Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.980
Filtrar
1.
J Clin Invest ; 134(9)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38690737

RESUMO

Inflammation and pain are intertwined responses to injury, infection, or chronic diseases. While acute inflammation is essential in determining pain resolution and opioid analgesia, maladaptive processes occurring during resolution can lead to the transition to chronic pain. Here we found that inflammation activates the cytosolic DNA-sensing protein stimulator of IFN genes (STING) in dorsal root ganglion nociceptors. Neuronal activation of STING promotes signaling through TANK-binding kinase 1 (TBK1) and triggers an IFN-ß response that mediates pain resolution. Notably, we found that mice expressing a nociceptor-specific gain-of-function mutation in STING exhibited an IFN gene signature that reduced nociceptor excitability and inflammatory hyperalgesia through a KChIP1-Kv4.3 regulation. Our findings reveal a role of IFN-regulated genes and KChIP1 downstream of STING in the resolution of inflammatory pain.


Assuntos
Proteínas de Membrana , Nociceptores , Animais , Camundongos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nociceptores/metabolismo , Gânglios Espinais/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Inflamação/genética , Inflamação/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Dor/metabolismo , Dor/genética , Transdução de Sinais , Masculino
2.
Virol J ; 21(1): 107, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720392

RESUMO

Natural immunity is the first defense line of the host immune system, which plays a significant role in combating foreign pathogenic microorganisms. The IFN-ß (interferon-beta) signaling pathway, being a typical example of innate immunity, plays a vital function. This study aimed to elucidate the function of pseudorabies virus (PRV) UL38 protein (unique long region 38) in suppressing the activation of the IFN-ß signaling pathway. The findings from our study indicate that the PRV UL38 protein effectively hampers the activation of IFN-ß by poly (dA: dT) (poly(deoxyadenylic-deoxythymidylic)) and 2'3'-cGAMP (2'-3'-cyclic GMP-AMP). Furthermore, UL38 exhibits spatial co-localization with STING (stimulator of interferon genes) and effectively hinders STING dimerization. Subsequently, STING was downgraded to suppress the production of IFN-ß and ISGs (interferon stimulated genes). Immunoprecipitation analysis revealed that the interaction between UL38 and STING, which subsequently initiated the degradation of STING via selective autophagy mediated by TOLLIP (toll interacting protein). To summarize, this research elucidates the function of UL38 in counteracting the cGAS (cGAMP synthase)-STING-induced IFN-ß pathway. The PRV UL38 protein may attenuate the activation of IFN-ß as a means of regulating the virus's persistence in the host.


Assuntos
Autofagia , Herpesvirus Suídeo 1 , Interferon beta , Proteínas de Membrana , Nucleotidiltransferases , Transdução de Sinais , Animais , Humanos , Linhagem Celular , Células HEK293 , Herpesvirus Suídeo 1/fisiologia , Herpesvirus Suídeo 1/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Interferon beta/metabolismo , Interferon beta/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Pseudorraiva/virologia , Pseudorraiva/metabolismo , Pseudorraiva/imunologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Suínos , Mesocricetus
3.
Virol J ; 21(1): 109, 2024 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734674

RESUMO

BACKGROUND: Syndrome coronavirus-2 (SARS-CoV-2) has developed various strategies to evade the antiviral impact of type I IFN. Non-structural proteins and auxiliary proteins have been extensively researched on their role in immune escape. Nevertheless, the detailed mechanisms of structural protein-induced immune evasion have not been well elucidated. METHODS: Human alveolar basal epithelial carcinoma cell line (A549) was stimulated with polyinosinic-polycytidylic acid (PIC) and independently transfected with four structural proteins expression plasmids, including nucleocapsid (N), spike (S), membrane (M) and envelope (E) proteins. By RT-qPCR and ELISA, the structural protein with the most pronounced inhibitory effects on IFN-ß induction was screened. RNA-sequencing (RNA-Seq) and two differential analysis strategies were used to obtain differentially expressed genes associated with N protein inhibition of IFN-ß induction. Based on DIANA-LncBase and StarBase databases, the interactive competitive endogenous RNA (ceRNA) network for N protein-associated genes was constructed. By combining single-cell sequencing data (GSE158055), lncRNA-miRNA-mRNA axis was further determined. Finally, RT-qPCR was utilized to illustrate the regulatory functions among components of the ceRNA axis. RESULTS: SARS-CoV-2 N protein inhibited IFN-ß induction in human alveolar epithelial cells most significantly compared with other structural proteins. RNA-Seq data analysis revealed genes related to N protein inhibiting IFNs induction. The obtained 858 differentially expressed genes formed the reliable ceRNA network. The function of LINC01002-miR-4324-FRMD8 axis in the IFN-dominated immune evasion was further demonstrated through integrating single-cell sequencing data. Moreover, we validated that N protein could reverse the effect of PIC on LINC01002, FRMD8 and miR-4324 expression, and subsequently on IFN-ß expression level. And LINC01002 could regulate the production of FRMD8 by inhibiting miR-4324. CONCLUSION: SARS-CoV-2 N protein suppressed the induction of IFN-ß by regulating LINC01002 which was as a ceRNA, sponging miR-4324 and participating in the regulation of FRMD8 mRNA. Our discovery provides new insights into early intervention therapy and drug development on SARS-CoV-2 infection.


Assuntos
COVID-19 , MicroRNAs , RNA Longo não Codificante , SARS-CoV-2 , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , COVID-19/virologia , COVID-19/imunologia , SARS-CoV-2/genética , Células A549 , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Evasão da Resposta Imune , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , RNA Endógeno Competitivo , Fosfoproteínas
4.
J Transl Med ; 22(1): 463, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750559

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) have garnered significant interest for their tumor-tropic property, making them potential therapeutic delivery vehicles for cancer treatment. We have previously shown the significant anti-tumour activity in mice preclinical models and companion animals with naturally occurring cancers using non-virally engineered MSCs with a therapeutic transgene encoding cytosine deaminase and uracil phosphoribosyl transferase (CDUPRT) and green fluorescent protein (GFP). Clinical studies have shown improved response rate with combinatorial treatment of 5-fluorouracil and Interferon-beta (IFNb) in peritoneal carcinomatosis (PC). However, high systemic toxicities have limited the clinical use of such a regime. METHODS: In this study, we evaluated the feasibility of intraperitoneal administration of non-virally engineered MSCs to co-deliver CDUPRT/5-Flucytosine prodrug system and IFNb to potentially enhance the cGAS-STING signalling axis. Here, MSCs were engineered to express CDUPRT or CDUPRT-IFNb. Expression of CDUPRT and IFNb was confirmed by flow cytometry and ELISA, respectively. The anti-cancer efficacy of the engineered MSCs was evaluated in both in vitro and in vivo model. ES2, HT-29 and Colo-205 were cocultured with engineered MSCs at various ratio. The cell viability with or without 5-flucytosine was measured with MTS assay. To further compare the anti-cancer efficacy of the engineered MSCs, peritoneal carcinomatosis mouse model was established by intraperitoneal injection of luciferase expressing ES2 stable cells. The tumour burden was measured through bioluminescence tracking. RESULTS: Firstly, there was no changes in phenotypes of MSCs despite high expression of the transgene encoding CDUPRT and IFNb (CDUPRT-IFNb). Transwell migration assays and in-vivo tracking suggested the co-expression of multiple transgenes did not impact migratory capability of the MSCs. The superiority of CDUPRT-IFNb over CDUPRT expressing MSCs was demonstrated in ES2, HT-29 and Colo-205 in-vitro. Similar observations were observed in an intraperitoneal ES2 ovarian cancer xenograft model. The growth of tumor mass was inhibited by ~ 90% and 46% in the mice treated with MSCs expressing CDUPRT-IFNb or CDUPRT, respectively. CONCLUSIONS: Taken together, these results established the effectiveness of MSCs co-expressing CDUPRT and IFNb in controlling and targeting PC growth. This study lay the foundation for the development of clinical trial using multigene-armed MSCs for PC.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Pentosiltransferases , Neoplasias Peritoneais , Transgenes , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Neoplasias Peritoneais/terapia , Neoplasias Peritoneais/secundário , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/patologia , Humanos , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Linhagem Celular Tumoral , Interferon beta/metabolismo , Interferon beta/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Camundongos , Feminino
5.
Front Immunol ; 15: 1380220, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799458

RESUMO

African swine fever (ASF) is an acute hemorrhagic and devastating infectious disease affecting domestic pigs and wild boars. It is caused by the African swine fever virus (ASFV), which is characterized by genetic diversity and sophisticated immune evasion strategies. To facilitate infection, ASFV encodes multiple proteins to antagonize host innate immune responses, thereby contributing to viral virulence and pathogenicity. The molecular mechanisms employed by ASFV-encoded proteins to modulate host antiviral responses have not been comprehensively elucidated. In this study, it was observed that the ASFV MGF505-6R protein, a member of the multigene family 505 (MGF505), effectively suppressed the activation of the interferon-beta (IFN-ß) promoter, leading to reduced mRNA levels of antiviral genes. Additional evidence has revealed that MGF505-6R antagonizes the cGAS-STING signaling pathway by interacting with the stimulator of interferon genes (STING) for degradation in the autophagy-lysosomal pathway. The domain mapping revealed that the N-terminal region (1-260aa) of MGF505-6R is the primary domain responsible for interacting with STING, while the CTT domain of STING is crucial for its interaction with MGF505-6R. Furthermore, MGF505-6R also inhibits the activation of STING by reducing the K63-linked polyubiquitination of STING, leading to the disruption of STING oligomerization and TANK binding kinase 1 (TBK1) recruitment, thereby impairing the phosphorylation and nuclear translocation of interferon regulatory factor 3 (IRF3). Collectively, our study elucidates a novel strategy developed by ASFV MGF505-6R to counteract host innate immune responses. This discovery may offer valuable insights for further exploration of ASFV immune evasion mechanisms and antiviral strategies.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Proteínas de Membrana , Proteínas Virais , Animais , Vírus da Febre Suína Africana/imunologia , Vírus da Febre Suína Africana/genética , Suínos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Febre Suína Africana/imunologia , Febre Suína Africana/virologia , Febre Suína Africana/metabolismo , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Humanos , Imunidade Inata , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/imunologia , Transdução de Sinais , Proteólise , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune , Interferon beta/metabolismo , Interferon beta/imunologia , Interferon beta/genética
6.
PLoS Pathog ; 20(5): e1012125, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38696536

RESUMO

Major 5'-terminally deleted (5'TD) RNA forms of group-B coxsackievirus (CVB-5'TD) has been associated with myocarditis in both mice and humans. Although it is known that interferon-ß (IFN-ß) signaling is critical for an efficient innate immune response against CVB-induced myocarditis, the link between CVB-5'TD RNA forms and type I IFN signaling in cardiomyocytes remains to be explored. In a mouse model of CVB3/28-induced myocarditis, major early-emerging forms of CVB-5'TD RNA have been characterized as replicative viral populations that impair IFN-ß production in the heart. Synthetic CVB3/28 RNA forms mimicking each of these major 5'TD virus populations were transfected in mice and have been shown to modulate innate immune responses in the heart and to induce myocarditis in mice. Remarkably, transfection of synthetic viral RNA with deletions in the secondary structures of the 5'-terminal CVB3 RNA domain I, modifying stem-loops "b", "c" or "d", were found to impair IFN-ß production in human cardiomyocytes. In addition, the activation of innate immune response by Poly(I:C), was found to restore IFN-ß production and to reduce the burden of CVB-5'TD RNA-forms in cardiac tissues, thereby reducing the mortality rate of infected mice. Overall, our results indicate that major early-emerging CVB3 populations deleted in the domain I of genomic RNA, in the 5' noncoding region, modulate the activation of the type I IFN pathway in cardiomyocytes and induce myocarditis in mice. These findings shed new light on the role of replicative CVB-5'TD RNA forms as key pathophysiological factors in CVB-induced human myocarditis.


Assuntos
Infecções por Coxsackievirus , Enterovirus Humano B , Interferon Tipo I , Miocardite , Miócitos Cardíacos , RNA Viral , Miocardite/virologia , Miocardite/imunologia , Miocardite/genética , Animais , Miócitos Cardíacos/virologia , Miócitos Cardíacos/metabolismo , Camundongos , Enterovirus Humano B/imunologia , Infecções por Coxsackievirus/imunologia , Infecções por Coxsackievirus/virologia , Infecções por Coxsackievirus/genética , Interferon Tipo I/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Humanos , Imunidade Inata , Transdução de Sinais , Interferon beta/metabolismo , Interferon beta/genética , Interferon beta/imunologia , Masculino , Regiões 5' não Traduzidas
7.
Exp Mol Pathol ; 137: 104897, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38691979

RESUMO

BACKGROUND: Signaling by toll-like receptors (TLRs) initiates important immune responses against viral infection. The role of TLRs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is not well elucidated. Thus, we investigated the interaction of TLRs agonists and SARS-COV-2 antigens with immune cells in vitro. MATERIAL & METHODS: 30 coronavirus disease 2019 (COVID-19) patients (15 severe and 15 moderate) and 10 age and sex-matched healthy control (HC) were enrolled. Peripheral blood mononuclear cells (PBMCs) were isolated and activated with TLR3, 7, 8, and 9 agonists, the spike protein (SP) of SARS-CoV-2, and the receptor binding domain (RBD) of SP. Frequencies of CD3+IFN-ß+ T cells, and CD3+IFN-γ+ T cells were evaluated by flow cytometry. Interferon (IFN)-ß gene expression was assessed by qRT-PCR. RESULTS: The frequency of CD3+IFN-ß+ T cells was higher in PBMCs from moderate (p < 0.0001) and severe (p = 0.009) patients at baseline in comparison with HCs. The highest increase in the frequency of CD3+IFN-ß+ T cells in cell from moderate patients was induced by TLR8 agonist and SP (p < 0.0001 for both) when compared to HC, while, the highest increase of the frequency of CD3+IFN-ß+ T cells in sample of severe patients was seen with TLR8 and TLR7 agonists (both p = 0.002). The frequency of CD3+IFN-γ+ T cells was significantly increased upon stimulation with TLR agonists in cell from patients with moderate and severe COVID-19, compared with HC (all p < 0.01), except with TLR7 and TLR8 agonists. The TLR8 agonist did not significantly increase the frequency of CD3+IFN-γ+ T cells in PBMCs of severe patients, but did so in cells from patients with moderate disease (p = 0.01). Moreover, IFN-ß gene expression was significantly upregulated in CD3+T cells from moderate (p < 0.0001) and severe (p = 0.002) COVID-19 patients, compared to HC after stimulation with the TLR8 agonist, while, stimulation of T cells with SP, significantly up-regulated IFN-ß mRNA expression in cells from patients with moderate (p = 0.0003), but not severe disease. CONCLUSION: Stimulation of PBMCs from COVID-19 patients, especially patients with moderate disease, with TLR8 agonist and SP increased the frequency of IFN-ß-producing T cells and IFN-ß gene expression.


Assuntos
Complexo CD3 , COVID-19 , SARS-CoV-2 , Linfócitos T , Receptores Toll-Like , Humanos , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Receptores Toll-Like/agonistas , Receptores Toll-Like/genética , Complexo CD3/imunologia , Complexo CD3/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/efeitos dos fármacos , Adulto , Interferon gama/metabolismo , Interferon gama/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Interferon beta/genética , Interferon beta/imunologia , Idoso , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Agonistas do Receptor Semelhante a Toll
8.
Cancer Lett ; 596: 216988, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38797234

RESUMO

Type I interferons exhibit anti-proliferative and anti-cancer activities, but their detailed regulatory mechanisms in cancer have not been fully elucidated yet. RNA binding proteins are master orchestrators of gene regulation, which are closely related to tumor progression. Here we show that the upregulated RNA binding protein RBM45 correlates with poor prognosis in breast cancer. Depletion of RBM45 suppresses breast cancer progression both in cultured cells and xenograft mouse models. Mechanistically, RBM45 ablation inhibits breast cancer progression through regulating type I interferon signaling, particularly by elevating IFN-ß production. Importantly, RBM45 recruits TRIM28 to IRF7 and stimulates its SUMOylation, thereby repressing IFNB1 transcription. Loss of RBM45 reduced the SUMOylation of IRF7 by reducing the interaction between TRIM28 and IRF7 to promote IFNB1 transcription, leading to the inhibition of breast cancer progression. Taken together, our finding uncovers a vital role of RBM45 in modulating type I interferon signaling and cancer aggressive progression, implicating RBM45 as a potential therapeutic target in breast cancer.


Assuntos
Neoplasias da Mama , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Fator Regulador 7 de Interferon , Proteínas de Ligação a RNA , Sumoilação , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Animais , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Camundongos , Transcrição Gênica , Linhagem Celular Tumoral , Interferon beta/metabolismo , Interferon beta/genética , Transdução de Sinais , Camundongos Nus , Proliferação de Células , Proteína 28 com Motivo Tripartido/metabolismo , Proteína 28 com Motivo Tripartido/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C
9.
Biochem Biophys Res Commun ; 712-713: 149915, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38663038

RESUMO

Viral infections pose a significant threat to public health, and the production of interferons represents one of the most critical antiviral innate immune responses of the host. Consequently, the screening and identification of compounds or reagents that induce interferon production are of paramount importance. This study commenced with the cultivation of host bacterium 15,597, followed by the infection of Escherichia coli with the MS2 bacteriophage. Utilizing the J2 capture technique, a class of dsRNA mixtures (MS2+15,597) was isolated from the E. coli infected with the MS2 bacteriophage. Subsequent investigations were conducted on the immunostimulatory activity of the MS2+15,597 mixture. The results indicated that the dsRNA mixtures (MS2+15,597) extracted from E. coli infected with the MS2 bacteriophage possess the capability to activate innate immunity, thereby inducing the production of interferon-ß. These dsRNA mixtures can activate the RIG-I and TLR3 pattern recognition receptors, stimulating the expression of interferon stimulatory factors 3/7, which in turn triggers the NF-κB signaling pathway, culminating in the cellular production of interferon-ß to achieve antiviral effects. This study offers novel insights and strategies for the development of broad-spectrum antiviral drugs, potentially providing new modalities for future antiviral therapies.


Assuntos
Escherichia coli , Levivirus , RNA de Cadeia Dupla , Escherichia coli/virologia , Escherichia coli/genética , Escherichia coli/metabolismo , RNA de Cadeia Dupla/metabolismo , Humanos , Levivirus/genética , Receptor 3 Toll-Like/metabolismo , Receptor 3 Toll-Like/genética , Imunidade Inata , Interferon beta/metabolismo , Interferon beta/genética , NF-kappa B/metabolismo , Proteína DEAD-box 58/metabolismo , Proteína DEAD-box 58/genética , Transdução de Sinais , Fator Regulador 7 de Interferon/metabolismo , Fator Regulador 7 de Interferon/genética , Receptores Imunológicos , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/genética
10.
EMBO J ; 43(11): 2233-2263, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38658796

RESUMO

Type I interferons (IFN-I, including IFNß) and IFNγ produce overlapping, yet clearly distinct immunological activities. Recent data show that the distinctness of global transcriptional responses to the two IFN types is not apparent when comparing their immediate effects. By analyzing nascent transcripts induced by IFN-I or IFNγ over a period of 48 h, we now show that the distinctiveness of the transcriptomes emerges over time and is based on differential employment of the ISGF3 complex as well as of the second-tier transcription factor IRF1. The distinct transcriptional properties of ISGF3 and IRF1 correspond with a largely diverse nuclear protein interactome. Mechanistically, we describe the specific input of ISGF3 and IRF1 into enhancer activation and the regulation of chromatin accessibility at interferon-stimulated genes (ISG). We further report differences between the IFN types in altering RNA polymerase II pausing at ISG 5' ends. Our data provide insight how transcriptional regulators create immunological identities of IFN-I and IFNγ.


Assuntos
Regulação da Expressão Gênica , Fator Regulador 1 de Interferon , Interferon beta , Interferon gama , Transdução de Sinais , Interferon gama/metabolismo , Fator Regulador 1 de Interferon/metabolismo , Fator Regulador 1 de Interferon/genética , Interferon beta/metabolismo , Interferon beta/genética , Humanos , Fator Gênico 3 Estimulado por Interferon/metabolismo , Fator Gênico 3 Estimulado por Interferon/genética , Animais , Camundongos , RNA Polimerase II/metabolismo , RNA Polimerase II/genética
11.
J Virol ; 98(5): e0192523, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38624230

RESUMO

Recurrent respiratory papillomatosis (RRP) is a rare benign tumor caused mainly by the infection of the respiratory tract epithelial cells by the human papillomavirus (HPV) type 6/11. However, the specific mechanisms underlying the inhibition of the host's innate immune response by HPV remain unclear. For this purpose, we employed single-cell RNA sequencing to analyze the states of various immune cells in RRP samples post-HPV infection and utilized a cellular model of HPV infection to elucidate the mechanisms by which HPV evades the innate immune system in RRP. The results revealed distinct immune cell heterogeneity in RRP and demonstrated that HPV11 E7 can inhibit the phosphorylation of the stimulator of interferon genes protein, thereby circumventing the body's antiviral response. In vitro co-culture experiments demonstrated that stimulation of macrophages to produce interferon-beta induced the death of HPV-infected epithelial cells, also reducing HPV viral levels. In summary, our study preliminarily identifies the potential mechanisms by which HPV evades the host's antiviral immune response, as well as the latent antiviral functions exhibited by activated macrophages. This research serves as an initial exploration of antiviral immune evasion in RRP, laying a solid foundation for investigating immunotherapeutic approaches for the disease.IMPORTANCESurgical tumor reduction is the most common treatment for recurrent respiratory papillomatosis (RRP). One of the characteristics of RRP is its persistent recurrence, and multiple surgeries are usually required to control the symptoms. Recently, some adjuvant therapies have shown effectiveness, but none of them can completely clear human papillomavirus (HPV) infection, and thus, a localized antiviral immune response is significant for disease control; after all, HPV infection is limited to the epithelium. Inhibition of interferon-beta (IFN-ß) secretion by HPV11 E7 viral proteins in epithelial cells by affecting stimulator of interferon genes phosphorylation may account for the persistence of low-risk HPV replication in the RRP. Moreover, suppression of the IFN-I pathway in RRP cell types might provide clues regarding the hyporeactive function of local immune cells. However, activation of macrophage groups to produce IFN-ß can still destroy HPV-infected cells.


Assuntos
Papillomavirus Humano 11 , Proteínas E7 de Papillomavirus , Infecções por Papillomavirus , Infecções Respiratórias , Adulto , Feminino , Humanos , Masculino , Células Epiteliais/virologia , Células Epiteliais/imunologia , Papillomavirus Humano 11/genética , Papillomavirus Humano 11/imunologia , Evasão da Resposta Imune , Imunidade Inata , Interferon beta/metabolismo , Interferon beta/imunologia , Interferon beta/genética , Macrófagos/imunologia , Macrófagos/virologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas E7 de Papillomavirus/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/imunologia , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Infecções Respiratórias/virologia , Infecções Respiratórias/imunologia
12.
Vet Microbiol ; 292: 110050, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484578

RESUMO

The role of host factors in the replication of emerging senecavirus A (SVA) which induced porcine idiopathic vesicular disease (PIVD) distributed worldwide remains obscure. Here, interferon-induced transmembrane (IFITM) protein 1 and 2 inhibit SVA replication by positive feedback with RIG-I signaling pathway was reported. The expression levels of IFITM1 and IFITM2 increased significantly in SVA infected 3D4/21 cells. Infection experiments of cells with over and interference expression of IFITM1 and IFITM2 showed that these two proteins inhibit SVA replication by regulating the expression of interferon beta (IFN-ß), IFN-stimulated gene 15 (ISG-15), interleukin 6 (IL-6), IL-8, tumor necrosis factor alpha (TNF-α), IFN regulatory factor-3 (IRF3), and IRF7. Further results showed that antiviral responses of IFITM1 and IFITM2 were achieved by activating retinoic acid-inducible gene I (RIG-I) signaling pathway which in turn enhanced the expression of IFITM1 and IFITM2. It is noteworthy that conserved domains of these two proteins also paly the similar role. These findings provide new data on the role of host factors in infection and replication of SVA and help to develop new agents against the virus.


Assuntos
Antígenos de Diferenciação , Interferon beta , Proteínas de Membrana , Picornaviridae , Transdução de Sinais , Animais , Retroalimentação , Interferon beta/genética , Suínos , Replicação Viral/genética , Antígenos de Diferenciação/metabolismo , Proteínas de Membrana/metabolismo
13.
Autoimmunity ; 57(1): 2332340, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38545756

RESUMO

Interferon-beta (IFN-ß) is one of the classical drugs for immunomodulatory therapy in relapsing-remitting multiple sclerosis (RRMS) patients, but the drug responsiveness of different patients varies. Currently, there is no valid model to predict IFN-ß responsiveness. This research attempted to develop an IFN-ß responsiveness prediction model based on mRNA expression in RRMS patient peripheral blood mononuclear cells. Peripheral blood mononuclear cell mRNA expression datasets including 50 RRMS patients receiving IFN-ß treatment were obtained from GEO. Among the datasets, 24 cases from GSE24427 were included in a training set, and 18 and 9 cases from GSE19285 and GSE33464, respectively, were adopted as two independent test sets. In the training set, blood samples were collected immediately before first, second, month 1, 12, and 24 IFN-ß injection, and the mRNA expression data at four time points, namely, two days, one month, one year and two years after the onset of IFN-ß treatment, were compared with pre-treatment data to identify IFN-stimulated genes (ISGs). The ISGs at the one-month time point were used to construct the drug responsiveness prediction model. Next, the drug responsiveness model was verified in the two independent test sets to examine the performance of the model in predicting drug responsiveness. Finally, we used CIBERSORTx to estimate the content of cell subtypes in samples and evaluated whether differences in the proportions of cell subtypes were related to differences in IFN-ß responsiveness. Among the four time points, one month was the time point when the training set GSE24427 and test set GSE33464 had the highest number of ISGs. Functional analysis showed that these one-month ISGs were enriched in biological functions such as the innate immune response, type-I interferon signalling pathway, and other IFN-ß-associated functions. Based on these ISGs, we obtained a four-factor prediction model for IFN-ß responsiveness including MX1, MX2, XAF1, and LAMP3. In addition, the model demonstrated favourable predictive performance within the training set and two external test sets. A higher proportion of activated NK cells and lower naive CD4/total CD4 ratio might indicate better drug responsiveness. This research developed a polygene-based biomarker model that could predict RRMS patient IFN-ß responsiveness in the early treatment period. This model could probably help doctors screen out patients who would not benefit from IFN-ß treatment early and determine whether a current treatment plan should be continued.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , RNA Mensageiro/genética , Leucócitos Mononucleares , Interferon beta/uso terapêutico , Interferon beta/genética , Esclerose Múltipla Recidivante-Remitente/diagnóstico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/genética
14.
Virus Res ; 343: 199342, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408646

RESUMO

African swine fever virus is known to suppress type-I interferon (IFN) responses. The main objective of this study was to screen early-expressed viral genes for their ability to suppress IFN production. Out of 16 early genes examined, I73R exhibited robust suppression of cGAS-STING-induced IFN-ß promoter activities, impeding the function of both IRF3 and NF-κB transcription factors. As a result, I73R obstructed IRF3 nuclear translocation following the treatment of cells with poly(dA:dT), a strong inducer of the cGAS-STING signaling pathway. Although the I73R protein exhibits structural homology with the Zα domain binding to the left-handed helical form of DNA known as Z-DNA, its ability to suppress cGAS-STING induction of IFN-ß was independent of Z-DNA binding activity. Instead, the α3 and ß1 domains of I73R played a significant role in suppressing cGAS-STING induction of IFN-ß. These findings offer insights into the protein's functions and support its role as a virulence factor.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , DNA Forma Z , Interferon Tipo I , Animais , Suínos , Vírus da Febre Suína Africana/genética , Interferon beta/genética , Interferon beta/metabolismo , Transdução de Sinais/genética , Imunidade Inata/genética , DNA Forma Z/metabolismo , Proteínas de Membrana/metabolismo , Interferon Tipo I/metabolismo , Nucleotidiltransferases/genética
15.
Arch Virol ; 169(2): 26, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214770

RESUMO

Pigeons can be infected with various RNA viruses, and their innate immune system responds to viral infection to establish an antiviral response. Mitochondrial antiviral signaling protein (MAVS), an important adaptor protein in signal transduction, plays a pivotal role in amplifying the innate immune response. In this study, we successfully cloned pigeon MAVS (piMAVS) and performed a bioinformatics analysis. The results showed that the caspase recruitment domain (CARD) and transmembrane (TM) domain are highly conserved in poultry and mammals but poorly conserved in other species. Furthermore, we observed that MAVS expression is upregulated both in pigeons and pigeon embryonic fibroblasts (PEFs) upon RNA virus infection. Overexpression of MAVS resulted in increased levels of ß-interferon (IFN-ß), IFN-stimulated genes (ISGs), and interleukin (ILs) mRNA and inhibited Newcastle disease virus (NDV) replication. We also found that piMAVS and human MAVS (huMAVS) induced stronger expression of IFN-ß and ISGs when compared to chicken MAVS (chMAVS), and this phenomenon was also reflected in the degree of inhibition of NDV replication. Our findings demonstrate that piMAVS plays an important role in repressing viral replication by regulating the activation of the IFN signal pathway in pigeons. This study not only sheds light on the function of piMAVS in innate immunity but also contributes to a more comprehensive understanding of the innate immunity system in poultry. Our data also provide unique insights into the differences in innate immunity between poultry and mammal.


Assuntos
Columbidae , Imunidade Inata , Transdução de Sinais , Animais , Humanos , Antivirais , Interferon beta/genética , Interferon beta/metabolismo , Mamíferos , Vírus da Doença de Newcastle
16.
Vet Microbiol ; 290: 109973, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211361

RESUMO

Newcastle disease virus (NDV) is an RNA virus that can promote its own replication through the inhibition of cellular mitochondrial fusion. The proteins involved in mitochondrial fusion, namely mitofusin 1 (Mfn1) and optic atrophy 1 (OPA1) are associated with interferon-beta (IFN-ß) secretion during NDV infection. However, the precise mechanism by which NDV modulates the Mfn1-mediated or OPA1-mediated fusion of mitochondria, thereby impacting IFN-ß, remains elusive. This study revealed that the downregulation of the mitochondrial protein known as coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10) exerts a negative regulatory effect on OPA1 and Mfn1 in human lung adenocarcinoma (A549) cells during the late stage of NDV infection. This reduction in CHCHD10 expression impeded cellular mitochondrial fusion, subsequently leading to a decline in the activation of interferon regulatory factor 3 (IRF3) and nuclear factor kappa B (NF-κB), ultimately resulting in diminished secretion of IFN-ß. In contrast, the overexpression of CHCHD10 alleviated infection-induced detrimental effect in mitochondrial fusion, thereby impeding viral proliferation. In summary, NDV enhances its replication by inhibiting the CHCHD10 protein, which impedes mitochondrial fusion and suppresses IFN-ß production through the activation of IRF3 and NF-κB.


Assuntos
NF-kappa B , Vírus da Doença de Newcastle , Humanos , Animais , Vírus da Doença de Newcastle/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Dinâmica Mitocondrial , Interferon beta/genética , Interferon beta/metabolismo , Proliferação de Células , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
17.
Sci Signal ; 16(815): eabq1173, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085817

RESUMO

Type I interferons (IFNs) are key coordinators of the innate immune response to viral infection, which, through activation of the transcriptional regulators STAT1 and STAT2 (STAT1/2) in bystander cells, induce the expression of IFN-stimulated genes (ISGs). Here, we showed that in cells transfected with poly(I:C), an analog of viral RNA, the transcriptional activity of STAT1/2 was terminated because of depletion of the interferon-ß (IFN-ß) receptor, IFNAR. Activation of RNase L and PKR, products of two ISGs, not only hindered the replenishment of IFNAR but also suppressed negative regulators of IRF3 and NF-κB, consequently promoting IFNB transcription. We incorporated these findings into a mathematical model of innate immunity. By coupling signaling through the IRF3-NF-κB and STAT1/2 pathways with the activities of RNase L and PKR, the model explains how poly(I:C) switches the transcriptional program from being STAT1/2 induced to being IRF3 and NF-κB induced, which converts IFN-ß-responding cells to IFN-ß-secreting cells.


Assuntos
Interferon beta , RNA , Interferon beta/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Imunidade Inata , Modelos Teóricos , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
18.
Vet Microbiol ; 287: 109899, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37931576

RESUMO

Bovine herpesvirus-1 (BoHV-1) can infect all breeds of cattle and cause respiratory and genital tract diseases. In the process of viral infection, viruses can use their own proteins to suppress the innate immunity of the host and promote its replication; however, the mechanism by which BoHV-1 evades the innate immune response is not fully understood. In this study, we found that rabbits inoculated with the live gene deletion vaccine BoHV-1-△gI/gE/TK generated higher interferon-ß (IFN-ß) production in the serum, liver, lung and kidney than rabbits inoculated with wt BoHV-1, which led to milder lesions in the lung and kidney. We performed gene deletion and ectopic expression experiments on viral proteins and found that gE was the major protein that inhibited IFN-ß expression. Further studies showed that MAVS and IRF3 were the targets of gE, and the specific mechanism was that gE inhibited IFN-ß production by promoting MAVS ubiquitination and interfering with the interaction between IRF3 and CBP/p300. These results suggest a new way of BoHV-1 inhibition of IFN-ß production to evade the host innate immunity.


Assuntos
Herpesvirus Bovino 1 , Bovinos , Coelhos , Animais , Herpesvirus Bovino 1/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Ubiquitinação , Interferon beta/genética , Interferon beta/metabolismo , Imunidade Inata
19.
Exp Mol Pathol ; 134: 104876, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37890651

RESUMO

Molluscum contagiosum virus (MCV) is a poxvirus that causes benign, persistent skin lesions. MCV encodes a variety of immune evasion molecules to dampen host immune responses. Two of these proteins are the MC159 and MC160 proteins. Both MC159 and MC160 contain two tandem death effector domains and share homology to the cellular FLIPs, FADD, and procaspase-8. MC159 and MC160 dampen several innate immune responses such as NF-κB activation and mitochondrial antiviral signaling (MAVS)-mediated induction of type 1 interferon (IFN). The type 1 IFN response is also activated by the cytosolic DNA sensors cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING). Both cGAS and STING play a vital role in sensing a poxvirus infection. In this study, we demonstrate that there are nuanced differences between both MC160 and MC159 in terms of how the viral proteins modulate the cGAS/STING and MAVS pathways. Specifically, MC160 expression, but not MC159 expression, dampens cGAS/STING-mediated induction of IFN in HEK 293 T cells. Further, MC160 expression prevented the K63-ubiquitination of both STING and TBK1, a kinase downstream of cGAS/STING. Ectopic expression of the MC160 protein, but not the MC159 protein, resulted in a measurable decrease in the TBK1 protein levels as detected via immunoblotting. Finally, using a panel of MC160 truncation mutants, we report that the MC160 protein requires both DEDs to inhibit cGAS/STING-induced activation of IFN-ß. Our model indicates MC160 likely alters the TBK1 signaling complex to decrease IFN-ß activation at the molecular intersection of the cGAS/STING and MAVS signaling pathways.


Assuntos
Vírus do Molusco Contagioso , Humanos , Vírus do Molusco Contagioso/genética , Vírus do Molusco Contagioso/metabolismo , Células HEK293 , Proteínas Virais/genética , Proteínas Virais/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Imunidade Inata , Interferon beta/genética , Interferon beta/metabolismo , Interferons/metabolismo
20.
Virulence ; 14(1): 2254599, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37655977

RESUMO

Chronic implant-related bone infections are a severe complication in orthopaedic surgery. Biofilm formation on the implant impairs the immune response, leading to bacterial persistence. In a previous study, we found that Staphylococcus aureus (SA) induced interferon regulatory factor 3 (IRF3) activation and Ifnb expression only in its planktonic form but not in the biofilm. The aim of this study was to clarify the role of the stimulator of interferon genes (STING) in this process. We treated RAW 264.7 macrophages with conditioned media (CM) generated from planktonic or biofilm cultured SA in combination with agonists or inhibitors of the cyclic GMP-AMP synthase (cGAS)/STING pathway. We further evaluated bacterial gene expression of planktonic and biofilm SA to identify potential mediators. STING inhibition resulted in the loss of IRF3 activation and Ifnb induction in SA planktonic CM, whereas STING activation induced an IRF3 dependent IFN-ß response in SA biofilm CM. The expression levels of virulence-associated genes decreased during biofilm formation, but genes associated with cyclic dinucleotide (CDN) synthesis did not correlate with Ifnb induction. We further observed that cGAS contributed to Ifnb induction by SA planktonic CM, although cGAS activation was not sufficient to induce Ifnb expression in SA biofilm CM. Our data indicate that the different degrees of virulence associated with SA planktonic and biofilm environments result in an altered induction of the IRF3 mediated IFN-ß response via the STING pathway. This finding suggests that the STING/IRF3/IFN-ß axis is a potential candidate as an immunotherapeutic target for implant-related bone infections.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/genética , Genes Bacterianos , Interferon beta/genética , Macrófagos , Nucleotidiltransferases , Fator Regulador 3 de Interferon/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...