Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.109
Filtrar
1.
Cells ; 13(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38995014

RESUMO

PD-1 (Programmed cell death protein 1) regulates the metabolic reprogramming of myeloid-derived suppressor cells and myeloid cell differentiation, as well as the type I interferon (IFN-I) signaling pathway in myeloid cells in the tumor microenvironment. PD-1, therefore, is a key inhibitory receptor in myeloid cells. However, the regulation of PD-1 expression in myeloid cells is unknown. We report that the expression level of PDCD1, the gene that encodes the PD-1 protein, is positively correlated with the levels of IFNB1 and IFNAR1 in myeloid cells in human colorectal cancer. Treatment of mouse myeloid cell lines with recombinant IFNß protein elevated PD-1 expression in myeloid cells in vitro. Knocking out IFNAR1, the gene that encodes the IFN-I-specific receptor, diminished the inductive effect of IFNß on PD-1 expression in myeloid cells in vitro. Treatment of tumor-bearing mice with a lipid nanoparticle-encapsulated IFNß-encoding plasmid (IFNBCOL01) increased IFNß expression, resulting in elevated PD-1 expression in tumor-infiltrating myeloid cells. At the molecular level, we determined that IFNß activates STAT1 (signal transducer and activator of transcription 1) and IRFs (interferon regulatory factors) in myeloid cells. Analysis of the cd279 promoter identified IRF2-binding consensus sequence elements. ChIP (chromatin immunoprecipitation) analysis determined that the pSTAT1 directly binds to the irf2 promoter and that IRF2 directly binds to the cd279 promoter in myeloid cells in vitro and in vivo. In colon cancer patients, the expression levels of STAT1, IRF2 and PDCD1 are positively correlated in tumor-infiltrating myeloid cells. Our findings determine that IFNß activates PD-1 expression at least in part by an autocrine mechanism via the stimulation of the pSTAT1-IRF2 axis in myeloid cells.


Assuntos
Fator Regulador 2 de Interferon , Células Mieloides , Receptor de Morte Celular Programada 1 , Fator de Transcrição STAT1 , Transdução de Sinais , Células Mieloides/metabolismo , Células Mieloides/efeitos dos fármacos , Animais , Humanos , Fator de Transcrição STAT1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/genética , Camundongos , Fator Regulador 2 de Interferon/metabolismo , Fator Regulador 2 de Interferon/genética , Transdução de Sinais/efeitos dos fármacos , Interferon Tipo I/metabolismo , Receptor de Interferon alfa e beta/metabolismo , Receptor de Interferon alfa e beta/genética , Interferon beta/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Endogâmicos C57BL
2.
Mol Med Rep ; 30(3)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38963029

RESUMO

Viral infections in the respiratory tract are common, and, in recent years, severe acute respiratory syndrome coronavirus 2 outbreaks have highlighted the effect of viral infections on antiviral innate immune and inflammatory reactions. Specific treatments for numerous viral respiratory infections have not yet been established and they are mainly treated symptomatically. Therefore, understanding the details of the innate immune system underlying the airway epithelium is crucial for the development of new therapies. The present study aimed to investigate the function and expression of interferon (IFN)­stimulated gene (ISG)60 in non­cancerous bronchial epithelial BEAS­2B cells exposed to a Toll­like receptor 3 agonist. BEAS­2B cells were treated with a synthetic TLR3 ligand, polyinosinic­polycytidylic acid (poly IC). The mRNA and protein expression levels of ISG60 were analyzed using reverse transcription­quantitative PCR and western blotting, respectively. The levels of C­X­C motif chemokine ligand 10 (CXCL10) were examined using an enzyme­linked immunosorbent assay, and the effects of knockdown of IFN­ß, ISG60 and ISG56 were examined using specific small interfering RNAs. Notably, ISG60 expression was increased in proportion to poly IC concentration, and recombinant human IFN­ß also induced ISG60 expression. By contrast, knockdown of IFN­ß and ISG56 decreased ISG60 expression, and ISG60 knockdown reduced CXCL10 and ISG56 expression. These findings suggested that ISG60 is partly implicated in CXCL10 expression and that ISG60 may serve a role in the innate immune response of bronchial epithelial cells. The present study highlights ISG60 as a potential target for new therapeutic strategies against viral infections in the airway.


Assuntos
Brônquios , Quimiocina CXCL10 , Células Epiteliais , Poli I-C , Transdução de Sinais , Receptor 3 Toll-Like , Humanos , Receptor 3 Toll-Like/metabolismo , Receptor 3 Toll-Like/genética , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/genética , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Brônquios/citologia , Brônquios/metabolismo , Poli I-C/farmacologia , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Imunidade Inata , Interferon beta/metabolismo , Interferon beta/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Ligação a RNA , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose
3.
J Immunol ; 213(3): 347-361, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38847616

RESUMO

The cyclic GMP-AMP synthase (cGAS)-stimulator of IFN genes (STING) pathway is instrumental to antitumor immunity, yet the underlying molecular and cellular mechanisms are complex and still unfolding. A new paradigm suggests that cancer cells' cGAS-synthesized cGAMP can be transferred to tumor-infiltrating immune cells, eliciting STING-dependent IFN-ß response for antitumor immunity. Nevertheless, how the tumor microenvironment may shape this process remains unclear. In this study, we found that extracellular ATP, an immune regulatory molecule widely present in the tumor microenvironment, can potentiate cGAMP transfer, thereby boosting the STING signaling and IFN-ß response in murine macrophages and fibroblasts. Notably, genetic ablation or chemical inhibition of murine volume-regulation anion channel LRRC8/volume-regulated anion channel (VRAC), a recently identified cGAMP transporter, abolished ATP-potentiated cGAMP transfer and STING-dependent IFN-ß response, revealing a crucial role of LRRC8/VRAC in the cross-talk of extracellular ATP and cGAMP. Mechanistically, ATP activation of the P2X family receptors triggered Ca2+ influx and K+ efflux, promoting reactive oxygen species production. Moreover, ATP-evoked K+ efflux alleviated the phosphorylation of VRAC's obligate subunit LRRC8A/SWELL1 on S174. Mutagenesis studies indicated that the phosphorylation of S174 on LRRC8A could act as a checkpoint for VRAC in the steady state and a rheostat of ATP responsiveness. In an MC38-transplanted tumor model, systemically blocking CD39 and ENPP1, hydroxylases of extracellular ATP and cGAMP, respectively, elevated antitumor NK, NKT, and CD8+ T cell responses and restrained tumor growth in mice. Altogether, this study establishes a crucial role of ATP in facilitating LRRC8/VRAC transport cGAMP in the tumor microenvironment and provides new insight into harnessing cGAMP transfer for antitumor immunity.


Assuntos
Trifosfato de Adenosina , Proteínas de Membrana , Nucleotídeos Cíclicos , Microambiente Tumoral , Animais , Nucleotídeos Cíclicos/metabolismo , Camundongos , Trifosfato de Adenosina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/imunologia , Microambiente Tumoral/imunologia , Interferon beta/metabolismo , Interferon beta/imunologia , Camundongos Endogâmicos C57BL , Humanos , Transdução de Sinais/imunologia , Camundongos Knockout , Linhagem Celular Tumoral , Cátions/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Nucleotidiltransferases/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo
4.
Nat Commun ; 15(1): 5423, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926338

RESUMO

Oncogene-induced senescence (OIS) arrests cell proliferation in response to replication stress (RS) induced by oncogenes. OIS depends on the DNA damage response (DDR), but also on the cGAS-STING pathway, which detects cytosolic DNA and induces type I interferons (IFNs). Whether and how RS and IFN responses cooperate to promote OIS remains unknown. Here, we show that the induction of OIS by the H-RASV12 oncogene in immortalized human fibroblasts depends on the MRE11 nuclease. Indeed, treatment with the MRE11 inhibitor Mirin prevented RS, micronuclei formation and IFN response induced by RASV12. Overexpression of the cytosolic nuclease TREX1 also prevented OIS. Conversely, overexpression of a dominant negative mutant of TREX1 or treatment with IFN-ß was sufficient to induce RS and DNA damage, independent of RASV12 induction. These data suggest that the IFN response acts as a positive feedback loop to amplify DDR in OIS through a process regulated by MRE11 and TREX1.


Assuntos
Senescência Celular , Dano ao DNA , Replicação do DNA , Exodesoxirribonucleases , Proteína Homóloga a MRE11 , Fosfoproteínas , Transdução de Sinais , Humanos , Exodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteína Homóloga a MRE11/metabolismo , Proteína Homóloga a MRE11/genética , Senescência Celular/genética , Fibroblastos/metabolismo , Interferon beta/metabolismo , Interferon beta/genética
5.
Viruses ; 16(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38932169

RESUMO

Repression of human cytomegalovirus (HCMV) immediate-early (IE) gene expression is a key regulatory step in the establishment and maintenance of latent reservoirs. Viral IE transcription and protein accumulation can be elevated during latency by treatment with histone deacetylase inhibitors such as valproic acid (VPA), rendering infected cells visible to adaptive immune responses. However, the latency-associated viral protein UL138 inhibits the ability of VPA to enhance IE gene expression during infection of incompletely differentiated myeloid cells that support latency. UL138 also limits the accumulation of IFNß transcripts by inhibiting the cGAS-STING-TBK1 DNA-sensing pathway. Here, we show that, in the absence of UL138, the cGAS-STING-TBK1 pathway promotes both IFNß accumulation and VPA-responsive IE gene expression in incompletely differentiated myeloid cells. Inactivation of this pathway by either genetic or pharmacological inhibition phenocopied UL138 expression and reduced VPA-responsive IE transcript and protein accumulation. This work reveals a link between cytoplasmic pathogen sensing and epigenetic control of viral lytic phase transcription and suggests that manipulation of pattern recognition receptor signaling pathways could aid in the refinement of MIEP regulatory strategies to target latent viral reservoirs.


Assuntos
Citomegalovirus , Proteínas de Membrana , Células Mieloides , Nucleotidiltransferases , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Ácido Valproico , Humanos , Ácido Valproico/farmacologia , Células Mieloides/virologia , Células Mieloides/metabolismo , Células Mieloides/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Citomegalovirus/fisiologia , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Infecções por Citomegalovirus/virologia , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/genética , Latência Viral/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Genes Precoces , Interferon beta/metabolismo , Interferon beta/genética
6.
Nat Commun ; 15(1): 5442, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937436

RESUMO

Although patients benefit from immune checkpoint inhibition (ICI) therapy in a broad variety of tumors, resistance may arise from immune suppressive tumor microenvironments (TME), which is particularly true of hepatocellular carcinoma (HCC). Since oncolytic viruses (OV) can generate a highly immune-infiltrated, inflammatory TME, OVs could potentially restore ICI responsiveness via recruitment, priming, and activation of anti-tumor T cells. Here we find that on the contrary, an oncolytic vesicular stomatitis virus, expressing interferon-ß (VSV-IFNß), antagonizes the effect of anti-PD-L1 therapy in a partially anti-PD-L1-responsive model of HCC. Cytometry by Time of Flight shows that VSV-IFNß expands dominant anti-viral effector CD8 T cells with concomitant relative disappearance of anti-tumor T cell populations, which are the target of anti-PD-L1. However, by expressing a range of HCC tumor antigens within VSV, combination OV and anti-PD-L1 therapeutic benefit could be restored. Our data provide a cautionary message for the use of highly immunogenic viruses as tumor-specific immune-therapeutics by showing that dominant anti-viral T cell responses can inhibit sub-dominant anti-tumor T cell responses. However, through encoding tumor antigens within the virus, oncolytic virotherapy can generate anti-tumor T cell populations upon which immune checkpoint blockade can effectively work.


Assuntos
Antígenos de Neoplasias , Antígeno B7-H1 , Linfócitos T CD8-Positivos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Terapia Viral Oncolítica , Vírus Oncolíticos , Microambiente Tumoral , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Animais , Terapia Viral Oncolítica/métodos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/imunologia , Microambiente Tumoral/imunologia , Camundongos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Humanos , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/imunologia , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Interferon beta/metabolismo , Interferon beta/imunologia , Camundongos Endogâmicos C57BL , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Linfócitos T/imunologia , Feminino , Vesiculovirus/imunologia , Vesiculovirus/genética
7.
Biol Pharm Bull ; 47(6): 1196-1203, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38897970

RESUMO

Microglia, resident immune cells in the central nervous system (CNS), play a critical role in maintaining CNS homeostasis. However, microglia activated in response to brain injury produce various inflammatory mediators, including nitric oxide (NO) and proinflammatory cytokines, leading to considerable neuronal damage. NO generated by inducible NO synthase (iNOS) rapidly reacts with superoxide to form a highly toxic product, peroxynitrite. Therefore, iNOS is considered to be a putative therapeutic target for cerebral ischemia. Here, we examined the effects of panobinostat (Pano), a histone deacetylase inhibitor, on lipopolysaccharide (LPS)-induced iNOS expression using rat immortalized microglia HAPI cells. Pano inhibited LPS-induced expression of iNOS mRNA and NO production in a dose-dependent manner; however, it had little effect on the LPS-induced activation of c-Jun N-terminal kinase (JNK) and p38 or nuclear translocation of nuclear factor-κB (NF-κB). The interferon-ß (IFN-ß)/signal transducer and activator of transcription (STAT) pathway is essential for LPS-induced iNOS expression in macrophages/microglia. We also examined the effects of Pano on LPS-induced IFN-ß signaling. Pano markedly inhibited LPS-induced IFN-ß expression and subsequent tyrosine phosphorylation of STAT1. However, the addition of IFN-ß restored the decreased STAT1 phosphorylation but not the decreased iNOS expression. In addition, Pano inhibited the LPS-increased expression of octamer binding protein-2 and interferon regulatory factor 9 responsible for iNOS expression, but IFN-ß addition also failed to restore the decreased expression of these factors. Thus, we conclude that the inhibitory effects of Pano are due not only to the inhibition of the IFN-ß/STAT axis but also to the downregulation of other factors not involved in this axis.


Assuntos
Inibidores de Histona Desacetilases , Lipopolissacarídeos , Microglia , Óxido Nítrico Sintase Tipo II , Óxido Nítrico , Panobinostat , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Lipopolissacarídeos/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Ratos , Panobinostat/farmacologia , Óxido Nítrico/metabolismo , NF-kappa B/metabolismo , Linhagem Celular , Interferon beta/metabolismo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
FASEB J ; 38(10): e23651, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38752537

RESUMO

Singleton-Merten syndrome (SMS) is a rare immunogenetic disorder affecting multiple systems, characterized by dental dysplasia, aortic calcification, glaucoma, skeletal abnormalities, and psoriasis. Glaucoma, a key feature of both classical and atypical SMS, remains poorly understood in terms of its molecular mechanism caused by DDX58 mutation. This study presented a novel DDX58 variant (c.1649A>C [p.Asp550Ala]) in a family with childhood glaucoma. Functional analysis showed that DDX58 variant caused an increase in IFN-stimulated gene expression and high IFN-ß-based type-I IFN. As the trabecular meshwork (TM) is responsible for controlling intraocular pressure (IOP), we examine the effect of IFN-ß on TM cells. Our study is the first to demonstrate that IFN-ß significantly reduced TM cell viability and function by activating autophagy. In addition, anterior chamber injection of IFN-ß remarkably increased IOP level in mice, which can be attenuated by treatments with autophagy inhibitor chloroquine. To uncover the specific mechanism underlying IFN-ß-induced autophagy in TM cells, we performed microarray analysis in IFN-ß-treated and DDX58 p.Asp550Ala TM cells. It showed that RSAD2 is necessary for IFN-ß-induced autophagy. Knockdown of RSAD2 by siRNA significantly decreased autophagy flux induced by IFN-ß. Our findings suggest that DDX58 mutation leads to the overproduction of IFN-ß, which elevates IOP by modulating autophagy through RSAD2 in TM cells.


Assuntos
Autofagia , Proteína DEAD-box 58 , Glaucoma , Pressão Intraocular , Malha Trabecular , Animais , Feminino , Humanos , Masculino , Camundongos , Doenças da Aorta , Autofagia/efeitos dos fármacos , Proteína DEAD-box 58/metabolismo , Proteína DEAD-box 58/genética , Hipoplasia do Esmalte Dentário , Glaucoma/patologia , Glaucoma/metabolismo , Glaucoma/genética , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Perda Auditiva Neurossensorial/metabolismo , Interferon beta/metabolismo , Pressão Intraocular/genética , Metacarpo/anormalidades , Camundongos Endogâmicos C57BL , Doenças Musculares , Mutação , Odontodisplasia , Atrofia Óptica/genética , Atrofia Óptica/metabolismo , Atrofia Óptica/patologia , Osteoporose , Linhagem , Receptores Imunológicos , Malha Trabecular/metabolismo , Malha Trabecular/efeitos dos fármacos , Calcificação Vascular
9.
J Transl Med ; 22(1): 463, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750559

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) have garnered significant interest for their tumor-tropic property, making them potential therapeutic delivery vehicles for cancer treatment. We have previously shown the significant anti-tumour activity in mice preclinical models and companion animals with naturally occurring cancers using non-virally engineered MSCs with a therapeutic transgene encoding cytosine deaminase and uracil phosphoribosyl transferase (CDUPRT) and green fluorescent protein (GFP). Clinical studies have shown improved response rate with combinatorial treatment of 5-fluorouracil and Interferon-beta (IFNb) in peritoneal carcinomatosis (PC). However, high systemic toxicities have limited the clinical use of such a regime. METHODS: In this study, we evaluated the feasibility of intraperitoneal administration of non-virally engineered MSCs to co-deliver CDUPRT/5-Flucytosine prodrug system and IFNb to potentially enhance the cGAS-STING signalling axis. Here, MSCs were engineered to express CDUPRT or CDUPRT-IFNb. Expression of CDUPRT and IFNb was confirmed by flow cytometry and ELISA, respectively. The anti-cancer efficacy of the engineered MSCs was evaluated in both in vitro and in vivo model. ES2, HT-29 and Colo-205 were cocultured with engineered MSCs at various ratio. The cell viability with or without 5-flucytosine was measured with MTS assay. To further compare the anti-cancer efficacy of the engineered MSCs, peritoneal carcinomatosis mouse model was established by intraperitoneal injection of luciferase expressing ES2 stable cells. The tumour burden was measured through bioluminescence tracking. RESULTS: Firstly, there was no changes in phenotypes of MSCs despite high expression of the transgene encoding CDUPRT and IFNb (CDUPRT-IFNb). Transwell migration assays and in-vivo tracking suggested the co-expression of multiple transgenes did not impact migratory capability of the MSCs. The superiority of CDUPRT-IFNb over CDUPRT expressing MSCs was demonstrated in ES2, HT-29 and Colo-205 in-vitro. Similar observations were observed in an intraperitoneal ES2 ovarian cancer xenograft model. The growth of tumor mass was inhibited by ~ 90% and 46% in the mice treated with MSCs expressing CDUPRT-IFNb or CDUPRT, respectively. CONCLUSIONS: Taken together, these results established the effectiveness of MSCs co-expressing CDUPRT and IFNb in controlling and targeting PC growth. This study lay the foundation for the development of clinical trial using multigene-armed MSCs for PC.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Pentosiltransferases , Neoplasias Peritoneais , Transgenes , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Neoplasias Peritoneais/terapia , Neoplasias Peritoneais/secundário , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/patologia , Humanos , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Linhagem Celular Tumoral , Interferon beta/metabolismo , Interferon beta/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Camundongos , Feminino
10.
Clin Exp Med ; 24(1): 102, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758367

RESUMO

Immunotherapy is widely used in cancer treatment; however, only a subset of patients responds well to it. Significant efforts have been made to identify patients who will benefit from immunotherapy. Successful anti-tumor immunity depends on an intact cancer-immunity cycle, especially long-lasting CD8+ T-cell responses. Interferon (IFN)-α/ß/IFN-γ/interleukin (IL)-15 pathways have been reported to be involved in the development of CD8+ T cells. And these pathways may predict responses to immunotherapy. Herein, we aimed to analyze multiple public databases to investigate whether IFN-α/ß/IFN-γ/IL-15 pathways could be used to predict the response to immunotherapy. Results showed that IFN-α/ß/IFN-γ/IL-15 pathways could efficiently predict immunotherapy response, and guanylate-binding protein 1 (GBP1) could represent the IFN-α/ß/IFN-γ/IL-15 pathways. In public and private cohorts, we further demonstrated that GBP1 could efficiently predict the response to immunotherapy. Functionally, GBP1 was mainly expressed in macrophages and strongly correlated with chemokines involved in T-cell migration. Therefore, our study comprehensively investigated the potential role of GBP1 in immunotherapy, which could serve as a novel biomarker for immunotherapy and a target for drug development.


Assuntos
Proteínas de Ligação ao GTP , Imunoterapia , Neoplasias , Humanos , Linfócitos T CD8-Positivos/imunologia , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/imunologia , Imunoterapia/métodos , Interferon-alfa/metabolismo , Interferon beta/metabolismo , Interferon gama/metabolismo , Interleucina-15/genética , Neoplasias/imunologia , Neoplasias/terapia , Transdução de Sinais
11.
Virol Sin ; 39(3): 501-512, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38789039

RESUMO

The infection caused by porcine epidemic diarrhea virus (PEDV) is associated with high mortality in piglets worldwide. Host factors involved in the efficient replication of PEDV, however, remain largely unknown. Our recent proteomic study in the virus-host interaction network revealed a significant increase in the accumulation of CALML5 (EF-hand protein calmodulin-like 5) following PEDV infection. A further study unveiled a biphasic increase of CALML5 in 2 and 12 â€‹h after viral infection. Similar trends were observed in the intestines of piglets in the early and late stages of the PEDV challenge. Moreover, CALML5 depletion reduced PEDV mRNA and protein levels, leading to a one-order-of-magnitude decrease in virus titer. At the early stage of PEDV infection, CALML5 affected the endosomal trafficking pathway by regulating the expression of endosomal sorting complex related cellular proteins. CALML5 depletion also suppressed IFN-ß and IL-6 production in the PEDV-infected cells, thereby indicating its involvement in negatively regulating the innate immune response. Our study reveals the biological function of CALML5 in the virology field and offers new insights into the PEDV-host cell interaction.


Assuntos
Calmodulina , Endossomos , Imunidade Inata , Vírus da Diarreia Epidêmica Suína , Replicação Viral , Animais , Vírus da Diarreia Epidêmica Suína/imunologia , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Calmodulina/metabolismo , Calmodulina/genética , Endossomos/metabolismo , Endossomos/virologia , Interações Hospedeiro-Patógeno/imunologia , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Células Vero , Chlorocebus aethiops , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Infecções por Coronavirus/veterinária , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-6/imunologia , Interferon beta/genética , Interferon beta/imunologia , Interferon beta/metabolismo
12.
Cancer Lett ; 596: 216988, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38797234

RESUMO

Type I interferons exhibit anti-proliferative and anti-cancer activities, but their detailed regulatory mechanisms in cancer have not been fully elucidated yet. RNA binding proteins are master orchestrators of gene regulation, which are closely related to tumor progression. Here we show that the upregulated RNA binding protein RBM45 correlates with poor prognosis in breast cancer. Depletion of RBM45 suppresses breast cancer progression both in cultured cells and xenograft mouse models. Mechanistically, RBM45 ablation inhibits breast cancer progression through regulating type I interferon signaling, particularly by elevating IFN-ß production. Importantly, RBM45 recruits TRIM28 to IRF7 and stimulates its SUMOylation, thereby repressing IFNB1 transcription. Loss of RBM45 reduced the SUMOylation of IRF7 by reducing the interaction between TRIM28 and IRF7 to promote IFNB1 transcription, leading to the inhibition of breast cancer progression. Taken together, our finding uncovers a vital role of RBM45 in modulating type I interferon signaling and cancer aggressive progression, implicating RBM45 as a potential therapeutic target in breast cancer.


Assuntos
Neoplasias da Mama , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Fator Regulador 7 de Interferon , Proteínas de Ligação a RNA , Sumoilação , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Animais , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Camundongos , Transcrição Gênica , Linhagem Celular Tumoral , Interferon beta/metabolismo , Interferon beta/genética , Transdução de Sinais , Camundongos Nus , Proliferação de Células , Proteína 28 com Motivo Tripartido/metabolismo , Proteína 28 com Motivo Tripartido/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C
13.
PLoS Pathog ; 20(5): e1012125, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38696536

RESUMO

Major 5'-terminally deleted (5'TD) RNA forms of group-B coxsackievirus (CVB-5'TD) has been associated with myocarditis in both mice and humans. Although it is known that interferon-ß (IFN-ß) signaling is critical for an efficient innate immune response against CVB-induced myocarditis, the link between CVB-5'TD RNA forms and type I IFN signaling in cardiomyocytes remains to be explored. In a mouse model of CVB3/28-induced myocarditis, major early-emerging forms of CVB-5'TD RNA have been characterized as replicative viral populations that impair IFN-ß production in the heart. Synthetic CVB3/28 RNA forms mimicking each of these major 5'TD virus populations were transfected in mice and have been shown to modulate innate immune responses in the heart and to induce myocarditis in mice. Remarkably, transfection of synthetic viral RNA with deletions in the secondary structures of the 5'-terminal CVB3 RNA domain I, modifying stem-loops "b", "c" or "d", were found to impair IFN-ß production in human cardiomyocytes. In addition, the activation of innate immune response by Poly(I:C), was found to restore IFN-ß production and to reduce the burden of CVB-5'TD RNA-forms in cardiac tissues, thereby reducing the mortality rate of infected mice. Overall, our results indicate that major early-emerging CVB3 populations deleted in the domain I of genomic RNA, in the 5' noncoding region, modulate the activation of the type I IFN pathway in cardiomyocytes and induce myocarditis in mice. These findings shed new light on the role of replicative CVB-5'TD RNA forms as key pathophysiological factors in CVB-induced human myocarditis.


Assuntos
Infecções por Coxsackievirus , Enterovirus Humano B , Interferon Tipo I , Miocardite , Miócitos Cardíacos , RNA Viral , Miocardite/virologia , Miocardite/imunologia , Miocardite/genética , Animais , Miócitos Cardíacos/virologia , Miócitos Cardíacos/metabolismo , Camundongos , Enterovirus Humano B/imunologia , Infecções por Coxsackievirus/imunologia , Infecções por Coxsackievirus/virologia , Infecções por Coxsackievirus/genética , Interferon Tipo I/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Humanos , Imunidade Inata , Transdução de Sinais , Interferon beta/metabolismo , Interferon beta/genética , Interferon beta/imunologia , Masculino , Regiões 5' não Traduzidas
14.
Front Immunol ; 15: 1380220, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799458

RESUMO

African swine fever (ASF) is an acute hemorrhagic and devastating infectious disease affecting domestic pigs and wild boars. It is caused by the African swine fever virus (ASFV), which is characterized by genetic diversity and sophisticated immune evasion strategies. To facilitate infection, ASFV encodes multiple proteins to antagonize host innate immune responses, thereby contributing to viral virulence and pathogenicity. The molecular mechanisms employed by ASFV-encoded proteins to modulate host antiviral responses have not been comprehensively elucidated. In this study, it was observed that the ASFV MGF505-6R protein, a member of the multigene family 505 (MGF505), effectively suppressed the activation of the interferon-beta (IFN-ß) promoter, leading to reduced mRNA levels of antiviral genes. Additional evidence has revealed that MGF505-6R antagonizes the cGAS-STING signaling pathway by interacting with the stimulator of interferon genes (STING) for degradation in the autophagy-lysosomal pathway. The domain mapping revealed that the N-terminal region (1-260aa) of MGF505-6R is the primary domain responsible for interacting with STING, while the CTT domain of STING is crucial for its interaction with MGF505-6R. Furthermore, MGF505-6R also inhibits the activation of STING by reducing the K63-linked polyubiquitination of STING, leading to the disruption of STING oligomerization and TANK binding kinase 1 (TBK1) recruitment, thereby impairing the phosphorylation and nuclear translocation of interferon regulatory factor 3 (IRF3). Collectively, our study elucidates a novel strategy developed by ASFV MGF505-6R to counteract host innate immune responses. This discovery may offer valuable insights for further exploration of ASFV immune evasion mechanisms and antiviral strategies.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Proteínas de Membrana , Proteínas Virais , Animais , Vírus da Febre Suína Africana/imunologia , Vírus da Febre Suína Africana/genética , Suínos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Febre Suína Africana/imunologia , Febre Suína Africana/virologia , Febre Suína Africana/metabolismo , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Humanos , Imunidade Inata , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/imunologia , Transdução de Sinais , Proteólise , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune , Interferon beta/metabolismo , Interferon beta/imunologia , Interferon beta/genética
15.
J Clin Invest ; 134(9)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38690737

RESUMO

Inflammation and pain are intertwined responses to injury, infection, or chronic diseases. While acute inflammation is essential in determining pain resolution and opioid analgesia, maladaptive processes occurring during resolution can lead to the transition to chronic pain. Here we found that inflammation activates the cytosolic DNA-sensing protein stimulator of IFN genes (STING) in dorsal root ganglion nociceptors. Neuronal activation of STING promotes signaling through TANK-binding kinase 1 (TBK1) and triggers an IFN-ß response that mediates pain resolution. Notably, we found that mice expressing a nociceptor-specific gain-of-function mutation in STING exhibited an IFN gene signature that reduced nociceptor excitability and inflammatory hyperalgesia through a KChIP1-Kv4.3 regulation. Our findings reveal a role of IFN-regulated genes and KChIP1 downstream of STING in the resolution of inflammatory pain.


Assuntos
Proteínas de Membrana , Nociceptores , Animais , Camundongos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nociceptores/metabolismo , Gânglios Espinais/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Inflamação/genética , Inflamação/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Dor/metabolismo , Dor/genética , Transdução de Sinais , Masculino
16.
Virol J ; 21(1): 109, 2024 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734674

RESUMO

BACKGROUND: Syndrome coronavirus-2 (SARS-CoV-2) has developed various strategies to evade the antiviral impact of type I IFN. Non-structural proteins and auxiliary proteins have been extensively researched on their role in immune escape. Nevertheless, the detailed mechanisms of structural protein-induced immune evasion have not been well elucidated. METHODS: Human alveolar basal epithelial carcinoma cell line (A549) was stimulated with polyinosinic-polycytidylic acid (PIC) and independently transfected with four structural proteins expression plasmids, including nucleocapsid (N), spike (S), membrane (M) and envelope (E) proteins. By RT-qPCR and ELISA, the structural protein with the most pronounced inhibitory effects on IFN-ß induction was screened. RNA-sequencing (RNA-Seq) and two differential analysis strategies were used to obtain differentially expressed genes associated with N protein inhibition of IFN-ß induction. Based on DIANA-LncBase and StarBase databases, the interactive competitive endogenous RNA (ceRNA) network for N protein-associated genes was constructed. By combining single-cell sequencing data (GSE158055), lncRNA-miRNA-mRNA axis was further determined. Finally, RT-qPCR was utilized to illustrate the regulatory functions among components of the ceRNA axis. RESULTS: SARS-CoV-2 N protein inhibited IFN-ß induction in human alveolar epithelial cells most significantly compared with other structural proteins. RNA-Seq data analysis revealed genes related to N protein inhibiting IFNs induction. The obtained 858 differentially expressed genes formed the reliable ceRNA network. The function of LINC01002-miR-4324-FRMD8 axis in the IFN-dominated immune evasion was further demonstrated through integrating single-cell sequencing data. Moreover, we validated that N protein could reverse the effect of PIC on LINC01002, FRMD8 and miR-4324 expression, and subsequently on IFN-ß expression level. And LINC01002 could regulate the production of FRMD8 by inhibiting miR-4324. CONCLUSION: SARS-CoV-2 N protein suppressed the induction of IFN-ß by regulating LINC01002 which was as a ceRNA, sponging miR-4324 and participating in the regulation of FRMD8 mRNA. Our discovery provides new insights into early intervention therapy and drug development on SARS-CoV-2 infection.


Assuntos
COVID-19 , MicroRNAs , RNA Longo não Codificante , SARS-CoV-2 , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , COVID-19/virologia , COVID-19/imunologia , SARS-CoV-2/genética , Células A549 , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Evasão da Resposta Imune , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , RNA Endógeno Competitivo , Fosfoproteínas
17.
J Immunother Cancer ; 12(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749537

RESUMO

BACKGROUND: Cancer-intrinsic type I interferon (IFN-I) production triggered by radiotherapy (RT) is mainly dependent on cytosolic double-stranded DNA (dsDNA)-mediated cGAS/STING signaling and increases cancer immunogenicity and enhances the antitumor immune response to increase therapeutic efficacy. However, cGAS/STING deficiency in colorectal cancer (CRC) may suppress the RT-induced antitumor immunity. Therefore, we aimed to evaluate the importance of the dsRNA-mediated antitumor immune response induced by RT in patients with CRC. METHODS: Cytosolic dsRNA level and its sensors were evaluated via cell-based assays (co-culture assay, confocal microscopy, pharmacological inhibition and immunofluorescent staining) and in vivo experiments. Biopsies and surgical tissues from patients with CRC who received preoperative chemoradiotherapy (neoCRT) were collected for multiplex cytokine assays, immunohistochemical analysis and SNP genotyping. We also generated a cancer-specific adenovirus-associated virus (AAV)-IFNß1 construct to evaluate its therapeutic efficacy in combination with RT, and the immune profiles were analyzed by flow cytometry and RNA-seq. RESULTS: Our studies revealed that RT stimulates the autonomous release of dsRNA from cancer cells to activate TLR3-mediated IFN-I signatures to facilitate antitumor immune responses. Patients harboring a dysfunctional TLR3 variant had reduced serum levels of IFN-I-related cytokines and intratumoral CD8+ immune cells and shorter disease-free survival following neoCRT treatment. The engineered cancer-targeted construct AAV-IFNß1 significantly improved the response to RT, leading to systematic eradication of distant tumors and prolonged survival in defective TLR3 preclinical models. CONCLUSION: Our results support that increasing cancer-intrinsic IFNß1 expression is an immunotherapeutic strategy that enhances the RT-induced antitumor immune response in locally patients with advanced CRC with dysfunctional TLR3.


Assuntos
Neoplasias Colorretais , Interferon Tipo I , Interferon beta , RNA de Cadeia Dupla , Humanos , Neoplasias Colorretais/radioterapia , Neoplasias Colorretais/imunologia , Interferon beta/metabolismo , Camundongos , Animais , Interferon Tipo I/metabolismo , Transdução de Sinais , Feminino , Masculino
18.
Virol J ; 21(1): 107, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720392

RESUMO

Natural immunity is the first defense line of the host immune system, which plays a significant role in combating foreign pathogenic microorganisms. The IFN-ß (interferon-beta) signaling pathway, being a typical example of innate immunity, plays a vital function. This study aimed to elucidate the function of pseudorabies virus (PRV) UL38 protein (unique long region 38) in suppressing the activation of the IFN-ß signaling pathway. The findings from our study indicate that the PRV UL38 protein effectively hampers the activation of IFN-ß by poly (dA: dT) (poly(deoxyadenylic-deoxythymidylic)) and 2'3'-cGAMP (2'-3'-cyclic GMP-AMP). Furthermore, UL38 exhibits spatial co-localization with STING (stimulator of interferon genes) and effectively hinders STING dimerization. Subsequently, STING was downgraded to suppress the production of IFN-ß and ISGs (interferon stimulated genes). Immunoprecipitation analysis revealed that the interaction between UL38 and STING, which subsequently initiated the degradation of STING via selective autophagy mediated by TOLLIP (toll interacting protein). To summarize, this research elucidates the function of UL38 in counteracting the cGAS (cGAMP synthase)-STING-induced IFN-ß pathway. The PRV UL38 protein may attenuate the activation of IFN-ß as a means of regulating the virus's persistence in the host.


Assuntos
Autofagia , Herpesvirus Suídeo 1 , Interferon beta , Proteínas de Membrana , Nucleotidiltransferases , Transdução de Sinais , Animais , Humanos , Linhagem Celular , Células HEK293 , Herpesvirus Suídeo 1/fisiologia , Herpesvirus Suídeo 1/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Interferon beta/metabolismo , Interferon beta/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Pseudorraiva/virologia , Pseudorraiva/metabolismo , Pseudorraiva/imunologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Suínos , Mesocricetus
19.
PLoS Pathog ; 20(5): e1012230, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38776321

RESUMO

While macrophage is one of the major type I interferon (IFN-I) producers in multiple tissues during viral infections, it also serves as an important target cell for many RNA viruses. However, the regulatory mechanism for the IFN-I response of macrophages to respond to a viral challenge is not fully understood. Here we report ADAP, an immune adaptor protein, is indispensable for the induction of the IFN-I response of macrophages to RNA virus infections via an inhibition of the conjugation of ubiquitin-like ISG15 (ISGylation) to RIG-I. Loss of ADAP increases RNA virus replication in macrophages, accompanied with a decrease in LPS-induced IFN-ß and ISG15 mRNA expression and an impairment in the RNA virus-induced phosphorylation of IRF3 and TBK1. Moreover, using Adap-/- mice, we show ADAP deficiency strongly increases the susceptibility of macrophages to RNA-virus infection in vivo. Mechanically, ADAP selectively interacts and functionally cooperates with RIG-I but not MDA5 in the activation of IFN-ß transcription. Loss of ADAP results in an enhancement of ISGylation of RIG-I, whereas overexpression of ADAP exhibits the opposite effect in vitro, indicating ADAP is detrimental to the RNA virus-induced ISGylation of RIG-I. Together, our data demonstrate a novel antagonistic activity of ADAP in the cell-intrinsic control of RIG-I ISGylation, which is indispensable for initiating and sustaining the IFN-I response of macrophages to RNA virus infections and replication.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteína DEAD-box 58 , Interferon Tipo I , Macrófagos , Camundongos Knockout , Infecções por Vírus de RNA , Ubiquitinas , Animais , Macrófagos/virologia , Macrófagos/metabolismo , Macrófagos/imunologia , Camundongos , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/metabolismo , Ubiquitinas/metabolismo , Ubiquitinas/genética , Proteína DEAD-box 58/metabolismo , Interferon Tipo I/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Citocinas/metabolismo , Camundongos Endogâmicos C57BL , Humanos , Receptores Imunológicos/metabolismo , Interferon beta/metabolismo , Vírus de RNA/imunologia , Fator Regulador 3 de Interferon/metabolismo
20.
J Virol ; 98(5): e0192523, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38624230

RESUMO

Recurrent respiratory papillomatosis (RRP) is a rare benign tumor caused mainly by the infection of the respiratory tract epithelial cells by the human papillomavirus (HPV) type 6/11. However, the specific mechanisms underlying the inhibition of the host's innate immune response by HPV remain unclear. For this purpose, we employed single-cell RNA sequencing to analyze the states of various immune cells in RRP samples post-HPV infection and utilized a cellular model of HPV infection to elucidate the mechanisms by which HPV evades the innate immune system in RRP. The results revealed distinct immune cell heterogeneity in RRP and demonstrated that HPV11 E7 can inhibit the phosphorylation of the stimulator of interferon genes protein, thereby circumventing the body's antiviral response. In vitro co-culture experiments demonstrated that stimulation of macrophages to produce interferon-beta induced the death of HPV-infected epithelial cells, also reducing HPV viral levels. In summary, our study preliminarily identifies the potential mechanisms by which HPV evades the host's antiviral immune response, as well as the latent antiviral functions exhibited by activated macrophages. This research serves as an initial exploration of antiviral immune evasion in RRP, laying a solid foundation for investigating immunotherapeutic approaches for the disease.IMPORTANCESurgical tumor reduction is the most common treatment for recurrent respiratory papillomatosis (RRP). One of the characteristics of RRP is its persistent recurrence, and multiple surgeries are usually required to control the symptoms. Recently, some adjuvant therapies have shown effectiveness, but none of them can completely clear human papillomavirus (HPV) infection, and thus, a localized antiviral immune response is significant for disease control; after all, HPV infection is limited to the epithelium. Inhibition of interferon-beta (IFN-ß) secretion by HPV11 E7 viral proteins in epithelial cells by affecting stimulator of interferon genes phosphorylation may account for the persistence of low-risk HPV replication in the RRP. Moreover, suppression of the IFN-I pathway in RRP cell types might provide clues regarding the hyporeactive function of local immune cells. However, activation of macrophage groups to produce IFN-ß can still destroy HPV-infected cells.


Assuntos
Papillomavirus Humano 11 , Proteínas E7 de Papillomavirus , Infecções por Papillomavirus , Infecções Respiratórias , Adulto , Feminino , Humanos , Masculino , Células Epiteliais/virologia , Células Epiteliais/imunologia , Papillomavirus Humano 11/genética , Papillomavirus Humano 11/imunologia , Evasão da Resposta Imune , Imunidade Inata , Interferon beta/metabolismo , Interferon beta/imunologia , Interferon beta/genética , Macrófagos/imunologia , Macrófagos/virologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas E7 de Papillomavirus/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/imunologia , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Infecções Respiratórias/virologia , Infecções Respiratórias/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...