Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732009

RESUMO

The interaction between light and phytohormones is crucial for plant growth and development. The practice of supplementing light at night during winter to promote pitaya flowering and thereby enhance yield has been shown to be crucial and widely used. However, it remains unclear how supplemental winter light regulates phytohormone levels to promote flowering in pitaya. In this study, through analyzing the transcriptome data of pitaya at four different stages (NL, L0, L1, L2), we observed that differentially expressed genes (DEGs) were mainly enriched in the phytohormone biosynthesis pathway. We further analyzed the data and found that cytokinin (CK) content first increased at the L0 stage and then decreased at the L1 and L2 stages after supplemental light treatment compared to the control (NL). Gibberellin (GA), auxin (IAA), salicylic acid (SA), and jasmonic acid (JA) content increased during the formation of flower buds (L1, L2 stages). In addition, the levels of GA, ethylene (ETH), IAA, and abscisic acid (ABA) increased in flower buds after one week of development (L2f). Our results suggest that winter nighttime supplemental light can interact with endogenous hormone signaling in pitaya, particularly CK, to regulate flower bud formation. These results contribute to a better understanding of the mechanism of phytohormone interactions during the induction of flowering in pitaya under supplemental light in winter.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Luz , Reguladores de Crescimento de Plantas , Estações do Ano , Reguladores de Crescimento de Plantas/metabolismo , Flores/metabolismo , Flores/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Citocininas/metabolismo , Giberelinas/metabolismo , Ipomoea nil/metabolismo , Ipomoea nil/genética , Transcriptoma , Perfilação da Expressão Gênica , Ciclopentanos , Oxilipinas
2.
Pestic Biochem Physiol ; 194: 105487, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532349

RESUMO

Recently, the herbicide fomesafen has frequently failed to control the troublesome weed Ipomoea nil in soybean fields in Liaoning Province, China. Hence, we collected 10 suspected resistant populations and evaluated their sensitivity to fomesafen. The results revealed various degrees of Ipomoea nil resistance to fomesafen, with a resistance index of 2.88 to 22.43; the highest value occurred in the LN3 population. Therefore, the mechanisms of the resistance in LN3 to fomesafen were explored. After fomesafen treatment, the expression levels of InPPX1 and InPPX2 genes were 4.19- and 9.29-fold higher, respectively, in LN3 than those in the susceptible (LN1) population. However, mutations and copy number variations were not detected between the two populations. Additionally, malathion pretreatment reduced the dose necessary to halve the growth rate of LN3 by 58%. Liquid chromatography with tandem mass spectrometry demonstrated that metabolism of fomesafen was significantly suppressed by malathion. Moreover, LN3 displayed increased reactive oxygen species scavenging capacity, which was represented by higher superoxide dismutase and peroxidase activities after fomesafen application than those in LN1. An orthogonal partial least squares-discriminant analysis revealed that the high resistance in LN3 could be attributed mainly to enhanced metabolism. Fortunately, the fomesafen-resistant I. nil remained sensitive to 2,4-D-ethylhexylester and bentazon, providing methods for its control.


Assuntos
Herbicidas , Ipomoea nil , Ipomoea nil/metabolismo , Variações do Número de Cópias de DNA , Malation , China , Herbicidas/farmacologia , Herbicidas/metabolismo
3.
PLoS One ; 17(10): e0271012, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36264987

RESUMO

The R2R3-MYB transcription factor is one of the largest transcription factor families in plants. R2R3-MYBs play a variety of functions in plants, such as cell fate determination, organ and tissue differentiations, primary and secondary metabolisms, stress and defense responses and other physiological processes. The Japanese morning glory (Ipomoea nil) has been widely used as a model plant for flowering and morphological studies. In the present study, 127 R2R3-MYB genes were identified in the Japanese morning glory genome. Information, including gene structure, protein motif, chromosomal location and gene expression, were assigned to the InR2R3-MYBs. Phylogenetic tree analysis revealed that the 127 InR2R3-MYBs were classified into 29 subfamilies (C1-C29). Herein, physiological functions of the InR2R3-MYBs are discussed based on the functions of their Arabidopsis orthologues. InR2R3-MYBs in C9, C15, C16 or C28 may regulate cell division, flavonol biosynthesis, anthocyanin biosynthesis or response to abiotic stress, respectively. C16 harbors the known anthocyanin biosynthesis regulator, InMYB1 (INIL00g10723), and putative anthocyanin biosynthesis regulators, InMYB2 (INIL05g09650) and InMYB3 (INIL05g09651). In addition, INIL05g09649, INIL11g40874 and INIL11g40875 in C16 were suggested as novel anthocyanin biosynthesis regulators. We organized the R2R3-MYB transcription factors in the morning glory genome and assigned information to gene and protein structures and presuming their functions. Our study is expected to facilitate future research on R2R3-MYB transcription factors in Japanese morning glory.


Assuntos
Arabidopsis , Ipomoea nil , Ipomoea nil/genética , Ipomoea nil/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Antocianinas/metabolismo , Proteínas de Plantas/metabolismo , Genes myb , Filogenia , Arabidopsis/genética , Flavonóis/metabolismo
4.
J Ethnopharmacol ; 294: 115370, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35568114

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Pharbitis nil (L.) Choisy is a medicinal herb, and herbal remedies based on its seeds have been used to treat of obesity and liver diseases, including fatty liver and liver cirrhosis in East Asia. AIM OF THE STUDY: Liver fibrosis is a major cause of morbidity and mortality in patients with chronic liver inflammation such as that caused by non-alcoholic steatohepatitis. However, no effective pharmaceutical treatment for liver fibrosis has been approved. In this study, we aimed to investigate that ethanol extract of pharbitis nil (PNE) alleviates the liver fibrosis. MATERIALS AND METHODS: We studied the effects of PNE on two preclinical models. Six-week-old male C57BL/6 mice were intraperitoneally injected with CCl4 twice weekly for 6 weeks and then treated with 5 or 10 mg/kg PNE daily from week 3 for weeks. Secondly, mice were fed HFD for 41 weeks and at 35 weeks treated with 5 mg/kg PNE daily for the remaining 6 weeks. In addition, we examined the antifibrotic effects of PNE in primary mouse hepatic stellate cells and LX-2 cells. RESULTS: PNE treatment ameliorated hepatocyte necrosis, inflammation, and liver fibrosis in CCl4-treated mice and inhibited the progression of liver fibrosis in mice with HFD-induced fibrosis. PNE reduced the expressions of fibrosis markers and SMAD2/3 activations in mouse livers and in TGFß1-treated primary mouse hepatic stellate and LX-2 cells CONCLUSIONS: This study demonstrates that PNE attenuates liver fibrosis by downregulating TGFß1-induced SMAD2/3 activation.


Assuntos
Ipomoea nil , Hepatopatia Gordurosa não Alcoólica , Animais , Etanol/farmacologia , Fibrose , Células Estreladas do Fígado , Humanos , Inflamação/patologia , Ipomoea nil/metabolismo , Fígado/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
5.
Plant J ; 108(2): 314-329, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34318549

RESUMO

Flavonoids are specialized metabolites widely distributed across the plant kingdom. They are involved in the growth and survival of plants, conferring the ability to filter ultra-violet rays, conduct symbiotic partnerships, and respond to stress. While many branches of flavonoid biosynthesis have been resolved, recent discoveries suggest missing auxiliary components. These overlooked elements can guide metabolic flux, enhance production, mediate stereoselectivity, transport intermediates, and exert regulatory functions. This review describes several families of auxiliary proteins from across the plant kingdom, including examples from specialized metabolism. In flavonoid biosynthesis, we discuss the example of chalcone isomerase-like (CHIL) proteins and their non-catalytic role. CHILs mediate the cyclization of tetraketides, forming the chalcone scaffold by interacting with chalcone synthase (CHS). Loss of CHIL activity leads to derailment of the CHS-catalyzed reaction and a loss of pigmentation in fruits and flowers. Similarly, members of the pathogenesis-related 10 (PR10) protein family have been found to differentially bind flavonoid intermediates, guiding the composition of anthocyanins. This role comes within a larger body of PR10 involvement in specialized metabolism, from outright catalysis (e.g., (S)-norcoclaurine synthesis) to controlling stereochemistry (e.g., enhancing cis-trans cyclization in catnip). Both CHILs and PR10s hail from larger families of ligand-binding proteins with a spectrum of activity, complicating the characterization of their enigmatic roles. Strategies for the discovery of auxiliary proteins are discussed, as well as mechanistic models for their function. Targeting such unanticipated components will be crucial in manipulating plants or engineering microbial systems for natural product synthesis.


Assuntos
Aciltransferases/metabolismo , Flavonoides/biossíntese , Liases Intramoleculares/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Aciltransferases/química , Aciltransferases/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Canabinoides/biossíntese , Evolução Molecular , Flavonoides/metabolismo , Humulus/metabolismo , Liases Intramoleculares/química , Liases Intramoleculares/genética , Ipomoea nil/genética , Ipomoea nil/metabolismo , Mutação , Proteínas de Plantas/genética , Dobramento de Proteína
6.
Plant Cell Physiol ; 60(8): 1871-1879, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31135027

RESUMO

Wild-type plants of the Japanese morning glory (Ipomoea nil) produce blue flowers that accumulate anthocyanin pigments, whereas its mutant cultivars show wide range flower color such as red, magenta and white. However, I. nil lacks yellow color varieties even though yellow flowers were curiously described in words and woodblocks printed in the 19th century. Such yellow flowers have been regarded as 'phantom morning glories', and their production has not been achieved despite efforts by breeders of I. nil. The chalcone isomerase (CHI) mutants (including line 54Y) bloom very pale yellow or cream-colored flowers conferred by the accumulation of 2', 4', 6', 4-tetrahydoroxychalcone (THC) 2'-O-glucoside. To produce yellow phantom morning glories, we introduced two snapdragon (Antirrhinum majus) genes to the 54Y line by encoding aureusidin synthase (AmAS1) and chalcone 4'-O-glucosyltransferase (Am4'CGT), which are necessary for the accumulation of aureusidin 6-O-glucoside and yellow coloration in A. majus. The transgenic plants expressing both genes exhibit yellow flowers, a character sought for many years. The flower petals of the transgenic plants contained aureusidin 6-O-glucoside, as well as a reduced amount of THC 2'-O-glucoside. In addition, we identified a novel aurone compound, aureusidin 6-O-(6″-O-malonyl)-glucoside, in the yellow petals. A combination of the coexpression of AmAS1 and Am4'CGT and suppression of CHI is an effective strategy for generating yellow varieties in horticultural plants.


Assuntos
Benzofuranos/metabolismo , Flavonoides/metabolismo , Flores/metabolismo , Ipomoea nil/metabolismo , Engenharia Metabólica/métodos , Regulação da Expressão Gênica de Plantas , Transdução de Sinais/fisiologia
7.
Plant Signal Behav ; 13(6): e1473686, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29944436

RESUMO

The circadian clock is synchronized by the day-night cycle to allow plants to anticipate daily environmental changes and to recognize annual changes in day length enabling seasonal flowering. This clock system has been extensively studied in Arabidopsis thaliana and was found to be reset by the dark to light transition at dawn. By contrast, studies on photoperiodic flowering of Pharbitis nil revealed the presence of a clock system reset by the transition from light to dark at dusk to measure the duration of the night. However, a Pharbitis photosynthetic gene was also shown to be insensitive to this dusk transition and to be set by dawn. Thus Pharbitis appeared to have two clock systems, one set by dusk that controls photoperiodic flowering and a second controlling photosynthetic gene expression similar to that of Arabidopsis. Here, we show that circadian mRNA expression of Pharbitis homologs of a series of Arabidopsis clock or clock-controlled genes are insensitive to the dusk transition. These data further define the presence in Pharbitis of a clock system that is analogous to the Arabidopsis system, which co-exists and functions with the dusk-set system dedicated to the control of photoperiodic flowering.


Assuntos
Ritmo Circadiano/efeitos da radiação , Escuridão , Flores/metabolismo , Flores/efeitos da radiação , Ipomoea nil/metabolismo , Ipomoea nil/efeitos da radiação , Luz , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Proteínas de Plantas/genética
8.
J Sci Food Agric ; 96(13): 4416-22, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27515010

RESUMO

BACKGROUND: Because of the high concentration of nutrients in human urine, its utilization as an organic fertilizer has been notable throughout history. However, the nitrogen compounds in urine are not stable. Therefore, to convert urine into a suitable fertilizer, it is important to stabilize and adjust unstable nitrogen compounds such as ammonia. Because nitrification can influence the nitrogen profile, the use of nitrifying microorganisms can be useful for stabilizing the nitrogen profile of urine. This study investigated the changes in nitrogen compounds in pure urine and examined the effect of adding Nitrosomonas europaea bio-seed solution on these changes. RESULTS: It was found that the addition of bio-seed could reduce nitrogen loss as well as the time required to stabilize the nitrogen profile. Furthermore, the optimum concentration of bio-seed (6 × 10(5) N. europaea cells L(-1) ) that not only leads to the least nutrient loss but also results in an adequate nitrate/ammonium ratio and regulates the amount of nitrate produced, thereby preventing over-fertilization, was determined. CONCLUSION: At this concentration, no dilution or dewatering is required, thus minimizing water and energy consumption. Usage of the optimum of concentration of bio-seed will also eliminate the need for inorganic chemical additives. © 2016 Society of Chemical Industry.


Assuntos
Inoculantes Agrícolas/metabolismo , Fertilizantes , Ipomoea nil/crescimento & desenvolvimento , Nitrosomonas europaea/metabolismo , Agricultura Orgânica/métodos , Sementes/crescimento & desenvolvimento , Urina , Adulto , Inoculantes Agrícolas/crescimento & desenvolvimento , Algoritmos , Compostos de Amônio/metabolismo , Compostos de Amônio/urina , Reatores Biológicos/microbiologia , Fertilizantes/análise , Humanos , Concentração de Íons de Hidrogênio , Ipomoea nil/metabolismo , Masculino , Nitratos/metabolismo , Nitratos/urina , Ciclo do Nitrogênio , Nitrosomonas europaea/crescimento & desenvolvimento , República da Coreia , Sementes/metabolismo , Solo/química , Urina/química , Eliminação de Resíduos Líquidos/métodos
9.
Elife ; 52016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27253062

RESUMO

Long distance transport in plants occurs in sieve tubes of the phloem. The pressure flow hypothesis introduced by Ernst Münch in 1930 describes a mechanism of osmotically generated pressure differentials that are supposed to drive the movement of sugars and other solutes in the phloem, but this hypothesis has long faced major challenges. The key issue is whether the conductance of sieve tubes, including sieve plate pores, is sufficient to allow pressure flow. We show that with increasing distance between source and sink, sieve tube conductivity and turgor increases dramatically in Ipomoea nil. Our results provide strong support for the Münch hypothesis, while providing new tools for the investigation of one of the least understood plant tissues.


Assuntos
Ipomoea nil/metabolismo , Floema/metabolismo , Transporte Biológico , Ipomoea nil/crescimento & desenvolvimento , Pressão Osmótica
10.
Mol Genet Genomics ; 290(5): 1873-84, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25877516

RESUMO

Ipomoea nil is widely used as an ornamental plant due to its abundance of flower color, but the limited transcriptome and genomic data hinder research on it. Using illumina platform, transcriptome profiling of I. nil was performed through high-throughput sequencing, which was proven to be a rapid and cost-effective means to characterize gene content. Our goal is to use the resulting information to facilitate the relevant research on flowering and flower color formation in I. nil. In total, 268 million unique illumina RNA-Seq reads were produced and used in the transcriptome assembly. These reads were assembled into 220,117 contigs, of which 137,307 contigs were annotated using the GO and KEGG database. Based on the result of functional annotations, a total of 89,781 contigs were assigned 455,335 GO term annotations. Meanwhile, 17,418 contigs were identified with pathway annotation and they were functionally assigned to 144 KEGG pathways. Our transcriptome revealed at least 55 contigs as probably flowering-related genes in I. nil, and we also identified 25 contigs that encode key enzymes in the phenylpropanoid biosynthesis pathway. Based on the analysis relating to gene expression profiles, in the phenylpropanoid biosynthesis pathway of I. nil, the repression of lignin biosynthesis might lead to the redirection of the metabolic flux into anthocyanin biosynthesis. This may be the most likely reason that I. nil has high anthocyanins content, especially in its flowers. Additionally, 15,537 simple sequence repeats (SSRs) were detected using the MISA software, and these SSRs will undoubtedly benefit future breeding work. Moreover, the information uncovered in this study will also serve as a valuable resource for understanding the flowering and flower color formation mechanisms in I. nil.


Assuntos
Genes de Plantas , Marcadores Genéticos , Ipomoea nil/genética , Análise de Sequência de RNA , Transcriptoma , Antocianinas/biossíntese , Ipomoea nil/metabolismo
11.
J Plant Physiol ; 171(11): 895-902, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24913046

RESUMO

The involvement of salicylic acid (SA) in the regulation of stress-induced flowering in the short-day plant pharbitis (also called Japanese morning glory) Ipomoea nil (formerly Pharbitis nil) was studied. Pharbitis cv. Violet was induced to flower when grown in 1/100-strength mineral nutrient solution under non-inductive long-day conditions. All fully expanded true leaves were removed from seedlings, leaving only the cotyledons, and flowering was induced under poor-nutrition stress conditions. This indicates that cotyledons can play a role in the regulation of poor-nutrition stress-induced flowering. The expression of the pharbitis homolog of PHENYLALANINE AMMONIA-LYASE, the enzyme activity of phenylalanine ammonia-lyase (PAL; E.C. 4.3.1.5) and the content of SA in the cotyledons were all up-regulated by the stress treatment. The Violet was also induced to flower by low-temperature stress, DNA demethylation and short-day treatment. Low-temperature stress enhanced PAL activity, whereas non-stress factors such as DNA demethylation and short-day treatment decreased the activity. The PAL enzyme activity was also examined in another cultivar, Tendan, obtaining similar results to Violet. The exogenously applied SA did not induce flowering under non-stress conditions but did promote flowering under weak stress conditions in both cultivars. These results suggest that stress-induced flowering in pharbitis is induced, at least partly, by SA, and the synthesis of SA is promoted by PAL.


Assuntos
Ipomoea nil/enzimologia , Ipomoea nil/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Ácido Salicílico/metabolismo , Flores/efeitos dos fármacos , Flores/enzimologia , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ipomoea nil/efeitos dos fármacos , Fenilalanina Amônia-Liase/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/farmacologia
12.
J Plant Physiol ; 171(8): 633-8, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24709156

RESUMO

AtNAP, a NAC family transcription factor, has been shown to promote leaf senescence in Arabidopsis. We isolated an AtNAP homolog in morning glory (Ipomoea nil), designated InNAP, and investigated its expression during petal senescence. We used two cultivars, one showing a normal short flower life span (cv. Peking Tendan) and another a longer life span (cv. Violet). InNAP was highly expressed in both cultivars. Expression was high before that of the senescence marker gene InSAG12. InNAP and InSAG12 expression was high in cv. Peking Tendan before cv. Violet. The expression of both genes was therefore temporally related to the onset of the visible senescence symptoms. An inhibitor of ethylene action (silver thiosulphate, STS) delayed petal senescence in cv. Peking Tendan but had no effect in cv. Violet. STS treatment had no clear effect on the InNAP expression in petals of both cultivars, suggesting that endogenous ethylene may not be necessary for its induction. These data suggest the hypothesis that InNAP plays a role in petal senescence, independent of the role of endogenous ethylene.


Assuntos
Regulação da Expressão Gênica de Plantas , Ipomoea nil/crescimento & desenvolvimento , Ipomoea nil/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Ipomoea nil/metabolismo , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/metabolismo , Alinhamento de Sequência
13.
J Plant Physiol ; 171(3-4): 225-34, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24094462

RESUMO

The plant hormone auxin plays a critical role in regulating plant growth and development. Recent advances have been made that having improved our understanding of auxin response pathways, primarily by characterizing the genes encoding auxin response factors (ARFs) in Arabidopsis. In addition, the expression of some ARFs is regulated by microRNAs (miRNAs). In Arabidopsis thaliana, ARF6 and ARF8 are targeted by miR167, whereas ARF10, ARF16 and ARF17 are targeted by miR160. Nevertheless, little is known about any possible interactions between miRNAs and the auxin signaling pathway during plant development. In this study, we isolated the miR167 target gene InARF8 cDNA from the cotyledons of the short day plant (SDP) Ipomoea nil (named also Pharbitis nil). Additionally, the In-miR167 precursor was identified from the I. nil EST database and analyses of InARF8 mRNA, In-pre-miR167 and mature miR167 accumulation in the plant's vegetative and generative organs were performed. The identified cDNA of InARF8 contains a miR167 complementary sequence and shows significant similarity to ARF8 cDNAs of other plant species. The predicted amino acid sequence of InARF8 includes all of the characteristic domains for ARF family transcription factors (B3 DNA-binding domain, AUX/IAA-CTD and a glutamine-rich region). Quantitative RT-PCR reactions and in situ hybridization indicated that InARF8 was expressed primarily in the shoot apices, leaf primordia and hypocotyls of I. nil seedlings, as well as in flower pistils and petals. The InARF8 transcript level increased consistently during the entire period of pistil development, whereas in the stamens, the greatest transcriptional activity occurred only during the intensive elongation phase. Additionally, an expression analysis of both the precursor In-pre-miR167 molecules identified and mature miRNA was performed. We observed that, in most of the organs examined, the InARF8 expression pattern was opposite to that of MIR167, indicating that the gene's activity was regulated by mRNA cleavage. Our findings suggested that InARF8 and InMIR167 participated in the development of young tissues, especially the shoot apices and flower elements. The main function of MIR167 appears to be to regulate InARF8 organ localization.


Assuntos
Regulação da Expressão Gênica de Plantas , Ipomoea nil/genética , Ipomoea nil/metabolismo , MicroRNAs/genética , Ácidos Indolacéticos/metabolismo , Ipomoea nil/crescimento & desenvolvimento , Fatores de Transcrição/genética
14.
J Plant Physiol ; 171(3-4): 205-12, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23973406

RESUMO

Poor nutrition and low temperature stress treatments induced flowering in the Japanese morning glory Pharbitis nil (synonym Ipomoea nil) cv. Violet. The expression of PnFT2, one of two homologs of the floral pathway integrator gene FLOWERING LOCUS T (FT), was induced by stress, whereas the expression of both PnFT1 and PnFT2 was induced by a short-day treatment. There was no positive correlation between the flowering response and the homolog expression of another floral pathway integrator gene SUPPRESSOR OF OVEREXPRESSION OF CO1 and genes upstream of PnFT, such as CONSTANS. In another cultivar, Tendan, flowering and PnFT2 expression were not induced by poor nutrition stress. Aminooxyacetic acid (AOA), a phenylalanine ammonia-lyase inhibitor, inhibited the flowering and PnFT2 expression induced by poor nutrition stress in Violet. Salicylic acid (SA) eliminated the inhibitory effects of AOA. SA enhanced PnFT2 expression under the poor nutrition stress but not under non-stress conditions. These results suggest that SA induces PnFT2 expression, which in turn induces flowering; SA on its own, however, may not be sufficient for induction.


Assuntos
Flores/efeitos dos fármacos , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/genética , Ipomoea nil/efeitos dos fármacos , Ipomoea nil/metabolismo , Ácido Salicílico/farmacologia
15.
J Environ Monit ; 14(7): 1959-67, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22706014

RESUMO

This study aimed to analyze critically the potential of Ipomoea nil'Scarlet O'Hara' for O(3) biomonitoring in the sub-tropics. Four field experiments (one in each season of 2006) were carried out in a location of the city of São Paulo mainly polluted by O(3). Each experiment started with 50 plants, and lasted 28 days. Sub-lots of five plants were taken at intervals between three or four days long. Groups of four plants were also exposed in closed chambers to filtered air or to 40, 50 or 80 ppb of O(3) for three consecutive hours a day for six days. The percentage of leaf injury (interveinal chloroses and necroses), the concentrations of ascorbic acid (AA) and the activity of superoxide dismutase (SOD) and peroxidases (POD) were determined in the 5th, 6th and 7th oldest leaves on the main stem of the plants taken in all experiments. Visible injury occurred in the plants from all experiments. Seasonality in the antioxidant responses observed in plants grown under field conditions was associated with meteorological variables and ozone concentrations five days before leaf analyses. The highest levels of antioxidants occurred during the spring. The percentage of leaf injury was explained (R(2) = 0.97, p < 0.01) by the reduction in the levels of AA and activity of POD five days before the leaf analyses and by the reduction in the levels of particulate matter, and enhancement of temperature and global radiation 10 days before this same day. Although I. nil may be employed for qualitative O(3) biomonitoring, its efficiency for quantitative biomonitoring in the sub-tropics may be compromised, depending on how intense the oxidative power of the environment is.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Ipomoea nil/efeitos dos fármacos , Ozônio/análise , Poluentes Atmosféricos/toxicidade , Ipomoea nil/metabolismo , Ipomoea nil/fisiologia , Ozônio/toxicidade , Peroxidases/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Superóxido Dismutase/metabolismo
16.
J Plant Physiol ; 169(5): 523-8, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22209168

RESUMO

The protein complex composed of the transcriptional regulators containing R2R3-MYB domains, bHLH domains, and WDR in plants controls various epidermal traits, including anthocyanin and proanthocyanidin pigmentation, trichome and root hair formation, and vacuolar pH. In the Japanese morning glory (Ipomoea nil), InMYB1 having R2R3-MYB domains and InWDR1 containing WDR were shown to regulate anthocyanin pigmentation in flowers, and InWDR1 was reported to control dark-brown pigmentation and trichome formation on seed coats. Here, we report that the seed pigments of I. nil mainly comprise proanthocyanidins and phytomelanins and that these pigments are drastically reduced in the ivory seed coats of an InWDR1 mutant. In addition, a transgenic plant of the InWDR1 mutant carrying the active InWDR1 gene produced dark-brown seeds, further confirming that InWDR1 regulates seed pigmentation. Early steps in anthocyanin and proanthocyanidin biosynthetic pathways are thought to be common. In the InWDR1 mutant, none of the structural genes for anthocyanin biosynthesis that showed reduced expression in the white flowers were down-regulated in the ivory seeds, which suggests that InWDR1 may activate different sets of the structural genes for anthocyanin biosynthesis in flowers and proanthocyanidin production in seeds. As in the flowers, however, we noticed that the expression of InbHLH2 encoding a bHLH regulator was down-regulated in the seeds of the InWDR1 mutant. We discuss the implications of these results with respect to the proanthocyanidin biosynthesis in the seed coats.


Assuntos
Ipomoea nil/metabolismo , Melaninas/biossíntese , Proteínas dos Microfilamentos/metabolismo , Pigmentos Biológicos/biossíntese , Proteínas de Plantas/metabolismo , Proantocianidinas/biossíntese , Sementes/metabolismo , Vias Biossintéticas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Ipomoea/genética , Ipomoea/metabolismo , Ipomoea nil/genética , Melaninas/genética , Proteínas dos Microfilamentos/genética , Pigmentos Biológicos/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Proantocianidinas/genética , Sementes/genética
17.
Ecotoxicol Environ Saf ; 74(6): 1645-52, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21741708

RESUMO

The occurrence of visible leaf injury caused by ozone in Ipomoea nil 'Scarlet O'Hara' may be regulated by their redox state, affecting its bioindicator efficiency. Thus, this study aimed to determine whether the redox state of I. nil plants in a subtropical area (São Paulo, SE-Brazil) contaminated by ozone oscillates, and to identify the environmental factors behind these variations. We comparatively evaluated indicators of redox state (ascorbic acid, glutathione, superoxide dismutase, ascorbate peroxidase, glutathione reductase) and leaf injury during nine field experiments of 28 days each. The variations in the redox indicators were explained by the combined effects of chronic levels of ozone and meteorological variables (mainly global solar radiation and air temperature) 3-6 days prior to the sampling days. The ascorbic acid and glutathione were crucial for increasing plant tolerance to ozone. Weak visible injury was observed in all experiments and occurred in leaves with low levels of ascorbic and dehydroascorbic acids.


Assuntos
Poluentes Atmosféricos/toxicidade , Ipomoea nil/efeitos dos fármacos , Ozônio/toxicidade , Ácido Ascórbico/metabolismo , Brasil , Ácido Desidroascórbico/metabolismo , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Ipomoea nil/crescimento & desenvolvimento , Ipomoea nil/metabolismo , Oxirredução , Estresse Oxidativo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Superóxido Dismutase/metabolismo , Temperatura
18.
Sci Total Environ ; 408(22): 5600-5, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20810149

RESUMO

The plot-culture experiments were conducted for examining the feasibility of Pharbitis nil L. and its microbial community to remedy petroleum contaminated soils. The petroleum contaminated soil, containing 10% (w/w) of the total petroleum hydrocarbons (TPHs), was collected from the Shengli Oil Field, Dongying City, Shandong Province, China. The collected soil was applied and diluted to a series of petroleum contaminated soils (0.5%, 1.0%, 2.0% and 4.0%). Root length, microbial populations and numbers in the rhizosphere were also measured in this work. The results showed that there was significantly (p<0.05) greater degradation rate of TPHs in vegetated treatments, up to 27.63-67.42%, compared with the unvegetated controls (only 10.20-35.61%), after a 127-day incubation. Although various fractions of TPHs had an insignificant concentration difference due to the presence of the remediation plants, there was a much higher removal of saturated hydrocarbon compared with other components. The biomass of P. nil L. did not decrease significantly when the concentration of petroleum hydrocarbons in soil was ≤2.0%. The trends of microbial populations and numbers in the rhizosphere were similar to the biomass changes, with the exception that fungi at 0.5% petroleum contaminated soil had the largest microbial populations and numbers.


Assuntos
Ipomoea nil/metabolismo , Petróleo/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Biomassa , Contagem de Colônia Microbiana , Hidrocarbonetos/análise , Hidrocarbonetos/metabolismo , Ipomoea nil/crescimento & desenvolvimento , Ipomoea nil/microbiologia , Petróleo/análise , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Microbiologia do Solo , Poluentes do Solo/análise
19.
Physiol Plant ; 139(1): 118-27, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20059740

RESUMO

Flowering and dwarfism induced by 5-azacytidine and zebularine, which both cause DNA demethylation, were studied in a short-day (SD) plant Pharbitis nil (synonym Ipomoea nil), var. Violet whose photoinduced flowering state does not last for a long period of time. The DNA demethylating reagents induced flowering under non-inductive long-day (LD) conditions. The flower-inducing effect of 5-azacytidine did not last for a long period of time, and the plants reverted to vegetative growth. The progeny of the plants that were induced to flower by DNA demethylation did not flower under the non-inductive photoperiodic conditions. These results suggest that the flowering-related genes were activated by DNA demethylation and then remethylated again in the progeny. The DNA demethylation also induced dwarfism. The dwarfism did not last for a long period of time, was not heritable and was overcome by gibberellin A3 but not by t-zeatin or kinetin. The change in the genome-wide methylation state was examined by methylation-sensitive amplified fragment length polymorphism (MS-AFLP) analysis. The analysis detected many more polymorphic fragments between the DNA samples isolated from the cotyledons treated with SD than from the cotyledons under LD conditions, indicating that the DNA methylation state was altered by photoperiodic conditions. Seven LD-specific fragments were extracted from the gel of the MS-AFLP and were sequenced. One of these fragments was highly homologous with the genes encoding ribosomal proteins.


Assuntos
Metilação de DNA/fisiologia , Flores/crescimento & desenvolvimento , Flores/metabolismo , Ipomoea nil/crescimento & desenvolvimento , Ipomoea nil/metabolismo , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Metilação de DNA/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Ipomoea nil/genética , Espectrometria de Massas , Reação em Cadeia da Polimerase
20.
J Exp Bot ; 61(3): 709-19, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19933319

RESUMO

Japanese morning glory (Ipomoea nil) is a representative plant lacking a yellow-flowered cultivar, although a few wild Ipomoea species contain carotenoids in their petals such as Ipomoea sp. (yellow petals) and I. obscura (pale-yellow petals). In the present study, carotenoid composition and the expression patterns of carotenogenic genes during petal development were compared among I. nil, I. obscura, and Ipomoea sp. to identify the factors regulating carotenoid accumulation in Ipomoea plant petals. In the early stage, the carotenoid composition in petals of all the Ipomoea plants tested was the same as in the leaves mainly showing lutein, violaxanthin, and beta-carotene (chloroplast-type carotenoids). However, in fully opened flowers, chloroplast-type carotenoids were entirely absent in I. nil, whereas they were present in trace amounts in the free form in I. obscura. At the late stage of petal development in Ipomoea sp., the majority of carotenoids were beta-cryptoxanthin, zeaxanthin, and beta-carotene (chromoplast-type carotenoids). In addition, most of them were present in the esterified form. Carotenogenic gene expression was notably lower in I. nil than in Ipomoea sp. In particular, beta-ring hydroxylase (CHYB) was considerably suppressed in petals of both I. nil and I. obscura. The CHYB expression was found to be significantly high in the petals of Ipomoea sp. during the synthesis of chromoplast-type carotenoids. The expression levels of carotenoid cleavage genes (CCD1 and CCD4) were not correlated with the amount of carotenoids in petals. These results suggest that both I. obscura and I. nil lack the ability to synthesize chromoplast-type carotenoids because of the transcriptional down-regulation of carotenogenic genes. CHYB, an enzyme that catalyses the addition of a hydroxyl residue required for esterification, was found to be a key enzyme for the accumulation of chromoplast-type carotenoids in petals.


Assuntos
Carotenoides/genética , Carotenoides/metabolismo , Flores/crescimento & desenvolvimento , Flores/genética , Regulação da Expressão Gênica de Plantas , Ipomoea nil/crescimento & desenvolvimento , Ipomoea nil/genética , Carotenoides/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Genes de Plantas/genética , Ipomoea nil/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...