Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 92020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33345773

RESUMO

Spinal commissural axon navigation across the midline in the floor plate requires repulsive forces from local Slit repellents. The long-held view is that Slits push growth cones forward and prevent them from turning back once they became sensitized to these cues after midline crossing. We analyzed with fluorescent reporters Slits distribution and FP glia morphology. We observed clusters of Slit-N and Slit-C fragments decorating a complex architecture of glial basal process ramifications. We found that PC2 proprotein convertase activity contributes to this pattern of ligands. Next, we studied Slit-C acting via PlexinA1 receptor shared with another FP repellent, the Semaphorin3B, through generation of a mouse model baring PlexinA1Y1815F mutation abrogating SlitC but not Sema3B responsiveness, manipulations in the chicken embryo, and ex vivo live imaging. This revealed a guidance mechanism by which SlitC constantly limits growth cone exploration, imposing ordered and forward-directed progression through aligned corridors formed by FP basal ramifications.


Assuntos
Interneurônios Comissurais/fisiologia , Medula Espinal/crescimento & desenvolvimento , Animais , Axônios/fisiologia , Western Blotting , Embrião de Galinha , Cones de Crescimento/fisiologia , Camundongos , Microscopia de Fluorescência , Tubo Neural/embriologia , Tubo Neural/crescimento & desenvolvimento , Medula Espinal/embriologia
2.
Science ; 370(6515): 431-436, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33093104

RESUMO

In vertebrates, faster movements involve the orderly recruitment of different types of spinal motor neurons. However, it is not known how premotor inhibitory circuits are organized to ensure alternating motor output at different movement speeds. We found that different types of commissural inhibitory interneurons in zebrafish form compartmental microcircuits during development that align inhibitory strength and recruitment order. Axonal microcircuits develop first and provide the most potent premotor inhibition during the fastest movements, followed by perisomatic microcircuits, and then dendritic microcircuits that provide the weakest inhibition during the slowest movements. The conversion of a temporal sequence of neuronal development into a spatial pattern of inhibitory connections provides an "ontogenotopic" solution to the problem of shaping spinal motor output at different speeds of movement.


Assuntos
Interneurônios Comissurais/fisiologia , Neurônios Motores/fisiologia , Neurogênese , Medula Espinal/embriologia , Peixe-Zebra/embriologia , Animais , Axônios/fisiologia , Locomoção , Rede Nervosa/embriologia , Medula Espinal/fisiologia , Peixe-Zebra/fisiologia
3.
Elife ; 92020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32902379

RESUMO

Within the cervical and lumbar spinal enlargements, central pattern generator (CPG) circuitry produces the rhythmic output necessary for limb coordination during locomotion. Long propriospinal neurons that inter-connect these CPGs are thought to secure hindlimb-forelimb coordination, ensuring that diagonal limb pairs move synchronously while the ipsilateral limb pairs move out-of-phase during stepping. Here, we show that silencing long ascending propriospinal neurons (LAPNs) that inter-connect the lumbar and cervical CPGs disrupts left-right limb coupling of each limb pair in the adult rat during overground locomotion on a high-friction surface. These perturbations occurred independent of the locomotor rhythm, intralimb coordination, and speed-dependent (or any other) principal features of locomotion. Strikingly, the functional consequences of silencing LAPNs are highly context-dependent; the phenotype was not expressed during swimming, treadmill stepping, exploratory locomotion, or walking on an uncoated, slick surface. These data reveal surprising flexibility and context-dependence in the control of interlimb coordination during locomotion.


Assuntos
Geradores de Padrão Central , Extremidades , Interneurônios , Propriocepção/fisiologia , Animais , Geradores de Padrão Central/citologia , Geradores de Padrão Central/fisiologia , Interneurônios Comissurais/citologia , Interneurônios Comissurais/fisiologia , Extremidades/inervação , Extremidades/fisiologia , Feminino , Interneurônios/citologia , Interneurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Medula Espinal/citologia , Medula Espinal/fisiologia
4.
J Neurophysiol ; 123(1): 4-21, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31693445

RESUMO

Commissural systems are essential components of motor circuits that coordinate left-right activity of the skeletomuscular system. Commissural systems are found at many levels of the neuraxis including the cortex, brainstem, and spinal cord. In this review we will discuss aspects of the mammalian spinal commissural system. We will focus on commissural interneurons, which project from one side of the cord to the other and form axonal terminations that are confined to the cord itself. Commissural interneurons form heterogeneous populations and influence a variety of spinal circuits. They can be defined according to a variety of criteria including, location in the spinal gray matter, axonal projections and targets, neurotransmitter phenotype, activation properties, and embryological origin. At present, we do not have a comprehensive classification of these cells, but it is clear that cells located within different areas of the gray matter have characteristic properties and make particular contributions to motor circuits. The contribution of commissural interneurons to locomotor function and posture is well established and briefly discussed. However, their role in other goal-orientated behaviors such as grasping, reaching, and bimanual tasks is less clear. This is partly because we only have limited information about the organization and functional properties of commissural interneurons in the cervical spinal cord of primates, including humans. In this review we shall discuss these various issues. First, we will consider the properties of commissural interneurons and subsequently examine what is known about their functions. We then discuss how they may contribute to restoration of function following spinal injury and stroke.


Assuntos
Axônios/fisiologia , Interneurônios Comissurais/fisiologia , Substância Cinzenta/fisiologia , Locomoção/fisiologia , Atividade Motora/fisiologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Medula Espinal/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Interneurônios Comissurais/citologia , Mamíferos
5.
J Integr Neurosci ; 18(2): 163-172, 2019 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-31321957

RESUMO

In this paper, the modulation of ascending commissural interneurons by N-methyl-D-aspartate was investigated in neonatal rats by using retrograde labeling and whole-cell patch clamp. Data shows these interneurons can be divided into three types (single spike, phasic, and tonic) based on their firing patterns. A hyperpolarization-activated nonselective cation current and persistent inward current are expressed in these interneurons. The parameters studied (n = 48) include: resting membrane potential (-59.2 ± 0.8 mV), input resistance (964.4 ± 49.3 MΩ), voltage threshold (-39.5 ± 0.6 mV), rheobase (13.5 ± 0.7 pA), action potential height (55.6 ± 2.2 mV), action potential half-width (2.8 ± 0.1 ms), afterhyperpolarization magnitude (16.1 ± 1.2 mV) and half-decay (217.9 ± 10.7 ms). 10 µM N-methyl-D-aspartate increases excitability of ascending commissural interneurons by depolarizing the membrane potential, hyperpolarizing voltage threshold, reducing rheobase, and shifting the frequency-current relationship to the left. N-methyl-Daspartate enhances persistent inward currents but reduces hyperpolarization-activated nonselective cation currents. This research uncovers unique ionic and intrinsic properties of ascending commissural interneurons which can be modulated by major excitatory neurotransmitters such as N-methyl-D-aspartate to potentially facilitate left-right alternation during locomotion.


Assuntos
Interneurônios Comissurais/fisiologia , Potenciais da Membrana , N-Metilaspartato/fisiologia , Medula Espinal/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Interneurônios Comissurais/citologia , Interneurônios Comissurais/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/administração & dosagem , Potenciais da Membrana/efeitos dos fármacos , N-Metilaspartato/administração & dosagem , Ratos Wistar , Medula Espinal/citologia , Medula Espinal/efeitos dos fármacos
6.
J Neurosci ; 38(25): 5666-5676, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29789381

RESUMO

The basic pattern of activity underlying stepping in mammals is generated by a neural network located in the caudal spinal cord. Within this network, the specific circuitry coordinating left-right alternation has been shown to involve several groups of molecularly defined interneurons. Here we characterize a population of spinal neurons that express the Wilms' tumor 1 (WT1) gene and investigate their role during locomotor activity in mice of both sexes. We demonstrate that WT1-expressing cells are located in the ventromedial region of the spinal cord of mice and are also present in the human spinal cord. In the mouse, these cells are inhibitory, project axons to the contralateral spinal cord, terminate in close proximity to other commissural interneuron subtypes, and are essential for appropriate left-right alternation during locomotion. In addition to identifying WT1-expressing interneurons as a key component of the locomotor circuitry, this study provides insight into the manner in which several populations of molecularly defined interneurons are interconnected to generate coordinated motor activity on either side of the body during stepping.SIGNIFICANCE STATEMENT In this study, we characterize WT1-expressing spinal interneurons in mice and demonstrate that they are commissurally projecting and inhibitory. Silencing of this neuronal population during a locomotor task results in a complete breakdown of left-right alternation, whereas flexor-extensor alternation was not significantly affected. Axons of WT1 neurons are shown to terminate nearby commissural interneurons, which coordinate motoneuron activity during locomotion, and presumably regulate their activity. Finally, the WT1 gene is shown to be present in the spinal cord of humans, raising the possibility of functional homology between these species. This study not only identifies a key component of the locomotor circuitry but also begins to unravel the connectivity among the growing number of molecularly defined interneurons that comprise this neural network.


Assuntos
Geradores de Padrão Central/citologia , Interneurônios Comissurais/citologia , Locomoção/fisiologia , Proteínas Repressoras/metabolismo , Medula Espinal/citologia , Animais , Geradores de Padrão Central/fisiologia , Interneurônios Comissurais/fisiologia , Feminino , Masculino , Camundongos , Vias Neurais/citologia , Vias Neurais/fisiologia , Medula Espinal/fisiologia , Proteínas WT1
7.
Neuron ; 92(5): 1063-1078, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27866798

RESUMO

Locomotion is an essential animal behavior used for translocation. The spinal cord acts as key executing center, but how it coordinates many body parts located across distance remains poorly understood. Here we employed mouse genetic and viral approaches to reveal organizational principles of long-projecting spinal circuits and their role in quadrupedal locomotion. Using neurotransmitter identity, developmental origin, and projection patterns as criteria, we uncover that spinal segments controlling forelimbs and hindlimbs are bidirectionally connected by symmetrically organized direct synaptic pathways that encompass multiple genetically tractable neuronal subpopulations. We demonstrate that selective ablation of descending spinal neurons linking cervical to lumbar segments impairs coherent locomotion, by reducing postural stability and speed during exploratory locomotion, as well as perturbing interlimb coordination during reinforced high-speed stepping. Together, our results implicate a highly organized long-distance projection system of spinal origin in the control of postural body stabilization and reliability during quadrupedal locomotion.


Assuntos
Interneurônios Comissurais/fisiologia , Marcha/fisiologia , Locomoção/fisiologia , Neurônios/fisiologia , Equilíbrio Postural/fisiologia , Medula Espinal/fisiologia , Animais , Vértebras Cervicais , Membro Anterior , Membro Posterior , Vértebras Lombares , Camundongos , Neurônios/metabolismo , Medula Espinal/citologia , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
8.
Elife ; 52016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27223328

RESUMO

RNA-binding proteins (RBPs) control multiple aspects of post-transcriptional gene regulation and function during various biological processes in the nervous system. To further reveal the functional significance of RBPs during neural development, we carried out an in vivo RNAi screen in the dorsal spinal cord interneurons, including the commissural neurons. We found that the NOVA family of RBPs play a key role in neuronal migration, axon outgrowth, and axon guidance. Interestingly, Nova mutants display similar defects as the knockout of the Dcc transmembrane receptor. We show here that Nova deficiency disrupts the alternative splicing of Dcc, and that restoring Dcc splicing in Nova knockouts is able to rescue the defects. Together, our results demonstrate that the production of DCC splice variants controlled by NOVA has a crucial function during many stages of commissural neuron development.


Assuntos
Processamento Alternativo , Antígenos de Neoplasias/metabolismo , Orientação de Axônios , Interneurônios Comissurais/fisiologia , Receptor DCC/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Ligação a RNA/metabolismo , Medula Espinal/embriologia , Animais , Antígenos de Neoplasias/genética , Testes Genéticos , Camundongos , Camundongos Knockout , Antígeno Neuro-Oncológico Ventral , Interferência de RNA , Proteínas de Ligação a RNA/genética
9.
PLoS One ; 11(3): e0152094, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26999665

RESUMO

Descending systems have a crucial role in the selection of motor output patterns by influencing the activity of interneuronal networks in the spinal cord. Commissural interneurons that project to the contralateral grey matter are key components of such networks as they coordinate left-right motor activity of fore and hind-limbs. The aim of this study was to determine if corticospinal (CST) and reticulospinal (RST) neurons make significant numbers of axonal contacts with cervical commissural interneurons. Two classes of commissural neurons were analysed: 1) local commissural interneurons (LCINs) in segments C4-5; 2) long descending propriospinal neurons (LDPNs) projecting from C4 to the rostral lumbar cord. Commissural interneurons were labelled with Fluorogold and CST and RST axons were labelled by injecting the b subunit of cholera toxin in the forelimb area of the primary somatosensory cortex or the medial longitudinal fasciculus respectively. The results show that LCINs and LDPNs receive few contacts from CST terminals but large numbers of contacts are formed by RST terminals. Use of vesicular glutamate and vesicular GABA transporters revealed that both types of cell received about 80% excitatory and 20% inhibitory RST contacts. Therefore the CST appears to have a minimal influence on LCINs and LDPNs but the RST has a powerful influence. This suggests that left-right activity in the rat spinal cord is not influenced directly via CST systems but is strongly controlled by the RST pathway. Many RST neurons have monosynaptic input from corticobulbar pathways therefore this pathway may provide an indirect route from the cortex to commissural systems. The cortico-reticulospinal-commissural system may also contribute to functional recovery following damage to the CST as it has the capacity to deliver information from the cortex to the spinal cord in the absence of direct CST input.


Assuntos
Vértebras Cervicais/fisiologia , Interneurônios Comissurais/fisiologia , Rede Nervosa/fisiologia , Tratos Piramidais/fisiologia , Animais , Injeções , Masculino , Microscopia Confocal , Ratos Sprague-Dawley , Medula Espinal/fisiologia , Técnicas Estereotáxicas
10.
Genes Dev ; 29(24): 2617-32, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26680304

RESUMO

Commissural axon guidance depends on a myriad of cues expressed by intermediate targets. Secreted semaphorins signal through neuropilin-2/plexin-A1 receptor complexes on post-crossing commissural axons to mediate floor plate repulsion in the mouse spinal cord. Here, we show that neuropilin-2/plexin-A1 are also coexpressed on commissural axons prior to midline crossing and can mediate precrossing semaphorin-induced repulsion in vitro. How premature semaphorin-induced repulsion of precrossing axons is suppressed in vivo is not known. We discovered that a novel source of floor plate-derived, but not axon-derived, neuropilin-2 is required for precrossing axon pathfinding. Floor plate-specific deletion of neuropilin-2 significantly reduces the presence of precrossing axons in the ventral spinal cord, which can be rescued by inhibiting plexin-A1 signaling in vivo. Our results show that floor plate-derived neuropilin-2 is developmentally regulated, functioning as a molecular sink to sequester semaphorins, preventing premature repulsion of precrossing axons prior to subsequent down-regulation, and allowing for semaphorin-mediated repulsion of post-crossing axons.


Assuntos
Axônios/fisiologia , Interneurônios Comissurais/fisiologia , Neuropilina-2/metabolismo , Semaforinas/metabolismo , Animais , Células Cultivadas , Interneurônios Comissurais/citologia , Embrião de Mamíferos , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuropilina-2/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Transdução de Sinais
11.
Elife ; 4: e08407, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26186094

RESUMO

During nervous system development, commissural axons cross the midline despite the presence of repellant ligands. In Drosophila, commissural axons avoid premature responsiveness to the midline repellant Slit by expressing the endosomal sorting receptor Commissureless, which reduces surface expression of the Slit receptor Roundabout1 (Robo1). In this study, we describe a distinct mechanism to inhibit Robo1 repulsion and promote midline crossing, in which Roundabout2 (Robo2) binds to and prevents Robo1 signaling. Unexpectedly, we find that Robo2 is expressed in midline cells during the early stages of commissural axon guidance, and that over-expression of Robo2 can rescue robo2-dependent midline crossing defects non-cell autonomously. We show that the extracellular domains required for binding to Robo1 are also required for Robo2's ability to promote midline crossing, in both gain-of-function and rescue assays. These findings indicate that at least two independent mechanisms to overcome Slit-Robo1 repulsion in pre-crossing commissural axons have evolved in Drosophila.


Assuntos
Interneurônios Comissurais/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/metabolismo , Animais , Drosophila , Ligação Proteica , Mapeamento de Interação de Proteínas , Transdução de Sinais , Proteínas Roundabout
12.
Nat Commun ; 6: 7028, 2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25960414

RESUMO

Unravelling how neurons are guided during vertebrate embryonic development has wide implications for understanding the assembly of the nervous system. During embryogenesis, migration of neuronal cell bodies and axons occurs simultaneously, but to what degree they influence each other's development remains obscure. We show here that within the mouse embryonic spinal cord, commissural axons bisect, delimit or preconfigure ventral interneuron cell body position. Furthermore, genetic disruption of commissural axons results in abnormal ventral interneuron cell body positioning. These data suggest that commissural axonal fascicles instruct cell body position by acting either as border landmarks (axon-restricted migration), which to our knowledge has not been previously addressed, or acting as cellular guides. This study in the developing spinal cord highlights an important function for the interaction of cell bodies and axons, and provides a conceptual proof of principle that is likely to have overarching implications for the development of neuronal architecture.


Assuntos
Movimento Celular/fisiologia , Interneurônios Comissurais/fisiologia , Neurônios/fisiologia , Medula Espinal/citologia , Medula Espinal/embriologia , Animais , Corpo Celular , Células Cultivadas , Embrião de Galinha , Receptor DCC , Eletroporação , Feminino , Regulação da Expressão Gênica/fisiologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Netrina-1 , Plasmídeos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
13.
Wiley Interdiscip Rev Dev Biol ; 4(4): 377-89, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25779002

RESUMO

In bilaterally symmetric animals, the precise assembly of neural circuitry at the midline is essential for coordination of the left and right sides of the body. Commissural axons must first be directed across the midline and then be prevented from re-crossing in order to ensure proper midline connectivity. Here, we review the attractants and repellents that direct axonal navigation at the ventral midline and the receptors on commissural neurons through which they signal. In addition, we discuss the mechanisms that commissural axons use to switch their responsiveness to midline-derived cues, so that they are initially responsive to midline attractants and subsequently responsive to midline repellents.


Assuntos
Padronização Corporal/fisiologia , Movimento Celular/fisiologia , Interneurônios Comissurais/fisiologia , Sinais (Psicologia) , Drosophila/embriologia , Modelos Neurológicos , Morfogênese/fisiologia , Animais , Axônios/fisiologia , Polaridade Celular/fisiologia , Camundongos
14.
Wiley Interdiscip Rev Dev Biol ; 4(3): 283-97, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25619385

RESUMO

For bilaterally symmetric organisms, the transfer of information between the left and right side of the nervous system is mediated by commissures formed by neurons that project their axons across the body midline to the contralateral side of the central nervous system (CNS). After crossing the midline, many of these axons must travel long distances to reach their targets, including those that extend from spinal commissural neurons. Owing to the highly stereotyped trajectories of spinal commissural neurons that can be divided into several segments as these axons project to their targets, it is an ideal system for investigators to ask fundamental questions related to mechanisms of short- and long-range axon guidance, fasciculation, and choice point decisions at the midline intermediate target. In addition, studies of patterning genes of the nervous system have revealed complex transcription factor codes that function in a combinatorial fashion to specify individual classes of spinal neurons including commissural neurons. Despite these advances and the functional importance of spinal commissural neurons in mediating the transfer of external sensory information from the peripheral nervous system (PNS) to the CNS, only a handful of studies have begun to elucidate the mechanistic logic underlying their long-range pathfinding and the characterization of their synaptic targets. Using in vitro assays, in vivo labeling methodologies, in combination with both loss- and gain-of-function experiments, several studies have revealed that the molecular mechanisms of long-range spinal commissural axon pathfinding involve an interplay between classical axon guidance cues, morphogens and cell adhesion molecules. For further resources related to this article, please visit the WIREs website.


Assuntos
Axônios/fisiologia , Interneurônios Comissurais/citologia , Interneurônios Comissurais/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Modelos Neurológicos , Neurogênese/fisiologia , Vertebrados/embriologia , Animais , Moléculas de Adesão Celular/metabolismo , Fatores de Transcrição/metabolismo
15.
Neuron ; 85(1): 131-144, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25543457

RESUMO

Movement coordination between opposite body sides relies on neuronal circuits capable of controlling muscle contractions according to motor commands. Trunk and limb muscles engage in distinctly lateralized behaviors, yet how regulatory spinal circuitry differs is less clear. Here, we intersect virus technology and mouse genetics to unravel striking distribution differences of interneurons connected to functionally distinct motor neurons. We find that premotor interneurons conveying information to axial motor neurons reside in symmetrically balanced locations while mostly ipsilateral premotor interneurons synapse with limb-innervating motor neurons, especially those innervating more distal muscles. We show that observed distribution differences reflect specific premotor interneuron subpopulations defined by genetic and neurotransmitter identity. Synaptic input across the midline reaches axial motor neurons preferentially through commissural axon arborization, and to a lesser extent, through midline-crossing dendrites capturing contralateral synaptic input. Together, our findings provide insight into principles of circuit organization underlying weighted lateralization of movement.


Assuntos
Axônios/fisiologia , Interneurônios Comissurais/fisiologia , Dendritos/fisiologia , Lateralidade Funcional/fisiologia , Neurônios Motores/fisiologia , Medula Espinal/fisiologia , Transmissão Sináptica/fisiologia , Animais , Extremidades/inervação , Interneurônios/fisiologia , Camundongos , Neurônios Motores/metabolismo , Tronco/inervação
16.
PLoS One ; 9(10): e109936, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25350378

RESUMO

We analyzed the electrical activity of neuronal populations in the cerebellum and the lumbar spinal cord during fictive scratching in adult decerebrate cats before and after selective sections of the Spino-Reticulo Cerebellar Pathway (SRCP) and the Ventral-Spino Cerebellar Tract (VSCT). During fictive scratching, we found a conspicuous sinusoidal electrical activity, called Sinusoidal Cerebellar Potentials (SCPs), in the cerebellar vermis, which exhibited smaller amplitude in the paravermal and hemisphere cortices. There was also a significant spino-cerebellar coherence between these SCPs and the lumbar sinusoidal cord dorsum potentials (SCDPs). However, during spontaneous activity such spino-cerebellar coherence between spontaneous potentials recorded in the same regions decreased. We found that the section of the SRCP and the VSCT did not abolish the amplitude of the SCPs, suggesting that there are additional pathways conveying information from the spinal CPG to the cerebellum. This is the first evidence that the sinusoidal activity associated to the spinal CPG circuitry for scratching has a broad representation in the cerebellum beyond the sensory representation from hindlimbs previously described. Furthermore, the SCPs represent the global electrical activity of the spinal CPG for scratching in the cerebellar cortex.


Assuntos
Geradores de Padrão Central/fisiologia , Cerebelo/fisiologia , Fenômenos Eletrofisiológicos , Atividade Motora , Vias Neurais , Potenciais de Ação , Animais , Gatos , Córtex Cerebelar/fisiologia , Interneurônios Comissurais/fisiologia , Eletroencefalografia , Feminino , Masculino , Medula Espinal/fisiologia
17.
Trends Neurosci ; 37(10): 551-62, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25220044

RESUMO

Commissural neurons project their axons across the midline of the nervous system to contact neurons on the opposite side. Although their existence has been known for more than a century, the function of brain commissures, as well as their diversity and evolutionary advantage, are far from understood. Recent genetic studies in mammals have led to the identification of subsets of commissural neurons, which, in the hindbrain and spinal cord, control the tuning and bilateral coordination of locomotion. The molecular mechanisms and transcriptional programs which specify axonal laterality during development are also now being elucidated. Finally, new studies have confirmed that axonal laterality is plastic and that facilitating the commissural sprouting of axon collaterals might influence functional recovery after brain injury.


Assuntos
Axônios/fisiologia , Interneurônios Comissurais/fisiologia , Locomoção/fisiologia , Regeneração Nervosa/fisiologia , Vias Neurais/fisiologia , Plasticidade Neuronal/fisiologia , Comissuras Telencefálicas/fisiologia , Animais , Interneurônios Comissurais/citologia , Vias Neurais/citologia , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/fisiopatologia , Comissuras Telencefálicas/citologia , Comissuras Telencefálicas/crescimento & desenvolvimento , Comissuras Telencefálicas/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...