Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Drug Metab Pharmacokinet ; 43(5): 543-554, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29520718

RESUMO

BACKGROUND AND OBJECTIVES: Fullerene-based compounds are a novel class of molecules being developed for a variety of biomedical applications, with nearly 1000 publications in this area in the last 4 years alone. One such compound, the e,e,e-methanofullerene(60)-63-tris malonic acid (designated C3), is a potent catalytic superoxide dismutase mimetic which has shown neuroprotective efficacy in a number of animal models of neurologic disease, including Parkinsonian Macaca fascicularis monkeys. The aim of this study was to characterize its toxicity and pharmacokinetics in mice and monkeys. METHODS: To assess pharmacokinetics in mice, we synthesized and administered 14C-C3 to mice using various routes of delivery, including orally. To assess potential toxicity in primates, serial blood studies and electrocardiograms (ECGs) were obtained from monkeys treated with C3 (3 or 7 mg/kg/day) for 2  months. RESULTS AND CONCLUSIONS: The plasma half-life of C3 was 8.2 ± 0.2 h, and there was wide tissue distribution, including uptake into brain. The compound was cleared by both hepatic and renal excretion. C3 was quite stable, with minimal metabolism of the compound even after 7 days of treatment. The LD50 in mice was 80 mg/kg for a single intraperitoneal injection, and was > 30 mg/kg/day for sustained administration; therapeutic doses are 1-5 mg/kg/day. For primates, no evidence of renal, hepatic, electrolyte, or hematologic abnormalities were noted, and serial ECGs demonstrated no alteration in cardiac electrical activity. Thus, doses of C3 that have therapeutic efficacy appear to be well tolerated after 2 years (mice) or 2 months (non-human primates) of treatment.


Assuntos
Fulerenos/farmacocinética , Fulerenos/toxicidade , Infarto da Artéria Cerebral Média/tratamento farmacológico , Intoxicação por MPTP/tratamento farmacológico , Fármacos Neuroprotetores/farmacocinética , Fármacos Neuroprotetores/toxicidade , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Fulerenos/administração & dosagem , Fulerenos/sangue , Meia-Vida , Frequência Cardíaca/efeitos dos fármacos , Eliminação Hepatobiliar , Infarto da Artéria Cerebral Média/sangue , Dose Letal Mediana , Intoxicação por MPTP/sangue , Intoxicação por MPTP/induzido quimicamente , Macaca fascicularis , Masculino , Taxa de Depuração Metabólica , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/sangue , Eliminação Renal , Distribuição Tecidual
2.
Neuroendocrinology ; 103(3-4): 300-14, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26227546

RESUMO

BACKGROUND: Numerous studies have reported on the neuroprotective activity of estradiol, whereas the effect of the other ovarian steroid, progesterone, is much less documented. METHODS: This study sought to investigate neuroprotection with a low dose of progesterone (1 µg) in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated male mice to model Parkinson's disease and compare it to the effect of this steroid in intact mice (experiment 1). We also investigated if high doses of progesterone could protect dopaminergic neurons already exposed to MPTP (experiment 2). We measured progesterone effects on various dopaminergic markers [dopamine and its metabolites, dopamine transporter (DAT) and vesicular monoamine transporter 2 (VMAT2)] and on neuroactive steroids in both plasma and the brain. RESULTS: For experiment 1, our results showed that progesterone completely prevented the effect of MPTP toxicity on dopamine concentrations, on the increase in the 3-methoxytyramine/dopamine ratio, as well as on VMAT2-specific binding in the striatum and the substantia nigra. Progesterone decreased MPTP effects on 3,4-dihydroxyphenylacetic acid concentrations and DAT-specific binding in the lateral part of the anterior striatum and in the middle striatum (medial and lateral parts). Progesterone treatment of intact mice had no effect on the markers investigated. For experiment 2, measures of dopaminergic markers in the striatum showed that 8 mg/kg of progesterone was the most effective dose to reduce MPTP effects, and more limited effects were observed with 16 mg/kg. We found that progesterone treatment increases the levels of brain progesterone itself as well as of its metabolites. CONCLUSION: Our result showed that progesterone has neuroprotective effects on dopaminergic neurons in MPTP-treated male mice.


Assuntos
Intoxicação por MPTP/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Progesterona/uso terapêutico , Androstano-3,17-diol/análogos & derivados , Androstano-3,17-diol/sangue , Animais , Autorradiografia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Radioisótopos de Carbono/farmacocinética , Cocaína/análogos & derivados , Cocaína/farmacocinética , Di-Hidrotestosterona/sangue , Modelos Animais de Doenças , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Relação Dose-Resposta a Droga , Esquema de Medicação , Intoxicação por MPTP/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Progesterona/sangue , Testosterona/sangue , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
3.
Dokl Biochem Biophys ; 464: 308-11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26518555

RESUMO

The goal of this study was to investigate the changes in the concentrations of blood plasma catecholamines as possible biomarkers of Parkinson's disease (PD) in the mouse experimental model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). A significant decrease was detected in the levels of dopamine and L-DOPA in the PD preclinical stage model as a result of the catecholamines systemic metabolism disfunction. In the PD early clinical stage models, the level of L-DOPA and dihydroxyphenylacetic acid decreased, which is consistent with the results of blood tests in untreated patients.


Assuntos
Ácido 3,4-Di-Hidroxifenilacético/sangue , Dopamina/sangue , Epinefrina/sangue , Levodopa/sangue , Intoxicação por MPTP/sangue , Norepinefrina/sangue , Animais , Biomarcadores/sangue , Análise Química do Sangue , Cromatografia Líquida de Alta Pressão , Progressão da Doença , Masculino , Camundongos Endogâmicos C57BL , Sintomas Prodrômicos , Índice de Gravidade de Doença
4.
Eur J Pharmacol ; 746: 301-7, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25261037

RESUMO

Zonisamide has been reported to have protective effects on epilepsy and Parkinson׳s disease and to work via various mechanisms of action, such as inhibition of monoamine oxidase-B and enhancement of tyrosine hydroxylase. Recently, it has been suggested that zonisamide itself shows neuroprotective actions. Therefore, in the present study we investigated the neuroprotective effects of zonisamide against endoplasmic reticulum (ER) stress. We used human neuroblastoma (SH-SY5Y) cells and investigated the protective effects of zonisamide against tunicamycin- and thapsigargin-induced neuronal cell death. In addition, we investigated the effect of zonisamide against 1-methyl-4-phenylpyridinium (MPP⁺)-induced cell death and the mechanism of protection against ER stress. In vivo, we investigated the effect of zonisamide (20 mg/kg, p.o.) in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced mouse model of Parkinson׳s disease. Zonisamide not only suppressed MPP⁺-induced cell death, but also inhibited ER stress-induced cell death and suppressed the expression of ER stress-related factors such as C/EBO homologous protein (CHOP) in vivo. Furthermore, zonisamide inhibited the activation of caspase-3 in vitro. These results suggest that zonisamide affected ER stress via caspase-3. We think that ER stress, particularly the mechanism via caspase-3, is involved in part of the neuroprotective effect of zonisamide against the experimental models of Parkinson׳s disease.


Assuntos
Antiparkinsonianos/uso terapêutico , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Isoxazóis/uso terapêutico , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/prevenção & controle , Animais , Anticonvulsivantes/sangue , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Antiparkinsonianos/sangue , Antiparkinsonianos/farmacocinética , Antiparkinsonianos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Meia-Vida , Humanos , Isoxazóis/sangue , Isoxazóis/farmacocinética , Isoxazóis/farmacologia , Intoxicação por MPTP/sangue , Intoxicação por MPTP/prevenção & controle , Masculino , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/sangue , Fármacos Neuroprotetores/farmacocinética , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/sangue , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia , Tapsigargina/antagonistas & inibidores , Tapsigargina/toxicidade , Tunicamicina/antagonistas & inibidores , Tunicamicina/toxicidade , Zonisamida
5.
Patol Fiziol Eksp Ter ; (4): 3-9, 2013.
Artigo em Russo | MEDLINE | ID: mdl-24640766

RESUMO

In two models of depression-like state--"behavioral despair" and experimental dopamine deficit-dependent MPTP-induced depression-like syndrome--as well as in a model of anxiety-depression-like state induced by dipeptidyl peptidase IV inhibitor methionyl-2(s)-cyanopyrrolidine administered in early postnatal period, the symptoms of behavioral depression in rats in the forced swim test were accompanied by the increase of corticosterone level in blood serum. In every model non-competitive prolyl endopeptidase (PEP) inhibitor benzyloxycarbonyl-methionyl-2(S)-cyanopyrrolidine showed antidepressant-like properties preventing the development of depressive-like behavior. PEP Inhibitor also prevented the increase of serum corticosterone level in the models of "behavioral despair" and anxiety-depressive state, but not in the model of MPTP-induced depression-like syndrome. These findings testify for the involvement of hypothalamic-pituitary-adrenal system in the implementation of depression-like behavior in the specified models of depression-like state.


Assuntos
Corticosterona/sangue , Transtorno Depressivo/sangue , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Transtornos de Ansiedade/sangue , Transtornos de Ansiedade/induzido quimicamente , Transtorno Depressivo/etiologia , Transtorno Depressivo/prevenção & controle , Inibidores da Dipeptidil Peptidase IV/toxicidade , Intoxicação por MPTP/sangue , Masculino , Metionina/análogos & derivados , Metionina/farmacologia , Metionina/uso terapêutico , Metionina/toxicidade , Pirrolidinas/farmacologia , Pirrolidinas/uso terapêutico , Pirrolidinas/toxicidade , Ratos , Ratos Wistar , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/uso terapêutico , Estresse Psicológico/complicações
6.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 21(3): 365-8, 2005 May.
Artigo em Chinês | MEDLINE | ID: mdl-15862160

RESUMO

AIM: To set up Parkinson's disease (PD) model mice by using 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP), detect the levels of plasma IL-1 and IL-6, and to explore their relationship with brain asymmetry. METHODS: Male C57BL/6J mice were divided into right pawed mouse group and left pawed mouse group according to paw preference test which reflects brain asymmetry. Mice were injected intraperitoneally with 25 mg/kg MPTP each day for 5 consecutive days. The mice were executed and blood samples were taken at 1, 3 and 14 days after the last time injection. Control mice were only injected with normal saline. The levels of plasma IL-6 and IL-1 were detected by ELISA. RESULTS: Plasma IL-6 level in normal control mice was low, but elevated dramatically at 14 days after last time injection of MPTP in PD model mice. Furthermore, IL-6 level of right pawed mice was higher than that of left pawed mice. Plasma IL-1 levels also increased on day 3 after last time injection of MPTP, and the level of left pawed mice was higher than that of right pawed mice. CONCLUSION: IL-6 and IL-1 probably participate in the occurrence and progress of MPTP-induced PD in model mice, and were related with brain asymmetry.


Assuntos
Encéfalo/fisiopatologia , Interleucina-1/sangue , Interleucina-6/sangue , Intoxicação por MPTP/sangue , Intoxicação por MPTP/fisiopatologia , Doença de Parkinson/sangue , Doença de Parkinson/fisiopatologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Lateralidade Funcional , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
J Pharmacol Exp Ther ; 306(3): 855-60, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12805479

RESUMO

Cardiac sympathetic denervation occurs commonly in Parkinson's disease. This study explored whether analogous denervation occurs in primates with Parkinsonism from systemic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). 6-[18F]Fluorodopamine positron emission tomographic scanning and plasma levels of catecholamines and their deaminated metabolites were used to assess sympathetic and adrenomedullary function in rhesus monkeys, in the untreated state (n = 3), 2 weeks after a series of four MPTP injections, before establishment of Parkinsonism (acute phase, n = 1); a month later, after four more MPTP doses, associated with severe Parkinsonism (subacute phase, n = 1); or more than 2 years from the last dose (remote phase, n = 3), with persistent severe Parkinsonism. A positive control received i.v. 6-hydroxydopamine 1 week before 6-[18F]fluorodopamine scanning. Acute MPTP treatment increased cardiac 6-[18F]fluorodopamine-derived radioactivity, whereas 6-hydroxydopamine markedly decreased cardiac radioactivity, despite similarly low plasma levels of catecholamines and metabolites after either treatment. Subacutely, plasma catecholamines remained decreased, but now with myocardial 6-[18F]fluorodopamine-derived radioactivity also decreased. Remotely, MPTP-treated monkeys had lower plasma catecholamines and higher myocardial 6-[18F]fluorodopamine-derived radioactivity than did untreated animals. The results indicate that in nonhuman primates, systemic MPTP administration produces multiphasic effects on peripheral catecholamine systems, with nearly complete recovery by 2 years. MPTP- and 6-hydroxydopamine-induced changes differ markedly, probably from ganglionic or preganglionic neurotoxicity with the former and more severe cardiac sympathetic neurotoxicity with the latter. Because of multiphasic sympathetic and adrenomedullary effects, without cardioselective sympathetic denervation at any time, the primate MPTP model does not mimic the changes in peripheral catecholamine systems that characterize the human disease.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Intoxicação por MPTP/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia , Animais , Catecóis/sangue , Modelos Animais de Doenças , Intoxicação por MPTP/sangue , Intoxicação por MPTP/induzido quimicamente , Macaca mulatta , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...