Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.101
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1393680, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938877

RESUMO

Hand, foot, and mouth disease (HFMD) is a common infectious disease caused by enterovirus 71 (EV71) that frequently affects children, leading to severe infections in some cases. In general, when infection occurs, the body upregulates inflammatory responses to eliminate pathogenic microorganisms to protect the host from infection. However, EV71 may inhibit host's innate immunity to promote virus infection. At present, it is not fully understood how EV71 hijack the host cells for its own replication. Toll-like receptor 4 (TLR4), a natural immune receptor, historically associated with bacterial endotoxin-induced inflammatory responses. However, it is still unclear whether and how TLR4 is altered during EV71 infection. In this study, we observed a reduction in both TLR4 protein and gene transcript levels in RD, GES-1, and Vero cells following EV71 infection, as detected by RT-qPCR, immunofluorescence staining and western blot. Furthermore, we observed that the TLR4 downstream molecules of MYD88, p-NF-κB p65, p-TBK1 and related inflammatory cytokines were also reduced, suggesting that antiviral innate immune and inflammatory response were suppressed. To determine the impact of TLR4 changes on EV71 infection, we interfered EV71-infected RD cells with TLR4 agonist or inhibitor and the results showed that activation of TLR4 inhibited EV71 replication, while inhibition of TLR4 promote EV71 replication. Besides, EV71 replication was also promoted in TLR4 siRNA-transfected and EV71-infected RD cells. This suggests that down-regulation the expression of TLR4 by EV71 can inhibit host immune defense to promote EV71 self-replication. This novel mechanism may be a strategy for EV71 to evade host immunity.


Assuntos
Enterovirus Humano A , Imunidade Inata , Transdução de Sinais , Receptor 4 Toll-Like , Replicação Viral , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Enterovirus Humano A/imunologia , Humanos , Animais , Células Vero , Chlorocebus aethiops , Interações Hospedeiro-Patógeno/imunologia , Inflamação/metabolismo , Inflamação/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Linhagem Celular , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Citocinas/metabolismo , NF-kappa B/metabolismo , Doença de Mão, Pé e Boca/imunologia , Doença de Mão, Pé e Boca/virologia
2.
Rev Med Virol ; 34(4): e2567, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38937135

RESUMO

Human T-lymphotropic virus type-1 (HTLV-1) was the first discovered human oncogenic retrovirus, the etiological agent of two serious diseases have been identified as adult T-cell leukaemia/lymphoma malignancy and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a debilitating chronic neuro-myelopathy. Despite more than 40 years of molecular, histopathological and immunological studies on HTLV-1-associated diseases, the virulence and pathogenicity of this virus are yet to be clarified. The reason why the majority of HTLV-1-infected individuals (∼95%) remain asymptomatic carriers is still unclear. The deterioration of the immune system towards oncogenicity and autoimmunity makes HTLV-1 a natural probe for the study of malignancy and neuro-inflammatory diseases. Additionally, its slow worldwide spreading has prompted public health authorities and researchers, as urged by the WHO, to focus on eradicating HTLV-1. In contrast, neither an effective therapy nor a protective vaccine has been introduced. This comprehensive review focused on the most relevant studies of the neuro-inflammatory propensity of HTLV-1-induced HAM/TSP. Such an emphasis on the virus-host interactions in the HAM/TSP pathogenesis will be critically discussed epigenetically. The findings may shed light on future research venues in designing and developing proper HTLV-1 therapeutics.


Assuntos
Infecções por HTLV-I , Vírus Linfotrópico T Tipo 1 Humano , Paraparesia Espástica Tropical , Humanos , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Paraparesia Espástica Tropical/virologia , Paraparesia Espástica Tropical/imunologia , Infecções por HTLV-I/virologia , Infecções por HTLV-I/imunologia , Infecções por HTLV-I/complicações , Interações Hospedeiro-Patógeno/imunologia , Animais , Interações entre Hospedeiro e Microrganismos/imunologia
3.
Viruses ; 16(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38932230

RESUMO

Type I interferons (IFN-Is) are pivotal in innate immunity against human immunodeficiency virus I (HIV-1) by eliciting the expression of IFN-stimulated genes (ISGs), which encompass potent host restriction factors. While ISGs restrict the viral replication within the host cell by targeting various stages of the viral life cycle, the lesser-known IFN-repressed genes (IRepGs), including RNA-binding proteins (RBPs), affect the viral replication by altering the expression of the host dependency factors that are essential for efficient HIV-1 gene expression. Both the host restriction and dependency factors determine the viral replication efficiency; however, the understanding of the IRepGs implicated in HIV-1 infection remains greatly limited at present. This review provides a comprehensive overview of the current understanding regarding the impact of the RNA-binding protein families, specifically the two families of splicing-associated proteins SRSF and hnRNP, on HIV-1 gene expression and viral replication. Since the recent findings show specifically that SRSF1 and hnRNP A0 are regulated by IFN-I in various cell lines and primary cells, including intestinal lamina propria mononuclear cells (LPMCs) and peripheral blood mononuclear cells (PBMCs), we particularly discuss their role in the context of the innate immunity affecting HIV-1 replication.


Assuntos
Infecções por HIV , HIV-1 , Imunidade Inata , Replicação Viral , HIV-1/genética , HIV-1/fisiologia , Humanos , Infecções por HIV/virologia , Infecções por HIV/genética , Infecções por HIV/imunologia , Regulação Viral da Expressão Gênica , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de RNA/genética , Interferon Tipo I/metabolismo , Interferon Tipo I/genética , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/genética , Interferons/metabolismo , Interferons/genética , Interferons/imunologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
4.
Front Immunol ; 15: 1381026, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919620

RESUMO

Introduction: Porcine deltacoronavirus (PDCoV) is a zoonotic pathogen with a global distribution, capable of infecting both pigs and humans. To mitigate the risk of cross-species transmission and potential outbreaks, it is crucial to characterize novel antiviral genes, particularly those from human hosts. Methods: This research used HIEC-6 to investigate PDCoV infection. HIEC-6 cells were infected with PDCoV. Samples were collected 48 h postinfection for proteomic analysis. Results: We discovered differential expression of MRPS6 gene at 48 h postinfection with PDCoV in HIEC-6 cells. The gene expression initially increased but then decreased. To further explore the role of MRPS6 in PDCoV infection, we conducted experiments involving the overexpression and knockdown of this gene in HIEC-6 and Caco2 cells, respectively. Our findings revealed that overexpression of MRPS6 significantly inhibited PDCoV infection in HIEC-6 cells, while knockdown of MRPS6 in Caco2 cells led to a significant increase of virus titer. Furthermore, we investigated the correlation between PDCoV infection and the expression of MRPS6. Subsequent investigations demonstrated that MRPS6 exerted an augmentative effect on the production of IFN-ß through interferon pathway activation, consequently impeding the progression of PDCoV infection in cellular systems. In conclusion, this study utilized proteomic analysis to investigate the differential protein expression in PDCoV-infected HIEC-6 cells, providing evidence for the first time that the MRPS6 gene plays a restrictive role in PDCoV virus infection. Discussion: Our findings initially provide the validation of MRPS6 as an upstream component of IFN-ß pathway, in the promotion of IRF3, IRF7, STAT1, STAT2 and IFN-ß production of HIEC-6 via dual-activation from interferon pathway.


Assuntos
Deltacoronavirus , Humanos , Animais , Suínos , Deltacoronavirus/fisiologia , Deltacoronavirus/genética , Células CACO-2 , Infecções por Coronavirus/virologia , Infecções por Coronavirus/imunologia , Linhagem Celular , Interações Hospedeiro-Patógeno/imunologia , Proteômica/métodos , Transdução de Sinais , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia
5.
Helicobacter ; 29(3): e13105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38924222

RESUMO

Helicobacter pylori (H. pylori) colonizes the stomach and leads to the secretion of a vast range of cytokines by infiltrated leukocytes directing immune/inflammatory response against the bacterium. To regulate immune/inflammatory responses, suppressors of cytokine signaling (SOCS) proteins bind to multiple signaling components located downstream of cytokine receptors, such as Janus kinase (JAK), signal transducers and activators of transcription (STAT). Dysfunctional SOCS proteins in immune cells may facilitate the immune evasion of H. pylori, allowing the bacteria to induce chronic inflammation. Dysregulation of SOCS expression and function can contribute to the sustained H. pylori-mediated gastric inflammation which can lead to gastric cancer (GC) development. Among SOCS molecules, dysregulated expression of SOCS1, SOCS2, SOCS3, and SOCS6 were indicated in H. pylori-infected individuals as well as in GC tissues and cells. H. pylori-induced SOCS1, SOCS2, SOCS3, and SOCS6 dysregulation can contribute to the GC development. The expression of SOCS molecules can be influenced by various factors, such as epigenetic DNA methylation, noncoding RNAs, and gene polymorphisms. Modulation of the expression of SOCS molecules in gastric epithelial cells and immune cells can be considered to control gastric carcinogenesis as well as regulate antitumor immune responses, respectively. This review aimed to explain the interplay between H. pylori and SOCS molecules in GC development and immune response induction as well as to provide insights regarding potential therapeutic strategies modulating SOCS molecules.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Proteínas Supressoras da Sinalização de Citocina , Humanos , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/microbiologia , Helicobacter pylori/imunologia , Helicobacter pylori/patogenicidade , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/microbiologia , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética , Interações Hospedeiro-Patógeno/imunologia , Transdução de Sinais
6.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892096

RESUMO

Influenza A viruses (IAVs) pose a significant global threat to human health. A tightly controlled host immune response is critical to avoid any detrimental effects of IAV infection. It is critical to investigate the association between the response of Toll-like receptors (TLRs) and influenza virus. Because TLRs may act as a double-edged sword, a balanced TLR response is critical for the overall benefit of the host. Consequently, a thorough understanding of the TLR response is essential for targeting TLRs as a novel therapeutic and prophylactic intervention. To date, a limited number of studies have assessed TLR and IAV interactions. Therefore, further research on TLR interactions in IAV infection should be conducted to determine their role in host-virus interactions in disease causation or clearance of the virus. Although influenza virus vaccines are available, they have limited efficacy, which should be enhanced to improve their efficacy. In this study, we discuss the current status of our understanding of the TLR response in IAV infection and the strategies adopted by IAVs to avoid TLR-mediated immune surveillance, which may help in devising new therapeutic or preventive strategies. Furthermore, recent advances in the use of TLR agonists as vaccine adjuvants to enhance influenza vaccine efficacy are discussed.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Receptores Toll-Like , Humanos , Receptores Toll-Like/metabolismo , Influenza Humana/imunologia , Influenza Humana/virologia , Animais , Vacinas contra Influenza/imunologia , Vírus da Influenza A/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Transdução de Sinais
7.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38892397

RESUMO

Pathogenic bacteria have several mechanisms to evade the host's immune response and achieve an efficient infection. Bacterial extracellular vesicles (EVs) are a relevant cellular communication mechanism, since they can interact with other bacterial cells and with host cells. In this review, we focus on the EVs produced by some World Health Organization (WHO) priority Gram-negative and Gram-positive pathogenic bacteria; by spore-producing bacteria; by Mycobacterium tuberculosis (a bacteria with a complex cell wall); and by Treponema pallidum (a bacteria without lipopolysaccharide). We describe the classification and the general properties of bacterial EVs, their role during bacterial infections and their effects on the host immune response. Bacterial EVs contain pathogen-associated molecular patterns that activate innate immune receptors, which leads to cytokine production and inflammation, but they also contain antigens that induce the activation of B and T cell responses. Understanding the many effects of bacterial EVs on the host's immune response can yield new insights on the pathogenesis of clinically important infections, but it can also lead to the development of EV-based diagnostic and therapeutic strategies. In addition, since EVs are efficient activators of both the innate and the adaptive immune responses, they constitute a promising platform for vaccine development.


Assuntos
Vesículas Extracelulares , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/metabolismo , Humanos , Animais , Imunidade Inata , Interações Hospedeiro-Patógeno/imunologia , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Bactérias/imunologia
8.
Emerg Microbes Infect ; 13(1): 2341144, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38847579

RESUMO

The public's health is gravely at risk due to the current global outbreak of emerging viruses, specifically SARS-CoV-2 and MPXV. Recent studies have shown that SARS-CoV-2 mutants (such as Omicron) exhibit a higher capability to antagonize the host innate immunity, increasing their human adaptability and transmissibility. Furthermore, current studies on the strategies for MPXV to antagonize the host innate immunity are still in the initial stages. These multiple threats from emerging viruses make it urgent to study emerging virus-host interactions, especially the viral antagonism of host antiviral innate immunity. Given this, we selected several representative viruses that significantly threatened human public health and interpreted the multiple strategies for these viruses to antagonize the host antiviral innate immunity, hoping to provide ideas for molecular mechanism research that emerging viruses antagonize the host antiviral innate immunity and accelerate the research progress. The IAV, SARS-CoV-2, SARS-CoV, MERS-CoV, EBOV, DENV, ZIKV, and HIV are some of the typical viruses. Studies have shown that viruses could antagonize the host antiviral innate immunity by directly or indirectly blocking antiviral innate immune signaling pathways. Proviral host factors, host restriction factors, and ncRNAs (microRNAs, lncRNAs, circRNAs, and vtRNAs) are essential in indirectly blocking antiviral innate immune signaling pathways. Furthermore, via controlling apoptosis, ER stress, stress granule formation, and metabolic pathways, viruses may antagonize it. These regulatory mechanisms include transcriptional regulation, post-translational regulation, preventing complex formation, impeding nuclear translocation, cleavage, degradation, and epigenetic regulation.


Assuntos
Imunidade Inata , SARS-CoV-2 , Humanos , SARS-CoV-2/imunologia , Interações Hospedeiro-Patógeno/imunologia , Viroses/imunologia , Viroses/virologia , COVID-19/imunologia , COVID-19/virologia , Animais , Doenças Transmissíveis Emergentes/virologia , Doenças Transmissíveis Emergentes/imunologia
9.
PLoS Pathog ; 20(6): e1012252, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38833496

RESUMO

Microbial pathogenicity often depends on the route of infection. For instance, P. aeruginosa or S. marcescens cause acute systemic infections when low numbers of bacteria are injected into D. melanogaster flies whereas flies succumb much slower to the continuous ingestion of these pathogens, even though both manage to escape from the gut compartment and reach the hemocoel. Here, we have developed a latent P. aeruginosa infection model by feeding flies on the bacteria for a short period. The bacteria stably colonize internal tissues yet hardly cause any damage since latently-infected flies live almost as long as noninfected control flies. The apparently dormant bacteria display particular characteristics in terms of bacterial colony morphology, composition of the outer cell wall, and motility. The virulence of these bacteria can however be reactivated upon wounding the host. We show that melanization but not the cellular or the systemic humoral response is the predominant host defense that establishes latency and may coerce the bacteria to a dormant state. In addition, the lasting activation of the melanization responses in latently-infected flies provides a degree of protection to the host against a secondary fungal infection. Latent infection by an ingested pathogen protects against a variety of homologous or heterologous systemic secondary infectious challenges, a situation previously described for the endosymbiotic Wolbachia bacteria, a guard against viral infections.


Assuntos
Drosophila melanogaster , Imunidade Inata , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Drosophila melanogaster/microbiologia , Drosophila melanogaster/imunologia , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/imunologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Virulência , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno/imunologia
10.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38892443

RESUMO

Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB), a prevalent infectious disease affecting populations worldwide. A classic trait of TB pathology is the formation of granulomas, which wall off the pathogen, via the innate and adaptive immune systems. Some key players involved include tumor necrosis factor-alpha (TNF-α), foamy macrophages, type I interferons (IFNs), and reactive oxygen species, which may also show overlap with cell death pathways. Additionally, host cell death is a primary method for combating and controlling Mtb within the body, a process which is influenced by both host and bacterial factors. These cell death modalities have distinct molecular mechanisms and pathways. Programmed cell death (PCD), encompassing apoptosis and autophagy, typically confers a protective response against Mtb by containing the bacteria within dead macrophages, facilitating their phagocytosis by uninfected or neighboring cells, whereas necrotic cell death benefits the pathogen, leading to the release of bacteria extracellularly. Apoptosis is triggered via intrinsic and extrinsic caspase-dependent pathways as well as caspase-independent pathways. Necrosis is induced via various pathways, including necroptosis, pyroptosis, and ferroptosis. Given the pivotal role of host cell death pathways in host defense against Mtb, therapeutic agents targeting cell death signaling have been investigated for TB treatment. This review provides an overview of the diverse mechanisms underlying Mtb-induced host cell death, examining their implications for host immunity. Furthermore, it discusses the potential of targeting host cell death pathways as therapeutic and preventive strategies against Mtb infection.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Tuberculose/imunologia , Tuberculose/microbiologia , Tuberculose/patologia , Animais , Morte Celular/imunologia , Interações Hospedeiro-Patógeno/imunologia , Apoptose , Imunidade Inata , Autofagia/imunologia , Transdução de Sinais , Macrófagos/imunologia , Macrófagos/microbiologia
11.
Front Immunol ; 15: 1413947, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881887

RESUMO

CD36 is a scavenger receptor that has been reported to function as a signaling receptor that responds to pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) and could integrate metabolic pathways and cell signaling through its dual functions. Thereby influencing activation to regulate the immune response and immune cell differentiation. Recent studies have revealed that CD36 plays critical roles in the process of lipid metabolism, inflammatory response and immune process caused by Mycobacterium tuberculosis infection. This review will comprehensively investigate CD36's functions in lipid uptake and processing, inflammatory response, immune response and therapeutic targets and biomarkers in the infection process of M. tuberculosis. The study also raised outstanding issues in this field to designate future directions.


Assuntos
Antígenos CD36 , Mycobacterium tuberculosis , Tuberculose , Humanos , Antígenos CD36/metabolismo , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Tuberculose/metabolismo , Tuberculose/microbiologia , Animais , Metabolismo dos Lipídeos , Transdução de Sinais , Biomarcadores , Interações Hospedeiro-Patógeno/imunologia
12.
Elife ; 132024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900146

RESUMO

Human leucocyte antigen class I (HLA-I) molecules play a central role for both NK and T-cell responses that prevent serious human cytomegalovirus (HCMV) disease. To create opportunities for viral spread, several HCMV-encoded immunoevasins employ diverse strategies to target HLA-I. Among these, the glycoprotein US10 is so far insufficiently studied. While it was reported that US10 interferes with HLA-G expression, its ability to manipulate classical HLA-I antigen presentation remains unknown. In this study, we demonstrate that US10 recognizes and binds to all HLA-I (HLA-A, -B, -C, -E, -G) heavy chains. Additionally, impaired recruitment of HLA-I to the peptide loading complex was observed. Notably, the associated effects varied significantly dependending on HLA-I genotype and allotype: (i) HLA-A molecules evaded downregulation by US10, (ii) tapasin-dependent HLA-B molecules showed impaired maturation and cell surface expression, and (iii) ß2m-assembled HLA-C, in particular HLA-C*05:01 and -C*12:03, and HLA-G were strongly retained in complex with US10 in the endoplasmic reticulum. These genotype-specific effects on HLA-I were confirmed through unbiased HLA-I ligandome analyses. Furthermore, in HCMV-infected fibroblasts inhibition of overlapping US10 and US11 transcription had little effect on HLA-A, but induced HLA-B antigen presentation. Thus, the US10-mediated impact on HLA-I results in multiple geno- and allotypic effects in a so far unparalleled and multimodal manner.


During a viral infection, the immune system must discriminate between healthy and infected cells to selectively kill infected cells. Healthy cells have different types of molecules known collectively as HLA-I on their surface. These molecules present small fragments of proteins from the cell, called antigens, to patrolling immune cells, known as CTLs or natural killer cells. While CTLs ignore antigens from human proteins (which indicate the cell is healthy), they can bind to and recognize antigens from viral proteins, which triggers them to activate immune responses that kill the infected cell. However, some viruses can prevent infected cells from presenting HLA-I molecules on their surfaces as a strategy to evade the immune system. Natural killer cells have evolved to overcome this challenge. They bind to the HLA-I molecules themselves, which causes them to remain inactive. However, if the HLA-I molecules are missing, the NK cells can more easily switch on and kill the target cell. The human cytomegalovirus is a common virus that causes lifelong infection in humans. Although it rarely causes illness in healthy individuals, it can be life-threatening to newborn babies and for individuals with weakened immune systems. One human cytomegalovirus protein known as US10 was previously found to bind to HLA-I without reducing the levels of these molecules on the surface of the cell. However, its precise role remained unclear. Gerke et al. used several biochemical and cell biology approaches to investigate whether US10 manipulates the quality of the three types of HLA-I, which could impact both CTL and NK cell recognition. The experiments showed that US10 acted differently on the various kinds of HLA-I. To one type, it bound strongly within the cell and prevented it from reaching the surface. US10 also prevented another type of HLA-I from maturing properly and presenting antigens but did not affect the third type of HLA-I. These findings suggest that US10 interferes with the ability of different HLA-I types to present antigens in specific ways. Further research is needed to measure how US10 activity affects immune cells, which may ultimately aid the development of new therapies against human cytomegalovirus and other similar viruses.


Assuntos
Citomegalovirus , Antígenos de Histocompatibilidade Classe I , Humanos , Citomegalovirus/genética , Citomegalovirus/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Genótipo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Ligação Proteica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Regulação da Expressão Gênica , Apresentação de Antígeno/genética
13.
Cell Host Microbe ; 32(6): 913-924.e7, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38870903

RESUMO

Aspects of how Burkholderia escape the host's intrinsic immune response to replicate in the cell cytosol remain enigmatic. Here, we show that Burkholderia has evolved two mechanisms to block the activity of Ring finger protein 213 (RNF213)-mediated non-canonical ubiquitylation of bacterial lipopolysaccharide (LPS), thereby preventing the initiation of antibacterial autophagy. First, Burkholderia's polysaccharide capsule blocks RNF213 association with bacteria and second, the Burkholderia deubiquitylase (DUB), TssM, directly reverses the activity of RNF213 through a previously unrecognized esterase activity. Structural analysis provides insight into the molecular basis of TssM esterase activity, allowing it to be uncoupled from its isopeptidase function. Furthermore, a putative TssM homolog also displays esterase activity and removes ubiquitin from LPS, establishing this as a virulence mechanism. Of note, we also find that additional immune-evasion mechanisms exist, revealing that overcoming this arm of the host's immune response is critical to the pathogen.


Assuntos
Proteínas de Bactérias , Burkholderia , Lipopolissacarídeos , Ubiquitinação , Lipopolissacarídeos/metabolismo , Humanos , Burkholderia/imunologia , Proteínas de Bactérias/metabolismo , Esterases/metabolismo , Evasão da Resposta Imune , Ubiquitina-Proteína Ligases/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Autofagia , Virulência
14.
Adv Virus Res ; 119: 63-110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38897709

RESUMO

The surfaces of cells and enveloped viruses alike are coated in carbohydrates that play multifarious roles in infection and immunity. Organisms across all kingdoms of life make use of a diverse set of monosaccharide subunits, glycosidic linkages, and branching patterns to encode information within glycans. Accordingly, sugar-patterning enzymes and glycan binding proteins play integral roles in cell and organismal biology, ranging from glycoprotein quality control within the endoplasmic reticulum to lymphocyte migration, coagulation, inflammation, and tissue homeostasis. Unsurprisingly, genes involved in generating and recognizing oligosaccharide patterns are playgrounds for evolutionary conflicts that abound in cross-species interactions, exemplified by the myriad plant lectins that function as toxins. In vertebrates, glycans bearing acidic nine-carbon sugars called sialic acids are key regulators of immune responses. Various bacterial and fungal pathogens adorn their cells in sialic acids that either mimic their hosts' or are stolen from them. Yet, how viruses commandeer host sugar-patterning enzymes to thwart immune responses remains poorly studied. Here, we review examples of viruses that interact with sialic acid-binding immunoglobulin-like lectins (Siglecs), a family of immune cell receptors that regulate toll-like receptor signaling and govern glycoimmune checkpoints, while highlighting knowledge gaps that merit investigation. Efforts to illuminate how viruses leverage glycan-dependent checkpoints may translate into new clinical treatments that uncloak viral antigens and infected cell surfaces by removing or masking immunosuppressive sialoglycans, or by inhibiting viral gene products that induce their biosynthesis. Such approaches may hold the potential to unleash the immune system to clear long intractable chronic viral infections.


Assuntos
Glicocálix , Vírus , Glicocálix/metabolismo , Humanos , Animais , Vírus/imunologia , Vírus/metabolismo , Polissacarídeos/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Viroses/imunologia , Viroses/metabolismo , Viroses/virologia , Interações Hospedeiro-Patógeno/imunologia
15.
Int J Mol Sci ; 25(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891876

RESUMO

Enterovirus A71 (EV-A71) is a major pathogen causing hand, foot, and mouth disease (HFMD) in children worldwide. It can lead to severe gastrointestinal, pulmonary, and neurological complications. The innate immune system, which rapidly detects pathogens via pathogen-associated molecular patterns or pathogen-encoded effectors, serves as the first defensive line against EV-A71 infection. Concurrently, the virus has developed various sophisticated strategies to evade host antiviral responses and establish productive infection. Thus, the virus-host interactions and conflicts, as well as the ability to govern biological events at this first line of defense, contribute significantly to the pathogenesis and outcomes of EV-A71 infection. In this review, we update recent progress on host innate immune responses to EV-A71 infection. In addition, we discuss the underlying strategies employed by EV-A71 to escape host innate immune responses. A better understanding of the interplay between EV-A71 and host innate immunity may unravel potential antiviral targets, as well as strategies that can improve patient outcomes.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Imunidade Inata , Humanos , Evasão da Resposta Imune/imunologia , Enterovirus Humano A/imunologia , Enterovirus Humano A/patogenicidade , Interações Hospedeiro-Patógeno/imunologia , Infecções por Enterovirus/imunologia , Infecções por Enterovirus/virologia , Animais , Doença de Mão, Pé e Boca/imunologia , Doença de Mão, Pé e Boca/virologia
16.
Biol Open ; 13(6)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875000

RESUMO

Viral infectivity depends on multiple factors. Recent studies showed that the interaction between viral RNAs and endogenous microRNAs (miRNAs) regulates viral infectivity; viral RNAs function as a sponge of endogenous miRNAs and result in upregulation of its original target genes, while endogenous miRNAs target viral RNAs directly and result in repression of viral gene expression. In this study, we analyzed the possible interaction between parainfluenza virus RNA and endogenous miRNAs in human and mouse lungs. We showed that the parainfluenza virus can form base pairs with human miRNAs abundantly than mouse miRNAs. Furthermore, we analyzed that the sponge effect of endogenous miRNAs on viral RNAs may induce the upregulation of transcription regulatory factors. Then, we performed RNA-sequence analysis and observed the upregulation of transcription regulatory factors in the early stages of parainfluenza virus infection. Our studies showed how the differential expression of endogenous miRNAs in lungs could contribute to respiratory virus infection and species- or tissue-specific mechanisms and common mechanisms could be conserved in humans and mice and regulated by miRNAs during viral infection.


Assuntos
Pulmão , MicroRNAs , Animais , MicroRNAs/genética , Camundongos , Humanos , Pulmão/virologia , Pulmão/imunologia , Pulmão/metabolismo , RNA Viral/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Regulação da Expressão Gênica , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia , Infecções Respiratórias/genética , Infecções por Respirovirus/imunologia
17.
Front Immunol ; 15: 1394857, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933265

RESUMO

Necroptosis, a recently discovered form of cell-programmed death that is distinct from apoptosis, has been confirmed to play a significant role in the pathogenesis of bacterial infections in various animal models. Necroptosis is advantageous to the host, but in some cases, it can be detrimental. To understand the impact of necroptosis on the pathogenesis of bacterial infections, we described the roles and molecular mechanisms of necroptosis caused by different bacterial infections in this review.


Assuntos
Infecções Bacterianas , Necroptose , Necroptose/imunologia , Humanos , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Animais , Apoptose , Interações Hospedeiro-Patógeno/imunologia
19.
Front Immunol ; 15: 1401320, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835769

RESUMO

Host-microbe interactions are complex and ever-changing, especially during infections, which can significantly impact human physiology in both health and disease by influencing metabolic and immune functions. Infections caused by pathogens such as bacteria, viruses, fungi, and parasites are the leading cause of global mortality. Microbes have evolved various immune evasion strategies to survive within their hosts, which presents a multifaceted challenge for detection. Intracellular microbes, in particular, target specific cell types for survival and replication and are influenced by factors such as functional roles, nutrient availability, immune evasion, and replication opportunities. Identifying intracellular microbes can be difficult because of the limitations of traditional culture-based methods. However, advancements in integrated host microbiome single-cell genomics and transcriptomics provide a promising basis for personalized treatment strategies. Understanding host-microbiota interactions at the cellular level may elucidate disease mechanisms and microbial pathogenesis, leading to targeted therapies. This article focuses on how intracellular microbes reside in specific cell types, modulating functions through persistence strategies to evade host immunity and prolong colonization. An improved understanding of the persistent intracellular microbe-induced differential disease outcomes can enhance diagnostics, therapeutics, and preventive measures.


Assuntos
Genômica , Análise de Célula Única , Humanos , Genômica/métodos , Animais , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Interações entre Hospedeiro e Microrganismos/genética , Evasão da Resposta Imune , Microbiota/imunologia , Bactérias/genética , Bactérias/imunologia , Índice de Gravidade de Doença
20.
Front Cell Infect Microbiol ; 14: 1398077, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38836056

RESUMO

Mycobacterium tuberculosis (M.tb), the causative agent of Tuberculosis, is an intracellular bacterium well known for its ability to subvert host energy and metabolic pathways to maintain its intracellular survival. For this purpose, the bacteria utilize various mechanisms of which extracellular vehicles (EVs) related mechanisms attracted more attention. EVs are nanosized particles that are released by almost all cell types containing active biomolecules from the cell of origin and can target bioactive pathways in the recipient cells upon uptake. It is hypothesized that M.tb dictates the processes of host EV biogenesis pathways, selectively incorporating its molecules into the host EV to direct immune responses in its favor. During infection with Mtb, both mycobacteria and host cells release EVs. The composition of these EVs varies over time, influenced by the physiological and nutritional state of the host environment. Additionally, different EV populations contribute differently to the pathogenesis of disease at various stages of illness participating in a complex interplay between host cells and pathogens. These interactions ultimately influence immune responses and disease outcomes. However, the precise mechanisms and roles of EVs in pathogenicity and disease outcomes remain to be fully elucidated. In this review, we explored the properties and function of EVs in the context of M.tb infection within the host microenvironment and discussed their capacity as a novel therapeutic strategy to combat tuberculosis.


Assuntos
Vesículas Extracelulares , Interações Hospedeiro-Patógeno , Mycobacterium tuberculosis , Tuberculose , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , Mycobacterium tuberculosis/imunologia , Humanos , Tuberculose/imunologia , Tuberculose/microbiologia , Tuberculose/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...