Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.891
Filtrar
1.
Gut Microbes ; 16(1): 2404141, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39305272

RESUMO

Cardiometabolic diseases (CMDs), encompassing cardiovascular and metabolic dysfunctions, characterized by insulin resistance, dyslipidemia, hepatic steatosis, and inflammation, have been identified with boosting morbidity and mortality due to the dearth of efficacious therapeutic interventions. In recent years, studies have shown that variations in gut microbiota and its own metabolites can influence the occurrence of CMDs. Intriguingly, the composition and function of the gut microbiota are susceptible to exercise patterns, thus affecting inflammatory, immune, and metabolic responses within the host. In this review, we introduce the key mechanisms of intestinal microecology involved in the onset and development of CMDs, discuss the relationship between exercise and intestinal microecology, and then analyze the role of intestinal microecology in the beneficial effects of exercise on CMDs, aiming at elucidating the gut-heart axis mechanisms of exercise mediated protective effect on CMDs, building avenues for the application of exercise in the management of CMDs.


Assuntos
Doenças Cardiovasculares , Exercício Físico , Microbioma Gastrointestinal , Humanos , Exercício Físico/fisiologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/prevenção & controle , Animais , Doenças Metabólicas/metabolismo , Doenças Metabólicas/microbiologia , Intestinos/microbiologia
2.
Gut Microbes ; 16(1): 2393272, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39224006

RESUMO

The intestine is the largest organ in terms of surface area in the human body. It is responsible not only for absorbing nutrients but also for protection against the external world. The gut microbiota is essential in maintaining a properly functioning intestinal barrier, primarily through producing its metabolites: short-chain fatty acids, bile acids, and tryptophan derivatives. Ethanol overconsumption poses a significant threat to intestinal health. Not only does it damage the intestinal epithelium, but, maybe foremostly, it changes the gut microbiome. Those ethanol-driven changes shift its metabolome, depriving the host of the protective effect the physiological gut microbiota has. This literature review discusses the impact of ethanol consumption on the gut, the gut microbiota, and its metabolome, providing a comprehensive overview of the mechanisms through which ethanol disrupts intestinal homeostasis and discussing potential avenues for new therapeutic intervention.


Assuntos
Etanol , Microbioma Gastrointestinal , Homeostase , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Etanol/metabolismo , Etanol/farmacologia , Animais , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Intestinos/microbiologia , Intestinos/efeitos dos fármacos
3.
Nutrients ; 16(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39275356

RESUMO

ATP-binding cassette transporter subfamily G member 2 (ABCG2) is responsible for the excretion of foreign substances, such as uric acid (UA) and indoxyl sulfate (IS), from the body. Given the importance of increased ABCG2 expression in UA excretion, we investigated the enhancement of intestinal ABCG2 expression using Lactiplantibacillus plantarum 06CC2 (LP06CC2). Mice were reared on a potassium oxonate-induced high-purine model at doses of 0.02% or 0.1% LP06CC2 for three weeks. Results showed that LP06CC2 feeding resulted in increased ABCG2 expression in the small intestine. The expression level of large intestinal ABCG2 also showed a tendency to increase, suggesting upregulation of the intestinal excretion transporter ABCG2 by LP06CC2. Overall, LP06CC2 treatment increased fecal UA excretion and showed a trend towards increased fecal excretion of IS, suggesting that LP06CC2 treatment enhanced the expression of intestinal ABCG2, thereby promoting the excretion of UA and other substances from the intestinal tract.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Ácido Úrico , Animais , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Ácido Úrico/metabolismo , Ácido Úrico/urina , Camundongos , Masculino , Fezes/química , Fezes/microbiologia , Probióticos , Mucosa Intestinal/metabolismo , Lactobacillus plantarum/metabolismo , Lactobacillaceae/metabolismo , Intestino Delgado/metabolismo , Intestinos/microbiologia
4.
Curr Protoc ; 4(9): e70013, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39269316

RESUMO

The study of human intestinal physiology and host-microbe interactions is crucial for understanding gastrointestinal health and disease. Traditional two-dimensional cell culture models lack the complexity of the native intestinal environment, limiting their utility in studying intestinal biology. Here, we present a detailed protocol for the set up and utilization of a three-dimensional (3D) in vitro bioreactor system for human intestinal studies and bacterial co-culture. This article outlines the design and assembly of the bioreactor system, scaffold fabrication, bacterial culture techniques, analysis methods, and troubleshooting tips. By providing step-by-step instructions, the goal is to enable other laboratories to utilize physiologically relevant tissue models of the human intestine, incorporating key features, such as nutrient flow, multiple human cell types, 3D architecture, and microbial communities. The incorporation of commensal bacteria into the bioreactor system allows for the investigation of complex host-microbe interactions, providing insight into gastrointestinal health and pathology. This article serves as a comprehensive resource for scientists seeking to advance their understanding of intestinal biology toward the development of novel therapeutic strategies for gastrointestinal disorders. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Scaffold design Basic Protocol 2: Intestinal cell culture: Caco2 cells Basic Protocol 3: Intestinal cell culture: organoids Basic Protocol 4: Bioreactor design and set up Basic Protocol 5: Bacteria in 3D bioreactor set up Basic Protocol 6: Bacteria and drug dosing.


Assuntos
Reatores Biológicos , Técnicas de Cocultura , Intestinos , Humanos , Reatores Biológicos/microbiologia , Técnicas de Cocultura/métodos , Técnicas de Cocultura/instrumentação , Intestinos/microbiologia , Intestinos/citologia , Células CACO-2 , Microbioma Gastrointestinal , Técnicas de Cultura de Células em Três Dimensões/métodos , Técnicas de Cultura de Células em Três Dimensões/instrumentação
5.
Gut Microbes ; 16(1): 2398126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39254265

RESUMO

The intestine exhibits distinct characteristics along its length, with a substantial immune cell reservoir and diverse microbiota crucial for maintaining health. This study investigates how anatomical location and regional microbiota influence intestinal immune cell abundance. Using conventionally colonized and germ-free mice, segment-specific immune cell composition and microbial communities were assessed. Metagenomic sequencing analyzed microbiome variations, while flow cytometry and immunofluorescence examined immune cell composition. Microbiome composition varied significantly along the intestine, with diversity and abundance increasing from upper to lower segments. Immune cells showed distinct segment-specific patterning influenced by microbial colonization and localization. T cell subsets displayed varied dependence on microbiome presence and anatomical location. This study highlights locoregional differences in intestinal immune cell and microbiome composition, identifying immune subsets susceptible to microbiota presence. The findings provide context for understanding immune cell alterations in disease models.


Assuntos
Bactérias , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Animais , Camundongos , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/imunologia , Intestinos/microbiologia , Intestinos/imunologia , Intestinos/citologia , Metagenômica , Vida Livre de Germes , Feminino , Subpopulações de Linfócitos T/imunologia , Masculino , Mucosa Intestinal/microbiologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/citologia
6.
Nat Commun ; 15(1): 7733, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231950

RESUMO

Strains of the Bacillus cereus (Bc) group are sporulating bacteria commonly associated with foodborne outbreaks. Spores are dormant cells highly resistant to extreme conditions. Nevertheless, the pathological processes associated with the ingestion of either vegetative cells or spores remain poorly understood. Here, we demonstrate that while ingestion of vegetative bacteria leads to their rapid elimination from the intestine of Drosophila melanogaster, a single ingestion of spores leads to the persistence of bacteria for at least 10 days. We show that spores do not germinate in the anterior part of the intestine which bears the innate immune defenses. Consequently, spores reach the posterior intestine where they germinate and activate both the Imd and Toll immune pathways. Unexpectedly, this leads to the induction of amidases, which are negative regulators of the immune response, but not to antimicrobial peptides. Thereby, the local germination of spores in the posterior intestine dampens the immune signaling that in turn fosters the persistence of Bc bacteria. This study provides evidence for how Bc spores hijack the intestinal immune defenses allowing the localized birth of vegetative bacteria responsible for the digestive symptoms associated with foodborne illness outbreaks.


Assuntos
Bacillus cereus , Drosophila melanogaster , Esporos Bacterianos , Bacillus cereus/imunologia , Esporos Bacterianos/imunologia , Animais , Drosophila melanogaster/imunologia , Drosophila melanogaster/microbiologia , Intestinos/microbiologia , Intestinos/imunologia , Imunidade Inata , Proteínas de Drosophila/metabolismo , Transdução de Sinais/imunologia , Receptores Toll-Like/metabolismo , Receptores Toll-Like/imunologia , Feminino
7.
Front Immunol ; 15: 1435180, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114658

RESUMO

Introduction: Introduction: The influenza virus primarily targets the respiratory tract, yet both the respiratory and intestinal systems suffer damage during infection. The connection between lung and intestinal damage remains unclear. Methods: Our experiment employs 16S rRNA technology and Liquid Chromatography-Mass Spectrometry (LC-MS) to detect the impact of influenza virus infection on the fecal content and metabolites in mice. Additionally, it investigates the effect of influenza virus infection on intestinal damage and its underlying mechanisms through HE staining, Western blot, Q-PCR, and flow cytometry. Results: Our study found that influenza virus infection caused significant damage to both the lungs and intestines, with the virus detected exclusively in the lungs. Antibiotic treatment worsened the severity of lung and intestinal damage. Moreover, mRNA levels of Toll-like receptor 7 (TLR7) and Interferon-b (IFN-b) significantly increased in the lungs post-infection. Analysis of intestinal microbiota revealed notable shifts in composition after influenza infection, including increased Enterobacteriaceae and decreased Lactobacillaceae. Conversely, antibiotic treatment reduced microbial diversity, notably affecting Firmicutes, Proteobacteria, and Bacteroidetes. Metabolomics showed altered amino acid metabolism pathways due to influenza infection and antibiotics. Abnormal expression of indoleamine 2,3-dioxygenase 1 (IDO1) in the colon disrupted the balance between helper T17 cells (Th17) and regulatory T cells (Treg cells) in the intestine. Mice infected with the influenza virus and supplemented with tryptophan and Lactobacillus showed reduced lung and intestinal damage, decreased Enterobacteriaceae levels in the intestine, and decreased IDO1 activity. Discussion: Overall, influenza infection caused damage to lung and intestinal tissues, disrupted intestinal microbiota and metabolites, and affected Th17/Treg balance. Antibiotic treatment exacerbated these effects. Supplementation with tryptophan and Lactobacillus improved lung and intestinal health, highlighting a new understanding of the lung-intestine connection in influenza-induced intestinal disease.


Assuntos
Modelos Animais de Doenças , Microbioma Gastrointestinal , Pulmão , Infecções por Orthomyxoviridae , Animais , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/metabolismo , Camundongos , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/metabolismo , Pulmão/virologia , Receptor 7 Toll-Like/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Camundongos Endogâmicos C57BL , Intestinos/imunologia , Intestinos/microbiologia , Intestinos/virologia , Feminino , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Transdução de Sinais , RNA Ribossômico 16S/genética , Glicoproteínas de Membrana
8.
Front Immunol ; 15: 1414869, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100674

RESUMO

Introduction: The prevention and mitigation of intestinal immune challenge is crucial for poultry production. This study investigated the effects of dietary Macleaya cordata extract (MCE) supplementation on the prevention of intestinal injury in broiler chickens challenged with lipopolysaccharide (LPS). Methods: A total of 256 one-day-old male Arbor Acres broilers were randomly divided into 4 treatment groups using a 2×2 factorial design with 2 MCE supplemental levels (0 and 400 mg/kg) and 2 LPS challenge levels (0 and 1 mg/kg body weight). The experiment lasted for 21 d. Results and discussion: The results showed that MCE supplementation increased the average daily feed intake during days 0-14. MCE supplementation and LPS challenge have an interaction on the average daily gain during days 15-21. MCE supplementation significantly alleviated the decreased average daily gain of broiler chickens induced by LPS. MCE supplementation increased the total antioxidant capacity and the activity of catalase and reduced the level of malondialdehyde in jejunal mucosa. MCE addition elevated the villus height and the ratio of villus height to crypt depth of the ileum. MCE supplementation decreased the mRNA expression of pro-inflammatory cytokines interleukin (IL)-6 and IL-8 in the jejunum. MCE addition mitigated LPS-induced mRNA up-expression of pro-inflammatory factors IL-1ß and IL-17 in the jejunum. MCE supplementation increased the abundance of probiotic bacteria (such as Lactobacillus and Blautia) and reduced the abundance of pathogenic bacteria (such as Actinobacteriota, Peptostretococcaceae, and Rhodococcus), leading to alterations in gut microbiota composition. MCE addition altered several metabolic pathways such as Amino acid metabolism, Nucleotide metabolism, Energy metabolism, Carbohydrate metabolism, and Lipid metabolism in broilers. In these pathways, MCE supplementation increased the levels of L-aspartic acid, L-Glutamate, L-serine, etc., and reduced the levels of phosphatidylcholine, phosphatidylethanolamine, thromboxane B2, 13-(S)-HODPE, etc. In conclusion, dietary supplementation of 400 mg/kg MCE effectively improved the growth performance and intestinal function in LPS-challenged broiler chickens, probably due to the modulation of gut microbiota and plasma metabolites.


Assuntos
Galinhas , Suplementos Nutricionais , Microbioma Gastrointestinal , Lipopolissacarídeos , Extratos Vegetais , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Masculino , Papaveraceae/química , Ração Animal , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/imunologia , Citocinas/metabolismo , Citocinas/sangue , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Intestinos/imunologia
9.
Cell Host Microbe ; 32(8): 1225-1229, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39146794

RESUMO

Microbial fermentation and associated products provide insights into the gut microbiota-host relationship. Here, we propose using improved technologies that allow non-invasive, real-time measurements of intestinal gases as a metric for microbial fermentation. This approach has the potential to provide a basis for personalized interventions that improve host metabolic health.


Assuntos
Fermentação , Gases , Microbioma Gastrointestinal , Microbioma Gastrointestinal/fisiologia , Humanos , Gases/metabolismo , Interações entre Hospedeiro e Microrganismos , Intestinos/microbiologia , Animais , Bactérias/metabolismo
10.
BMJ Open Gastroenterol ; 11(1)2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153763

RESUMO

INTRODUCTION: Short bowel syndrome (SBS) is the predominant cause of paediatric intestinal failure. Although life-saving, parenteral nutrition (PN) is linked to complications and may impact quality of life (QoL). Most children will experience intestinal rehabilitation (IR), but the mechanisms underpinning this remain to be understood. SBS is characterised by abnormal microbiome patterns, which might serve as predictive indicators for IR. We aim to characterise the microbiome profiles of children with SBS during IR, concurrently exploring how parental perspectives of QoL relate to IR. METHODS AND ANALYSIS: This study will enrol a minimum of 20 paediatric patients with SBS (0-18 years). Clinical data and biological samples will be collected over a 2-year study period. We will apply 16S rRNA gene sequencing to analyse the microbiome from faecal and gut tissue samples, with additional shotgun metagenomic sequencing specifically on samples obtained around the time of IR. Gas chromatography with flame ionisation detection will profile faecal short-chain fatty acids. Plasma citrulline and urinary intestinal fatty acid binding proteins will be measured annually. We will explore microbiome-clinical covariate interactions. Furthermore, we plan to assess parental perspectives on QoL during PN and post-IR by inviting parents to complete the Paediatric Quality of Life questionnaire at recruitment and after the completion of IR. ETHICS AND DISSEMINATION: Ethical approval was obtained from the East Midlands-Nottingham 2 Research Ethics Committee (22/EM/0233; 28 November 2022). Recruitment began in February 2023. Outcomes of the study will be published in peer-reviewed scientific journals and presented at scientific meetings. A lay summary of the results will be made available to participants and the public. TRIAL REGISTRATION NUMBER: ISRCTN90620576.


Assuntos
Fezes , Microbioma Gastrointestinal , Nutrição Parenteral , Qualidade de Vida , Síndrome do Intestino Curto , Humanos , Síndrome do Intestino Curto/microbiologia , Síndrome do Intestino Curto/epidemiologia , Microbioma Gastrointestinal/fisiologia , Qualidade de Vida/psicologia , Estudos Prospectivos , Criança , Pré-Escolar , Lactente , Estudos Longitudinais , Feminino , Adolescente , Fezes/microbiologia , Masculino , Nutrição Parenteral/métodos , Nutrição Parenteral/estatística & dados numéricos , Recém-Nascido , RNA Ribossômico 16S , Intestinos/microbiologia
11.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39125598

RESUMO

Alginate oligosaccharides (AOSs), which are an attractive feed additive for animal production, exhibit pleiotropic bioactivities. In the present study, we investigated graded doses of AOS-mediated alterations in the physiological responses of piglets by determining the intestinal architecture, barrier function, and microbiota. A total of 144 weaned piglets were allocated into four dietary treatments in a completely random design, which included a control diet (CON) and three treated diets formulated with 250 mg/kg (AOS250), 500 mg/kg (AOS500), and 1000 mg/kg AOS (AOS1000), respectively. The trial was carried out for 28 days. Our results showed that AOS treatment reinforced the intestinal barrier function by increasing the ileal villus height, density, and fold, as well as the expression of tight junction proteins, especially at the dose of 500 mg/kg AOS. Meanwhile, supplementations with AOSs showed positive effects on enhancing antioxidant capacity and alleviating intestinal inflammation by elevating the levels of antioxidant enzymes and inhibiting excessive inflammatory cytokines. The DESeq2 analysis showed that AOS supplementation inhibited the growth of harmful bacteria Helicobacter and Escherichia_Shigella and enhanced the relative abundance of Faecalibacterium and Veillonella. Collectively, these findings suggested that AOSs have beneficial effects on growth performance, antioxidant capacity, and gut health in piglets.


Assuntos
Alginatos , Antioxidantes , Microbioma Gastrointestinal , Oligossacarídeos , Desmame , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Suínos , Oligossacarídeos/farmacologia , Oligossacarídeos/administração & dosagem , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Alginatos/farmacologia , Suplementos Nutricionais , Ração Animal , Intestinos/microbiologia , Intestinos/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia
12.
Crit Rev Eukaryot Gene Expr ; 34(8): 59-73, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39180208

RESUMO

The objective of this study is to assess the prevalence of antibiotic-resistant genes (ARGs) in the intestines of infants and the factors affecting their distribution. Breast milk and infant stool samples were collected from nine full-term, healthy mother-infant pairs. The bacterial distribution and various types of ARGs present in the samples were analyzed using metagenomic next-generation sequencing. Over a period spanning from 2 to 240 d after birth, a total of 273 types of ARGs were identified in both infant feces and breast milk, exhibiting a trend of increasing prevalence over time. High concentrations of representative ARG populations were identified in the intestines of infants, especially at 12-15 d after birth. These populations included APH3-Ib, tetW/N/W, mphA, and Haemophilus influenzae PBP3, and multiple ARG Escherichia coli soxS that were resistant to common clinically used aminoglycoside, tetracycline, macrolide, and beta-lactam antibiotics. Gammaproteobacteria and Bacilli, especially Enterococcus, Staphylococcus, Acinetobacter, Streptococcus, and Escherichia were among the identified ARG carriers. Maternal age and body mass index (present and before pregnancy), infant sex, maternal consumption of probiotic yogurt during pregnancy, and lactation might be substantial factors influencing the occurrence of ARG-carrying bacteria and ARG distribution in the infant feces. These results indicate that environmental factors may influence the distribution of ARG-carrying bacteria and ARGs themselves in infants during early life. Providing appropriate recommendations regarding maternal age, body mass index during pregnancy, and use of probiotic products could potentially mitigate the transmission of antibiotic-resistant microbiota and ARGs, thereby diminishing the risk of antibiotic-resistant infections and safeguarding children's health.


Assuntos
Antibacterianos , Fezes , Leite Humano , Humanos , Feminino , Fezes/microbiologia , Antibacterianos/farmacologia , Leite Humano/microbiologia , Lactente , Recém-Nascido , Intestinos/microbiologia , Masculino , Farmacorresistência Bacteriana/genética , Genes Bacterianos , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Bactérias/genética , Bactérias/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética
13.
Int J Biol Macromol ; 277(Pt 2): 134346, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094883

RESUMO

To date, although the high-carbohydrate (HC) feed has been extensively adopted in the aquaculture industry, its effects on the intestinal function and development of aquatic animals still remain unclear. In addition, the corresponding nutritional intervention is still barely reported. This study aimed to evaluate the influence of xylooligosaccharides (XOS) on the intestinal health of Megalobrama amblycephala subjected to a HC feeding. Fish (average weight: 44.55 ± 0.15 g) were randomly offered 3 diets, including a control one (29 % carbohydrate), a HC one (41 % carbohydrate), and a XOS supplemented one (HC + 1.0 % XOS, HCX) respectively for 12 weeks. The HC feeding caused morphological abnormalities of intestine, an increased intestinal permeability, and the intestinal immunosuppression, all of which were markedly reversed by XOS administration. In addition, compared with the HC group, HCX feeding remarkably promoted the intestinal activities of digestive and brush border enzymes, and the expressions of cell proliferation-related proteins (Wnt10b and Cyclin D1). The 16s rDNA sequencing also revealed that XOS administration increased the abundance of beneficial bacteria, and decreased that of pathogenic ones. In conclusion, dietary supplementation of XOS improved the intestinal histomorphology, barrier function, cell proliferation and bacterial communities of carbohydrate-overloaded fish Megalobrama amblycephala.


Assuntos
Carpas , Microbioma Gastrointestinal , Glucuronatos , Intestinos , Oligossacarídeos , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Oligossacarídeos/farmacologia , Glucuronatos/farmacologia , Carpas/microbiologia , Carpas/crescimento & desenvolvimento , Intestinos/efeitos dos fármacos , Intestinos/patologia , Intestinos/microbiologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Ração Animal , Carboidratos da Dieta/farmacologia , Carboidratos da Dieta/efeitos adversos , Suplementos Nutricionais
14.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-39158070

RESUMO

Young animals are highly susceptible to intestinal damage due to incomplete intestinal development, making them vulnerable to external stimuli. Weaning stress in piglets, for instance, disrupts the balance of intestinal microbiota and metabolism, triggering intestinal inflammation and resulting in gut damage. Caffeic acid (CA), a plant polyphenol, can potentially improve intestinal health. Here, we evaluated the effects of dietary CA on the intestinal barrier and microbiota using a lipopolysaccharide (LPS)-induced intestinal damage model. Eighteen piglets were divided into three groups: control group (CON), LPS group (LPS), and CA + LPS group (CAL). On the 21st and 28th day, six piglets in each group were administered either LPS (80 µg/kg body weight; Escherichia coli O55:B5) or saline. The results showed that dietary CA improved the intestinal morphology and barrier function, and alleviated the inflammatory response. Moreover, dietary CA also improved the diversity and composition of the intestinal microbiota by increasing Lactobacillus and Terrisporobacter while reducing Romboutsia. Furthermore, the LPS challenge resulted in a decreased abundance of 14 different bile acids and acetate, which were restored to normal levels by dietary CA. Lastly, correlation analysis further revealed the potential relationship between intestinal microbiota, metabolites, and barrier function. These findings suggest that dietary CA could enhance intestinal barrier function and positively influence intestinal microbiota and its metabolites to mitigate intestinal damage in piglets. Consuming foods rich in CA may effectively reduce the incidence of intestinal diseases and promote intestinal health in piglets.


Our study focuses on a major issue affecting young animals. After weaning, piglets are particularly vulnerable to severe intestinal infections due to their immature intestinal systems, leading to damaged barriers and financial losses for the pig industry. We explore the possibility of using caffeic acid (CA), a natural compound found in plants, to promote intestinal health. Our research shows that adding CA to the diet can reduce intestinal inflammation and improve barrier function in weaned piglets challenged by lipopolysaccharide. CA positively affects ileal microbiota by increasing beneficial bacteria like Lactobacillus and Terrisporobacter and decreasing Romboutsia. We also observed differing regulatory effects of CA between the ileum and colon, with opposite changes in primary bile acids. Our findings emphasize the potential of CA as a dietary supplement to improve intestinal barrier function and modulate the inflammatory response by targeting gut microbiota and metabolites. To our knowledge, this is the first to demonstrate the effects of CA on ileal barrier function and microbiota in piglets. Our findings could significantly benefit the pig industry by mitigating financial losses from serious intestinal infections. Additionally, this research may offer key insights into the health of human infants' intestines.


Assuntos
Ácidos Cafeicos , Microbioma Gastrointestinal , Lipopolissacarídeos , Animais , Lipopolissacarídeos/farmacologia , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Suínos , Dieta/veterinária , Inflamação/veterinária , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/microbiologia , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Masculino , Ração Animal/análise
15.
Poult Sci ; 103(10): 104138, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39146922

RESUMO

Intestinal microbial metabolism has an important impact on the health of laying hens, and microbes are also important hosts for ARGs. However, the relationship between intestinal microbes and antibiotic resistance in laying hens is unclear. In this study, a slaughtering experiment, an in vitro fermentation experiment and a single-bacteria culture experiment were carried out, and metagenomic and metabolomic analyses were used to investigate the relationships between microbial metabolism and the antibiotic resistome in the cecum of laying hens. The results showed that there were different types of ARGs in the intestines of laying hens, and the risk scores of the ARGs tended to decrease with growth stage. A total of 1142 metagenome-assembled genomes (MAGs) were obtained, and Escherichia coli was found to be the dominant ARG host, carrying 62 ARGs. Metabolomics revealed that indole and its derivatives, such as indole-3-lactic acid, were negatively correlated with a variety of ARGs. Moreover, in vitro fermentation experiment and single-bacteria culture experiment demonstrated that indole-3-lactic acid reduced the abundance and risk of multiple ARGs in the intestine and inhibited the growth of the ARG host Escherichia coli. In the context of high concern about intestinal microbial metabolism and antibiotic resistance, this is the first study to focus on the relationship between intestinal microbial metabolism and antibiotic resistance in laying hens. These findings have important implications for healthy farming and antibiotic resistance control.


Assuntos
Galinhas , Microbioma Gastrointestinal , Animais , Galinhas/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Feminino , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Resistência Microbiana a Medicamentos/genética , Farmacorresistência Bacteriana , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/classificação , Intestinos/microbiologia , Intestinos/efeitos dos fármacos , Ceco/microbiologia
16.
J Control Release ; 374: 140-153, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39117113

RESUMO

Inflammatory bowel diseases (IBD) are often associated with dysregulated gut microbiota and excessive inflammatory microenvironment. Probiotic therapy combined with inflammation management is a promising approach to alleviate IBD, but the efficacy is hindered by the inferior colonization of probiotics in mucus-depleted inflammatory bowel segments. Here, we present modified montmorillonite armed probiotic Escherichia coli Nissle 1917 (MMT-Fe@EcN) with enhanced intestinal colonization and hydrogen sulfide (H2S) scavenging for synergistic alleviation of IBD. The montmorillonite layer that can protect EcN against environmental assaults in oral delivery and improve on-site colonization of EcN in the mucus-depleted intestinal segment due to its strong adhesive capability and electronegativity, with a 22.6-fold increase in colonization efficiency compared to EcN. Meanwhile, MMT-Fe@EcN can manage inflammation by scavenging H2S, which allows for enhancing probiotic viability and colonization for restoring the gut microbiota. As a result, MMT-Fe@EcN exhibits extraordinary therapeutic effects in the dextran sulfate sodium-induced mouse colitis models, including alleviating intestinal inflammation and restoring disrupted intestinal barrier function, and gut microbiota. These findings provide a promising strategy for clinical IBD treatment and potentially other mucus-depletion-related diseases.


Assuntos
Bentonita , Colite , Sulfato de Dextrana , Escherichia coli , Microbioma Gastrointestinal , Sulfeto de Hidrogênio , Camundongos Endogâmicos C57BL , Muco , Probióticos , Animais , Probióticos/administração & dosagem , Probióticos/uso terapêutico , Sulfeto de Hidrogênio/metabolismo , Colite/induzido quimicamente , Colite/terapia , Masculino , Muco/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Humanos , Intestinos/microbiologia
17.
Microbiol Res ; 288: 127838, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39153466

RESUMO

With the imbalance of intestinal microbiota, the body will then face an inflammatory response, which has serious implications for human health. Bodily allergies, injury or pathogens infections can trigger or promote inflammation and alter the intestinal environment. Meanwhile, excessive changes in the intestinal environment cause the imbalance of microbial homeostasis, which leads to the proliferation and colonization of opportunistic pathogens, invasion of the body's immune system, and the intensification of inflammation. Some natural compounds and gut microbiota and metabolites can reduce inflammation; however, the details of how they interact with the gut immune system and reduce the gut inflammatory response still need to be fully understood. The review focuses on inflammation and intestinal microbiota imbalance caused by pathogens. The body reacts differently to different types of pathogenic bacteria, and the ingestion of pathogens leads to inflamed gastrointestinal tract disorders or intestinal inflammation. In this paper, unraveling the interactions between the inflammation, pathogenic bacteria, and intestinal microbiota based on inflammation caused by several common pathogens. Finally, we summarize the effects of intestinal metabolites and natural anti-inflammatory substances on inflammation to provide help for related research of intestinal inflammation caused by pathogenic bacteria.


Assuntos
Bactérias , Microbioma Gastrointestinal , Inflamação , Humanos , Inflamação/microbiologia , Inflamação/metabolismo , Animais , Bactérias/metabolismo , Bactérias/classificação , Intestinos/microbiologia , Anti-Inflamatórios/metabolismo , Homeostase , Disbiose/microbiologia
18.
Int J Biol Macromol ; 278(Pt 1): 134624, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39134191

RESUMO

The molecular chaperone GroEL, commonly found in various bacterial species, exhibits heightened expression levels in response to high temperatures and increased levels of oxygen free radicals. Limited literature currently exists on the probiotic role of GroEL in invertebrates. This study sought to explore how the surface protein GroEL from Lactobacillus plantarum Ep-M17 impacts the intestinal barrier function of Penaeus vannamei. Through pull-down and immunofluorescence assays, the interaction between GroEL and Act1 in the gastrointestinal tract of P. vannamei was confirmed. Results from bacterial binding assays demonstrated that rGroEL can bind to pathogens like Vibrio parahaemolyticus E1 (V. p-E1). In vitro experiments revealed that the administration of rGroEL significantly decreased the levels of inflammatory cytokines induced by pathogens while preserving the integrity of tight junctions between intestinal epithelial cells and reducing bacteria-induced apoptosis. Additionally, rGroEL notably lessened the intestinal loading of V. p-E1 in P. vannamei, downregulated immune-related gene expression, and upregulated BCL/BAX expression in the intestines following V. p-E1 challenge. Mechanistic investigations further showed that rGroEL treatment effectively suppressed the expression and phosphorylation of proteins involved in the NF-κB and PI3K-AKT-mTOR signalling pathways in the intestines of bacteria-infected P. vannamei. Furthermore, GroEL reinforces protection against bacterial infections by enhancing the phagocytic and anti-apoptotic capabilities of P. vannamei hemocytes. These results suggest that GroEL may impede the interaction between pathogens and the intestinal mucosa through its competitive binding characteristics, ultimately reducing bacterial infections.


Assuntos
Chaperonina 60 , Mucosa Intestinal , Penaeidae , Vibrio parahaemolyticus , Animais , Chaperonina 60/metabolismo , Penaeidae/microbiologia , Penaeidae/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Transdução de Sinais/efeitos dos fármacos , Intestinos/microbiologia , Lactobacillus plantarum/metabolismo , Apoptose/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Lactobacillales/metabolismo
19.
Food Funct ; 15(17): 8740-8758, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39101469

RESUMO

Consuming probiotic products is a solution that people are willing to choose to augment health. As a global health hazard, sleep deprivation (SD) can cause both physical and mental diseases. The present study investigated the protective effects of Lacticaseibacillus rhamnosus GG (LGG), a widely used probiotic, on a SD mouse model. Here, it has been shown that SD induced intestinal damage in mice, while LGG supplementation attenuated disruption of the intestinal barrier and enhanced the antioxidant capacity. Microbiome analysis revealed that SD caused dysbiosis in the gut microbiota, characterized by increased levels of Clostridium XlVa, Alistipes, and Desulfovibrio, as well as decreased levels of Ruminococcus, which were partially ameliorated by LGG. Moreover, SD resulted in elevated pro-inflammatory cytokine concentrations in both the intestine and the brain, while LGG provided protection in both organs. LGG supplementation significantly improved locomotor activity in SD mice. Although heat-killed LGG showed some protective effects in SD mice, its overall efficacy was inferior to that of live LGG. In terms of mechanism, it was found that AG1478, an inhibitor of the epidermal growth factor receptor (EGFR) tyrosine kinase, could diminish the protective effects of LGG. In conclusion, LGG demonstrated the ability to alleviate SD-induced intestinal barrier dysfunction through EGFR activation and alleviate neuroinflammation.


Assuntos
Microbioma Gastrointestinal , Lacticaseibacillus rhamnosus , Probióticos , Privação do Sono , Animais , Lacticaseibacillus rhamnosus/fisiologia , Camundongos , Probióticos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Doenças Neuroinflamatórias , Intestinos/microbiologia , Camundongos Endogâmicos C57BL , Mucosa Intestinal/metabolismo , Disbiose/microbiologia , Modelos Animais de Doenças
20.
Food Funct ; 15(17): 8810-8822, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39115430

RESUMO

Approximately two-thirds of patients with asthma, a common inflammatory airway disease, are thought to present with allergies. Probiotics and tryptophan metabolites are becoming increasingly important in treating allergic asthma. This study aimed to identify potential probiotic strains and tryptophan metabolites that could alleviate asthma symptoms. Based on in vitro fermentation experiments, we evaluated variations in probiotic capacity to metabolize tryptophan. Of the eight tested strains, Bifidobacterium animalis subsp. lactis CCFM1274 produced relatively high levels of indole-3-carboxaldehyde (I3C). A mouse model of allergic asthma was established by oral administration of ovalbumin (OVA) and was subjected to oral administration of probiotics. The results demonstrated that treatment with CCFM1274 reduced the tendency for body weight loss and mortality in OVA-induced asthmatic mice. Ingestion of CCFM1274 improved the infiltration of perivascular and peribronchial inflammatory cells in the lung sections stained with hematoxylin and eosin (H&E). This outcome was accompanied by a reduction in the serum levels of OVA-specific immunoglobulin E (OVA-sIgE) and in the levels of IL-10 and IL-17 in the bronchoalveolar lavage fluid (BALF). The linear discriminant analysis effect size (LEfSe) of the gut microbiota showed that CCFM1274 increased the relative abundance of Bifidobacterium. In conclusion, CCFM1274 remodeled intestinal tryptophan metabolism in mice and contributed to the improvement of allergic asthma.


Assuntos
Asma , Bifidobacterium animalis , Microbioma Gastrointestinal , Camundongos Endogâmicos BALB C , Probióticos , Triptofano , Animais , Triptofano/metabolismo , Asma/tratamento farmacológico , Camundongos , Probióticos/farmacologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Ovalbumina , Modelos Animais de Doenças , Imunoglobulina E , Líquido da Lavagem Broncoalveolar/química , Intestinos/microbiologia , Humanos , Indóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA