócitos/metabolismo , Camundongos Knockout
13.
Mol Brain ; 16(1): 49, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296444

RESUMO

The relationship between autism spectrum disorder (ASD) and dendritic spine abnormalities is well known, but it is unclear whether the deficits relate to specific neuron types and brain regions most relevant to ASD. Recent genetic studies have identified a convergence of ASD risk genes in deep layer pyramidal neurons of the prefrontal cortex. Here, we use retrograde recombinant adeno-associated viruses to label specifically two major layer V pyramidal neuron types of the medial prefrontal cortex: the commissural neurons, which put the two cerebral hemispheres in direct communication, and the corticopontine neurons, which transmit information outside the cortex. We compare the basal dendritic spines on commissural and corticopontine neurons in WT and KO mice for the ASD risk gene Itgb3, which encodes for the cell adhesion molecule ß3 integrin selectively enriched in layer V pyramidal neurons. Regardless of the genotype, corticopontine neurons had a higher ratio of stubby to mushroom spines than commissural neurons. ß3 integrin affected selectively spine length in corticopontine neurons. Ablation of ß3 integrin resulted in corticopontine neurons lacking long (> 2 µm) thin dendritic spines. These findings suggest that a deficiency in ß3 integrin expression compromises specifically immature spines on corticopontine neurons, thereby reducing the cortical territory they can sample. Because corticopontine neurons receive extensive local and long-range excitatory inputs before relaying information outside the cortex, specific alterations in dendritic spines of corticopontine neurons may compromise the computational output of the full cortex, thereby contributing to ASD pathophysiology.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Camundongos , Animais , Espinhas Dendríticas/metabolismo , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Integrina beta3/genética , Integrina beta3/metabolismo , Células Piramidais/fisiologia
14.
Front Endocrinol (Lausanne) ; 14: 1110266, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008940

RESUMO

Purpose: To investigate the effect of acupuncture for improving the pregnancy rate of COH rats from the viewpoint of regulating the opening time of the implantation window and endometrial receptivity. Methods: Experimental rats were randomly divided into normal group (N), model group (M) and acupuncture group(A), and samples were collected on Day 4, 5 and 6 after mating. COH rats were treated with acupuncture at SP6, LR3, and ST36 once a day for 7 times. The pinopodes were observed under a scanning electron microscope. Serum estrogen and progesterone levels were measured via ELISA. The protein and mRNA levels of estrogen receptor (ER), progesterone receptor (PR), leukemia inhibitory factor (LIF), integrin ß3, vascular endothelial growth factor (VEGF), and fibroblast growth factor 2 (FGF-2) in the endometrium were evaluated via West-blot, immunohistochemistry, and PCR. Results: Compared with group N, the pregnancy rate of group M was significantly decreased (P<0.05), and the abnormal serum hormone levels and implantation window advancement were observed. Compared with group M, the pregnancy rate of group A was significantly increased (P<0.05), the supraphysiological serum progesterone levels were restored to normalcy (P<0.05), and the advanced implantation window was restored to a certain extent. Further, the abnormal ER, PR, LIF, integrin ß3, VEGF, and FGF-2 expression levels of the endometrium got recovered to varying degrees. Conclusion: Acupuncture may restore the estrogen and progesterone balance in COH rats and the forward shift of the implantation window to a certain extent, improving the endometrial receptivity and finally improving the pregnancy rate of COH rats.


Assuntos
Terapia por Acupuntura , Síndrome de Hiperestimulação Ovariana , Gravidez , Humanos , Feminino , Ratos , Animais , Progesterona , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Integrina beta3/genética , Integrina beta3/metabolismo , Integrina beta3/farmacologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Endométrio , Estrogênios/metabolismo
15.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982771

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by memory loss and personality changes that ultimately lead to dementia. Currently, 50 million people worldwide suffer from dementia related to AD, and the pathogenesis underlying AD pathology and cognitive decline is unknown. While AD is primarily a neurological disease of the brain, individuals with AD often experience intestinal disorders, and gut abnormalities have been implicated as a major risk factor in the development of AD and relevant dementia. However, the mechanisms that mediate gut injury and contribute to the vicious cycle between gut abnormalities and brain injury in AD remain unknown. In the present study, a bioinformatics analysis was performed on the proteomics data of variously aged AD mouse colon tissues. We found that levels of integrin ß3 and ß-galactosidase (ß-gal), two markers of cellular senescence, increased with age in the colonic tissue of mice with AD. The advanced artificial intelligence (AI)-based prediction of AD risk also demonstrated the association between integrin ß3 and ß-gal and AD phenotypes. Moreover, we showed that elevated integrin ß3 levels were accompanied by senescence phenotypes and immune cell accumulation in AD mouse colonic tissue. Further, integrin ß3 genetic downregulation abolished upregulated senescence markers and inflammatory responses in colonic epithelial cells in conditions associated with AD. We provide a new understanding of the molecular actions underpinning inflammatory responses during AD and suggest integrin ß3 may function as novel target mediating gut abnormalities in this disease.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/genética , Integrina beta3/metabolismo , Inteligência Artificial , Senescência Celular/genética , Inflamação/complicações
16.
Phytomedicine ; 114: 154741, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36990010

RESUMO

BACKGROUND: Yishen Tongbi (YSTB) decoction is a patented herbal formula that is used in China to treat rheumatoid arthritis (RA); however, the exact mechanism of its anti-synovial hyperplasia efficacy has not been fully elucidated. PURPOSE: Based on our previous proteomics study, we aimed to reveal whether YSTB inhibits the proliferation and migration of RA-FLSs through the SLC3A2/integrin ß3 pathway in vivo and in vitro. STUDY DESIGN: The study design consists of three parts, a comparison of the expression of SLC3A2 and integrin ß3 in synovial tissues of RA and OA patients; an animal experiment to verify the pharmacodynamic effect of YSTB, and in vitro experiment to elucidate the specific mechanism of YSTB. METHODS: The expression of SLC3A2 and integrin ß3 in the synovial tissues of patients with RA and osteoarthritis (OA) patients were detected by immunohistochemistry (IHC). In vitro, firstly, the proliferation and migration abilities of HFLS (human fibroblast-like synoviocytes) and HFLS-RA (human fibroblast-like synoviocytes-RA) cells were compared by EdU staining and wound healing assays, respectively, and the differences in the expression and localization of SLC3A2, integrin ß3, p-FAK and p-Src between HFLS and HFLS-RA cells were detected by IF and WB. In vivo, DBA/1 mice were injected with bovine collagen II to construct a CIA mouse model. Paw swelling, body weight and the arthritis index (AI) were used as basic treatment evaluation indicators for YSTB. Micro-CT and histopathological analyses of the knee and ankle joints were also performed. In addition, the expression of SLC3A2, integrin ß3, p-FAK and p-Src in the synovial tissue of mice was detected by IHC. Subsequently, CCK-8 was used to screen for suitable concentrations of YSTB for use in HFLS-RA cells. EdU staining and transwell migration assays were performed to evaluate the inhibitory effect of YSTB on cell proliferation and migration, and WB was conducted to assess whether YSTB inhibited HFLS-RA migration through downregulation of the SLC3A2/integrin ß3 pathways. RESULTS: IHC showed that the expression of SLC3A2 and integrin ß3 was higher in RA synovial tissues than in OA tissues. In vivo experiments showed that YSTB inhibited synovial hyperplasia, prevented bone destruction, and reduced the expression of SLC3A2, integrin ß3, p-FAK and p-Src. In vitro experiments showed that YSTB inhibited HFLS-RA migration and proliferation by inhibiting the expression of SLC3A2/integrin ß3 and downstream signaling molecules. CONCLUSION: YSTB inhibits the proliferation and migration of synovial fibroblasts in RA by downregulating the SLC3A2/integrin ß3 pathways.


Assuntos
Artrite Experimental , Artrite Reumatoide , Osteoartrite , Humanos , Animais , Bovinos , Camundongos , Integrina beta3/metabolismo , Hiperplasia/patologia , Movimento Celular , Camundongos Endogâmicos DBA , Artrite Reumatoide/tratamento farmacológico , Transdução de Sinais , Osteoartrite/metabolismo , Fibroblastos , Proliferação de Células , Células Cultivadas , Artrite Experimental/tratamento farmacológico , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo
17.
Nat Aging ; 3(1): 64-81, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36743663

RESUMO

Aging is the predominant risk factor for atherosclerosis, the leading cause of death. Rare smooth muscle cell (SMC) progenitors clonally expand giving rise to up to ~70% of atherosclerotic plaque cells; however, the effect of age on SMC clonality is not known. Our results indicate that aged bone marrow (BM)-derived cells non-cell autonomously induce SMC polyclonality and worsen atherosclerosis. Indeed, in myeloid cells from aged mice and humans, TET2 levels are reduced which epigenetically silences integrin ß3 resulting in increased tumor necrosis factor [TNF]-α signaling. TNFα signals through TNF receptor 1 on SMCs to promote proliferation and induces recruitment and expansion of multiple SMC progenitors into the atherosclerotic plaque. Notably, integrin ß3 overexpression in aged BM preserves dominance of the lineage of a single SMC progenitor and attenuates plaque burden. Our results demonstrate a molecular mechanism of aged macrophage-induced SMC polyclonality and atherogenesis and suggest novel therapeutic strategies.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Camundongos , Animais , Idoso , Placa Aterosclerótica/metabolismo , Medula Óssea/metabolismo , Integrina beta3/metabolismo , Aterosclerose/genética , Miócitos de Músculo Liso , Músculo Liso/metabolismo
18.
Lab Invest ; 103(1): 100021, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36748196

RESUMO

Mechanical ventilation (MV) has become a clinical first-line treatment option for patients with respiratory failure. However, it was unclear whether MV further aggravates the process of sepsis-associated pulmonary fibrosis and eventually leads to sepsis and mechanical ventilation-associated pulmonary fibrosis (S-MVPF). This study aimed to explore the mechanism of S-MVPF concerning integrin ß3 activation in glycometabolic reprogramming of lung fibroblasts. We found that MV exacerbated sepsis-associated pulmonary fibrosis induced by lipopolysaccharide, which was accompanied by proliferation of lung fibroblasts, increased deposition of collagen in lung tissue, and increased procollagen type I carboxy-terminal propeptide in the bronchoalveolar lavage fluid. A large number of integrin ß3- and pyruvate kinase M2-positive fibroblasts were detected in lung tissue after stimulation with lipopolysaccharide and MV, with an increase in lactate dehydrogenase A expression and lactate levels. S-MVPF was primarily attenuated in integrin ß3-knockout mice, which also resulted in a decrease in the levels of pyruvate kinase M2, lactate dehydrogenase A, and lactate. In conclusion, MV aggravated sepsis-associated pulmonary fibrosis, with glycometabolic reprogramming mediated by integrin ß3 activation. Thus, integrin ß3-mediated glycometabolic reprogramming might be a potential therapeutic target for S-MVPF.


Assuntos
Fibrose Pulmonar , Sepse , Camundongos , Animais , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/metabolismo , Integrina beta3/metabolismo , Respiração Artificial , Lipopolissacarídeos , Lactato Desidrogenase 5 , Piruvato Quinase , Sepse/complicações
19.
J Neuroinflammation ; 20(1): 5, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609298

RESUMO

BACKGROUND: In response to brain injury or inflammation, astrocytes undergo hypertrophy, proliferate, and migrate to the damaged zone. These changes, collectively known as "astrogliosis", initially protect the brain; however, astrogliosis can also cause neuronal dysfunction. Additionally, these astrocytes undergo intracellular changes involving alterations in the expression and localization of many proteins, including αvß3 integrin. Our previous reports indicate that Thy-1, a neuronal glycoprotein, binds to this integrin inducing Connexin43 (Cx43) hemichannel (HC) opening, ATP release, and astrocyte migration. Despite such insight, important links and molecular events leading to astrogliosis remain to be defined. METHODS: Using bioinformatics approaches, we analyzed different Gene Expression Omnibus datasets to identify changes occurring in reactive astrocytes as compared to astrocytes from the normal mouse brain. In silico analysis was validated by both qRT-PCR and immunoblotting using reactive astrocyte cultures from the normal rat brain treated with TNF and from the brain of a hSOD1G93A transgenic mouse model. We evaluated the phosphorylation of Cx43 serine residue 373 (S373) by AKT and ATP release as a functional assay for HC opening. In vivo experiments were also performed with an AKT inhibitor (AKTi). RESULTS: The bioinformatics analysis revealed that genes of the PI3K/AKT signaling pathway were among the most significantly altered in reactive astrocytes. mRNA and protein levels of PI3K, AKT, as well as Cx43, were elevated in reactive astrocytes from normal rats and from hSOD1G93A transgenic mice, as compared to controls. In vitro, reactive astrocytes stimulated with Thy-1 responded by activating AKT, which phosphorylated S373Cx43. Increased pS373Cx43 augmented the release of ATP to the extracellular medium and AKTi inhibited these Thy-1-induced responses. Furthermore, in an in vivo model of inflammation (brain damage), AKTi decreased the levels of astrocyte reactivity markers and S373Cx43 phosphorylation. CONCLUSIONS: Here, we identify changes in the PI3K/AKT molecular signaling network and show how they participate in astrogliosis by regulating the HC protein Cx43. Moreover, because HC opening and ATP release are important in astrocyte reactivity, the phosphorylation of Cx43 by AKT and the associated increase in ATP release identify a potential therapeutic window of opportunity to limit the adverse effects of astrogliosis.


Assuntos
Lesões Encefálicas , Conexina 43 , Animais , Camundongos , Ratos , Trifosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Astrócitos/metabolismo , Lesões Encefálicas/metabolismo , Conexina 43/metabolismo , Gliose/metabolismo , Inflamação/metabolismo , Integrina beta3/genética , Integrina beta3/metabolismo , Integrina beta3/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Cima , Antígenos Thy-1/metabolismo , Integrina alfa5/metabolismo
20.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674478

RESUMO

The Src homology 2 domain-containing inositol 5-phosphatase 1 (SHIP1) is known to dephosphorylate PtdIns(3,4,5)P3 into PtdIns(3,4)P2 and to interact with several signaling proteins though its docking functions. It has been shown to negatively regulate platelet adhesion and spreading on a fibrinogen surface and to positively regulate thrombus growth. In the present study, we have investigated its role during the early phase of platelet activation. Using confocal-based morphometric analysis, we found that SHIP1 is involved in the regulation of cytoskeletal organization and internal contractile activity in thrombin-activated platelets. The absence of SHIP1 has no significant impact on thrombin-induced Akt or Erk1/2 activation, but it selectively affects the RhoA/Rho-kinase pathway and myosin IIA relocalization to the cytoskeleton. SHIP1 interacts with the spectrin-based membrane skeleton, and its absence induces a loss of sustained association of integrins to this network together with a decrease in αIIbß3 integrin clustering following thrombin stimulation. This αIIbß3 integrin dynamics requires the contractile cytoskeleton under the control of SHIP1. RhoA activation, internal platelet contraction, and membrane skeleton integrin association were insensitive to the inhibition of PtdIns(3,4,5)P3 synthesis or SHIP1 phosphatase activity, indicating a role for the docking properties of SHIP1 in these processes. Altogether, our data reveal a lipid-independent function for SHIP1 in the regulation of the contractile cytoskeleton and integrin dynamics in platelets.


Assuntos
Integrina alfa2 , Integrina beta3 , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Ativação Plaquetária , Plaquetas/metabolismo , Integrina beta3/metabolismo , Fosfatidilinositóis/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Trombina/farmacologia , Trombina/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Integrina alfa2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...