Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.177
Filtrar
1.
J Cell Mol Med ; 28(11): e18406, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822457

RESUMO

Increasing evidence has shown that homologous recombination (HR) and metabolic reprogramming are essential for cellular homeostasis. These two processes are independent as well as closely intertwined. Nevertheless, they have rarely been reported in lung adenocarcinoma (LUAD). We analysed the genomic, immune microenvironment and metabolic microenvironment features under different HR activity states. Using cell cycle, EDU and cell invasion assays, we determined the impacts of si-SHFM1 on the LUAD cell cycle, proliferation and invasion. The levels of isocitrate dehydrogenase (IDH) and α-ketoglutarate dehydrogenase (α-KGDH) were determined by ELISA in the NC and si-SHFM1 groups of A549 cells. Finally, cell samples were used to extract metabolites for HPIC-MS/MS to analyse central carbon metabolism. We found that high HR activity was associated with a poor prognosis in LUAD, and HR was an independent prognostic factor for TCGA-LUAD patients. Moreover, LUAD samples with a high HR activity presented low immune infiltration levels, a high degree of genomic instability, a good response status to immune checkpoint blockade therapy and a high degree of drug sensitivity. The si-SHFM1 group presented a significantly higher proportion of cells in the G0/G1 phase, lower levels of DNA replication, and significantly lower levels of cell migration and both TCA enzymes. Our current results indicated that there is a strong correlation between HR and the TCA cycle in LUAD. The TCA cycle can promote SHFM1-mediated HR in LUAD, raising their activities, which can finally result in a poor prognosis and impair immunotherapeutic efficacy.


Assuntos
Adenocarcinoma de Pulmão , Ciclo do Ácido Cítrico , Recombinação Homóloga , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Prognóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Proliferação de Células , Microambiente Tumoral , Linhagem Celular Tumoral , Ciclo Celular/genética , Reprogramação Celular/genética , Feminino , Células A549 , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Movimento Celular , Complexo Cetoglutarato Desidrogenase/metabolismo , Complexo Cetoglutarato Desidrogenase/genética , Masculino , Regulação Neoplásica da Expressão Gênica , Reprogramação Metabólica
2.
Biol Res ; 57(1): 30, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760850

RESUMO

BACKGROUND: Mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2), are present in most gliomas. IDH1 mutation is an important prognostic marker in glioma. However, its regulatory mechanism in glioma remains incompletely understood. RESULTS: miR-182-5p expression was increased within IDH1-mutant glioma specimens according to TCGA, CGGA, and online dataset GSE119740, as well as collected clinical samples. (R)-2-hydroxyglutarate ((R)-2HG) treatment up-regulated the expression of miR-182-5p, enhanced glioma cell proliferation, and suppressed apoptosis; miR-182-5p inhibition partially eliminated the oncogenic effects of R-2HG upon glioma cells. By direct binding to Cyclin Dependent Kinase Inhibitor 2 C (CDKN2C) 3'UTR, miR-182-5p inhibited CDKN2C expression. Regarding cellular functions, CDKN2C knockdown promoted R-2HG-treated glioma cell viability, suppressed apoptosis, and relieved cell cycle arrest. Furthermore, CDKN2C knockdown partially attenuated the effects of miR-182-5p inhibition on cell phenotypes. Moreover, CDKN2C knockdown exerted opposite effects on cell cycle check point and apoptosis markers to those of miR-182-5p inhibition; also, CDKN2C knockdown partially attenuated the functions of miR-182-5p inhibition in cell cycle check point and apoptosis markers. The engineered CS-NPs (antagomir-182-5p) effectively encapsulated and delivered antagomir-182-5p, enhancing anti-tumor efficacy in vivo, indicating the therapeutic potential of CS-NPs(antagomir-182-5p) in targeting the miR-182-5p/CDKN2C axis against R-2HG-driven oncogenesis in mice models. CONCLUSIONS: These insights highlight the potential of CS-NPs(antagomir-182-5p) to target the miR-182-5p/CDKN2C axis, offering a promising therapeutic avenue against R-2HG's oncogenic influence to glioma.


Assuntos
Ciclo Celular , Glioma , Glutaratos , Isocitrato Desidrogenase , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Linhagem Celular Tumoral , Ciclo Celular/genética , Glutaratos/metabolismo , Mutação , Apoptose/genética , Proliferação de Células/genética , Animais , Camundongos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Camundongos Nus
3.
Proc Natl Acad Sci U S A ; 121(20): e2310771121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709917

RESUMO

Shifts in the hydrogen stable isotopic composition (2H/1H ratio) of lipids relative to water (lipid/water 2H-fractionation) at natural abundances reflect different sources of the central cellular reductant, NADPH, in bacteria. Here, we demonstrate that lipid/water 2H-fractionation (2εfattyacid/water) can also constrain the relative importance of key NADPH pathways in eukaryotes. We used the metabolically flexible yeast Saccharomyces cerevisiae, a microbial model for respiratory and fermentative metabolism in industry and medicine, to investigate 2εfattyacid/water. In chemostats, fatty acids from glycerol-respiring cells were >550‰ 2H-enriched compared to those from cells aerobically fermenting sugars via overflow metabolism, a hallmark feature in cancer. Faster growth decreased 2H/1H ratios, particularly in glycerol-respiring cells by 200‰. Variations in the activities and kinetic isotope effects among NADP+-reducing enzymes indicate cytosolic NADPH supply as the primary control on 2εfattyacid/water. Contributions of cytosolic isocitrate dehydrogenase (cIDH) to NAPDH production drive large 2H-enrichments with substrate metabolism (cIDH is absent during fermentation but contributes up to 20 percent NAPDH during respiration) and slower growth on glycerol (11 percent more NADPH from cIDH). Shifts in NADPH demand associated with cellular lipid abundance explain smaller 2εfattyacid/water variations (<30‰) with growth rate during fermentation. Consistent with these results, tests of murine liver cells had 2H-enriched lipids from slower-growing, healthy respiring cells relative to fast-growing, fermenting hepatocellular carcinoma. Our findings point to the broad potential of lipid 2H/1H ratios as a passive natural tracker of eukaryotic metabolism with applications to distinguish health and disease, complementing studies that rely on complex isotope-tracer addition methods.


Assuntos
Ácidos Graxos , Fermentação , NADP , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Ácidos Graxos/metabolismo , NADP/metabolismo , Aerobiose , Deutério/metabolismo , Humanos , Glicerol/metabolismo , Isocitrato Desidrogenase/metabolismo
4.
FASEB J ; 38(10): e23688, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38780519

RESUMO

Diabetic nephropathy (DN) is a major cause of chronic kidney disease. Microalbuminuria is currently the most common non-invasive biomarker for the early diagnosis of DN. However, renal structural damage may have advanced when albuminuria is detected. In this study, we sought biomarkers for early DN diagnosis through proteomic analysis of urinary extracellular vesicles (uEVs) from type 2 diabetic model rats and normal controls. Isocitrate dehydrogenase 1 (IDH1) was significantly increased in uEVs from diabetic model rats at the early stage despite minimal differences in albuminuria between the groups. Calorie restriction significantly suppressed the increase in IDH1 in uEVs and 24-hour urinary albumin excretion, suggesting that the increase in IDH1 in uEVs was associated with the progression of DN. Additionally, we investigated the origin of IDH1-containing uEVs based on their surface sugar chains. Lectin affinity enrichment and immunohistochemical staining showed that IDH1-containing uEVs were derived from proximal tubules. These findings suggest that the increase in IDH1 in uEVs reflects pathophysiological alterations in the proximal tubules and that IDH1 in uEVs may serve as a potential biomarker of DN in the proximal tubules.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Vesículas Extracelulares , Isocitrato Desidrogenase , Túbulos Renais Proximais , Regulação para Cima , Animais , Isocitrato Desidrogenase/metabolismo , Isocitrato Desidrogenase/genética , Vesículas Extracelulares/metabolismo , Ratos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Diabetes Mellitus Tipo 2/urina , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Nefropatias Diabéticas/urina , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/urina , Ratos Sprague-Dawley , Biomarcadores/urina , Biomarcadores/metabolismo
5.
Nat Commun ; 15(1): 3785, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710674

RESUMO

Mutations in human isocitrate dehydrogenase 1 (IDH1) drive tumor formation in a variety of cancers by replacing its conventional activity with a neomorphic activity that generates an oncometabolite. Little is understood of the mechanistic differences among tumor-driving IDH1 mutants. We previously reported that the R132Q mutant unusually preserves conventional activity while catalyzing robust oncometabolite production, allowing an opportunity to compare these reaction mechanisms within a single active site. Here, we employ static and dynamic structural methods and observe that, compared to R132H, the R132Q active site adopts a conformation primed for catalysis with optimized substrate binding and hydride transfer to drive improved conventional and neomorphic activity over R132H. This active site remodeling reveals a possible mechanism of resistance to selective mutant IDH1 therapeutic inhibitors. This work enhances our understanding of fundamental IDH1 mechanisms while pinpointing regions for improving inhibitor selectivity.


Assuntos
Domínio Catalítico , Isocitrato Desidrogenase , Mutação , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Humanos , Cinética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores Enzimáticos/farmacologia
6.
Cell Commun Signal ; 22(1): 293, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802896

RESUMO

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a severe and fatal disease. Although mesenchymal stem cell (MSC)-based therapy has shown remarkable efficacy in treating ARDS in animal experiments, clinical outcomes have been unsatisfactory, which may be attributed to the influence of the lung microenvironment during MSC administration. Extracellular vesicles (EVs) derived from endothelial cells (EC-EVs) are important components of the lung microenvironment and play a crucial role in ARDS. However, the effect of EC-EVs on MSC therapy is still unclear. In this study, we established lipopolysaccharide (LPS) - induced acute lung injury model to evaluate the impact of EC-EVs on the reparative effects of bone marrow-derived MSC (BM-MSC) transplantation on lung injury and to unravel the underlying mechanisms. METHODS: EVs were isolated from bronchoalveolar lavage fluid of mice with LPS - induced acute lung injury and patients with ARDS using ultracentrifugation. and the changes of EC-EVs were analysed using nanoflow cytometry analysis. In vitro assays were performed to establish the impact of EC-EVs on MSC functions, including cell viability and migration, while in vivo studies were performed to validate the therapeutic effect of EC-EVs on MSCs. RNA-Seq analysis, small interfering RNA (siRNA), and a recombinant lentivirus were used to investigate the underlying mechanisms. RESULTS: Compared with that in non-ARDS patients, the quantity of EC-EVs in the lung microenvironment was significantly greater in patients with ARDS. EVs derived from lipopolysaccharide-stimulated endothelial cells (LPS-EVs) significantly decreased the viability and migration of BM-MSCs. Furthermore, engrafting BM-MSCs pretreated with LPS-EVs promoted the release of inflammatory cytokines and increased pulmonary microvascular permeability, aggravating lung injury. Mechanistically, LPS-EVs reduced the expression level of isocitrate dehydrogenase 2 (IDH2), which catalyses the formation of α-ketoglutarate (α-KG), an intermediate product of the tricarboxylic acid (TCA) cycle, in BM-MSCs. α-KG is a cofactor for ten-eleven translocation (TET) enzymes, which catalyse DNA hydroxymethylation in BM-MSCs. CONCLUSIONS: This study revealed that EC-EVs in the lung microenvironment during ARDS can affect the therapeutic efficacy of BM-MSCs through the IDH2/TET pathway, providing potential strategies for improving the therapeutic efficacy of MSC-based therapy in the clinic.


Assuntos
Células Endoteliais , Vesículas Extracelulares , Isocitrato Desidrogenase , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Síndrome do Desconforto Respiratório , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/metabolismo , Células Endoteliais/metabolismo , Humanos , Camundongos , Transplante de Células-Tronco Mesenquimais/métodos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Lipopolissacarídeos/farmacologia , Transdução de Sinais , Lesão Pulmonar Aguda/terapia , Lesão Pulmonar Aguda/metabolismo , Movimento Celular
7.
Curr Cancer Drug Targets ; 24(5): 534-545, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38804345

RESUMO

BACKGROUND: The energy supply of certain cancer cells depends on aerobic glycolysis rather than oxidative phosphorylation. Our previous studies have shown that withaferin A (WA), a lactone compound derived from Withania somnifera, suppresses skin carcinogenesis at least partially by stabilizing IDH1 and promoting oxidative phosphorylation. Here, we have extended our studies to evaluate the anti-tumor effect of WA in liver cancer. METHODS: Differential expression of glycolysis-related genes between liver cancer tissues and normal tissues and prognosis were verified using an online database. Glycolysis-related protein expression was detected using western blot after overexpression and knockdown of IDH1 and mitochondrial membrane potential assay based on JC-1, and mitochondrial complex I activity was also detected. The inhibitory effect of WA on the biological functions of HepG2 cells was detected along with cell viability using MTT assay, scratch assay, clone formation assay, glucose consumption and lactate production assay. Western blot and qRT-PCR were used to detect the expression of proteins and genes related to IDH1, p53 and HIF1α signaling pathways. RESULTS: We first identified that IDH1 expression was downregulated in human liver cancer cells compared to normal liver cells. Next, we found that treatment of HepG2 cells with WA resulted in significantly increased protein levels of IDH1, accompanied by decreased levels of several glycolytic enzymes. Furthermore, we found that WA stabilized IDH1 proteins by inhibiting the degradation by the proteasome. The tumor suppressor p53 was also upregulated by WA treatment, which played a critical role in the upregulation of IDH1 and downregulation of the glycolysis-related genes. Under hypoxic conditions, glycolysis-related genes were induced, which was suppressed by WA treatment, and IDH1 expression was still maintained at higher levels under hypoxia. CONCLUSION: Taken together, our results indicated that WA suppresses liver cancer tumorigenesis by p53-mediated IDH1 upregulation, which promotes mitochondrial respiration, thereby inhibiting the HIF-1α pathway and blocking aerobic glycolysis.


Assuntos
Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia , Isocitrato Desidrogenase , Neoplasias Hepáticas , Transdução de Sinais , Proteína Supressora de Tumor p53 , Vitanolídeos , Humanos , Vitanolídeos/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Glicólise/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Transdução de Sinais/efeitos dos fármacos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Hep G2 , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos
8.
Sci Transl Med ; 16(747): eadj7685, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748774

RESUMO

Intrahepatic cholangiocarcinoma (ICC) is an aggressive bile duct malignancy that frequently exhibits isocitrate dehydrogenase (IDH1/IDH2) mutations. Mutant IDH (IDHm) ICC is dependent on SRC kinase for growth and survival and is hypersensitive to inhibition by dasatinib, but the molecular mechanism underlying this sensitivity is unclear. We found that dasatinib reduced p70 S6 kinase (S6K) and ribosomal protein S6 (S6), leading to substantial reductions in cell size and de novo protein synthesis. Using an unbiased phosphoproteomic screen, we identified membrane-associated guanylate kinase, WW, and PDZ domain containing 1 (MAGI1) as an SRC substrate in IDHm ICC. Biochemical and functional assays further showed that SRC inhibits a latent tumor-suppressing function of the MAGI1-protein phosphatase 2A (PP2A) complex to activate S6K/S6 signaling in IDHm ICC. Inhibiting SRC led to activation and increased access of PP2A to dephosphorylate S6K, resulting in cell death. Evidence from patient tissue and cell line models revealed that both intrinsic and extrinsic resistance to dasatinib is due to increased phospho-S6 (pS6). To block pS6, we paired dasatinib with the S6K/AKT inhibitor M2698, which led to a marked reduction in pS6 in IDHm ICC cell lines and patient-derived organoids in vitro and substantial growth inhibition in ICC patient-derived xenografts in vivo. Together, these results elucidated the mechanism of action of dasatinib in IDHm ICC, revealed a signaling complex regulating S6K phosphorylation independent of mTOR, suggested markers for dasatinib sensitivity, and described a combination therapy for IDHm ICC that may be actionable in the clinic.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Colangiocarcinoma , Dasatinibe , Isocitrato Desidrogenase , Mutação , Quinases da Família src , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/patologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Humanos , Dasatinibe/farmacologia , Mutação/genética , Quinases da Família src/metabolismo , Quinases da Família src/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Isocitrato Desidrogenase/metabolismo , Isocitrato Desidrogenase/genética , Animais , Moléculas de Adesão Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Camundongos , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/tratamento farmacológico , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo
9.
Nat Commun ; 15(1): 3445, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658533

RESUMO

Mutations in isocitrate dehydrogenases (IDH) are oncogenic events due to the generation of oncogenic metabolite 2-hydroxyglutarate. However, the role of wild-type IDH in cancer development remains elusive. Here we show that wild-type IDH2 is highly expressed in triple negative breast cancer (TNBC) cells and promotes their proliferation in vitro and tumor growth in vivo. Genetic silencing or pharmacological inhibition of wt-IDH2 causes a significant increase in α-ketoglutarate (α-KG), indicating a suppression of reductive tricarboxylic acid (TCA) cycle. The aberrant accumulation of α-KG due to IDH2 abrogation inhibits mitochondrial ATP synthesis and promotes HIF-1α degradation, leading to suppression of glycolysis. Such metabolic double-hit results in ATP depletion and suppression of tumor growth, and renders TNBC cells more sensitive to doxorubicin treatment. Our study reveals a metabolic property of TNBC cells with active utilization of glutamine via reductive TCA metabolism, and suggests that wild-type IDH2 plays an important role in this metabolic process and could be a potential therapeutic target for TNBC.


Assuntos
Proliferação de Células , Ciclo do Ácido Cítrico , Isocitrato Desidrogenase , Ácidos Cetoglutáricos , Neoplasias de Mama Triplo Negativas , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Humanos , Feminino , Animais , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ácidos Cetoglutáricos/metabolismo , Camundongos , Proliferação de Células/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Glutamina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Mutação
11.
Zhonghua Bing Li Xue Za Zhi ; 53(5): 439-445, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38678323

RESUMO

Objective: To examine whether immunohistochemistry of methylthioadenosine phosphorylase (MTAP) and p16 could be used to predict the CDKN2A status in various brain tumors. Methods: A total of 118 cases of IDH-mutant astrocytomas, 16 IDH-wildtype glioblastoma, 17 polymorphic xanthoastrocytoma (PXA) and 20 meningiomas diagnosed at Xuanwu Hospital, Capital Medical University, Beijing, China from November 2017 to October 2023 were collected and analyzed. The CDKN2A status was detected by using fluorescence in situ hybridization or next-generation sequencing. Expression of MTAP and p16 proteins was detected with immunohistochemistry. The association of loss of MTAP/p16 expression with CDKN2A homozygous/heterozygous deletion was examined. Results: Among the 118 cases of IDH-mutant astrocytoma, 13 cases showed homozygous deletion of CDKN2A. All of them had no expression of MTAP while 9 cases had no expression of p16. Among the 16 cases of IDH wild-type glioblastoma, 6 cases showed homozygous deletion of CDKN2A. All 6 cases had no expression of MTAP, while 3 of these cases had no expression of p16 expression. Among the 17 PXA cases, 4 cases showed homozygous deletion of CDKN2A, and the expression of MTAP and p16 was also absent in these 4 cases. Among the 20 cases of meningiomas, 4 cases showed homozygous deletion of CDKN2A. Their expression of MTAP and p16 was also absent. Among the four types of brain tumors, MTAP was significantly correlated with CDKN2A homozygous deletion (P<0.05), with a sensitivity of 100%. However, it was only significantly correlated with the loss of heterozygosity (LOH) of CDKN2A in astrocytomas (P<0.001). P16 was associated with CDKN2A homozygous deletion in IDH-mutant astrocytoma and PXA (P<0.001), but not with the LOH of CDKN2A. Its sensitivity and specificity were lower than that of MTAP. Conclusions: MTAP could serve as a predictive surrogate for CDKN2A homozygous deletion in adult IDH-mutant astrocytoma, PXA, adult IDH-wildtype glioblastoma and meningioma. However, p16 could only be used in the first two tumor types, and its specificity and sensitivity are lower than that of MTAP.


Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas , Inibidor p16 de Quinase Dependente de Ciclina , Homozigoto , Purina-Núcleosídeo Fosforilase , Humanos , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Astrocitoma/genética , Astrocitoma/metabolismo , Meningioma/genética , Meningioma/metabolismo , Meningioma/patologia , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Deleção de Genes , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/metabolismo , Mutação , Masculino , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Feminino , Adulto , Sequenciamento de Nucleotídeos em Larga Escala
12.
J Neurooncol ; 168(2): 355-365, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38557927

RESUMO

PURPOSE: The proximate localization of MTAP, which encodes methylthioadenosine phosphorylase, and CDKN2A/B on Chromosome 9q21 has allowed the loss of MTAP expression as a surrogate for homozygous deletion of CDKN2A/B. This study aimed to determine whether MTAP status correlates with clinical outcomes and 11C-methionine uptake in astrocytomas with IDH mutations. METHODS: We conducted immunohistochemistry for MTAP in 30 patients with astrocytoma, IDH-mutant who underwent 11C-methionine positron emission tomography scans prior to surgical resection. The tumor-to-normal (T/N) ratio of 11C-methionine uptake was calculated using the mean standardized uptake value (SUV) for tumor and normal brain tissues. Cox regression analysis was used for multivariate survival analysis. RESULTS: Among IDH-mutant astrocytomas, 26.7% (8/30) exhibited the loss of cytoplasmic MTAP expression, whereas 73.3% (22/30) tumors retained MTAP expression. The median progression-free survival (PFS) was significantly shorter in patients with MTAP loss than those with MTAP retention (1.88 years vs. 6.80 years, p = 0.003). The median overall survival (OS) was also shorter in patients with MTAP loss than in MTAP-retaining counterparts (5.23 years vs. 10.69 years, p = 0.019). Multivariate analysis identified MTAP status (hazard ratio (HR), 0.081) and extent of resection (HR, 0.104) as independent prognostic factors for PFS. Astrocytomas lacking cytoplasmic MTAP expression showed a significantly higher median T/N ratio for 11C-methionine uptake than tumors retaining MTAP (2.12 vs. 1.65, p = 0.012). CONCLUSION: Our study revealed that the loss of MTAP expression correlates with poor prognosis and an elevated T/N ratio of 11C-methionine uptake in astrocytoma, IDH-mutant.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Isocitrato Desidrogenase , Metionina , Mutação , Purina-Núcleosídeo Fosforilase , Humanos , Purina-Núcleosídeo Fosforilase/metabolismo , Purina-Núcleosídeo Fosforilase/genética , Astrocitoma/genética , Astrocitoma/metabolismo , Astrocitoma/diagnóstico por imagem , Astrocitoma/patologia , Astrocitoma/mortalidade , Feminino , Masculino , Metionina/metabolismo , Pessoa de Meia-Idade , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/mortalidade , Prognóstico , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Adulto , Idoso , Tomografia por Emissão de Pósitrons , Radioisótopos de Carbono , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Adulto Jovem
13.
Signal Transduct Target Ther ; 9(1): 105, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679634

RESUMO

Impaired brain glucose metabolism is an early indicator of Alzheimer's disease (AD); however, the fundamental mechanism is unknown. In this study, we found a substantial decline in isocitrate dehydrogenase 3ß (IDH3ß) levels, a critical tricarboxylic acid cycle enzyme, in AD patients and AD-transgenic mice's brains. Further investigations demonstrated that the knockdown of IDH3ß induced oxidation-phosphorylation uncoupling, leading to reduced energy metabolism and lactate accumulation. The resulting increased lactate, a source of lactyl, was found to promote histone lactylation, thereby enhancing the expression of paired-box gene 6 (PAX6). As an inhibitory transcription factor of IDH3ß, the elevated PAX6 in turn inhibited the expression of IDH3ß, leading to tau hyperphosphorylation, synapse impairment, and learning and memory deficits resembling those seen in AD. In AD-transgenic mice, upregulating IDH3ß and downregulating PAX6 were found to improve cognitive functioning and reverse AD-like pathologies. Collectively, our data suggest that impaired oxidative phosphorylation accelerates AD progression via a positive feedback inhibition loop of IDH3ß-lactate-PAX6-IDH3ß. Breaking this loop by upregulating IDH3ß or downregulating PAX6 attenuates AD neurodegeneration and cognitive impairments.


Assuntos
Doença de Alzheimer , Isocitrato Desidrogenase , Fator de Transcrição PAX6 , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Retroalimentação Fisiológica , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Camundongos Transgênicos , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo
14.
Cell ; 187(10): 2485-2501.e26, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38653236

RESUMO

Glioma contains malignant cells in diverse states. Here, we combine spatial transcriptomics, spatial proteomics, and computational approaches to define glioma cellular states and uncover their organization. We find three prominent modes of organization. First, gliomas are composed of small local environments, each typically enriched with one major cellular state. Second, specific pairs of states preferentially reside in proximity across multiple scales. This pairing of states is consistent across tumors. Third, these pairwise interactions collectively define a global architecture composed of five layers. Hypoxia appears to drive the layers, as it is associated with a long-range organization that includes all cancer cell states. Accordingly, tumor regions distant from any hypoxic/necrotic foci and tumors that lack hypoxia such as low-grade IDH-mutant glioma are less organized. In summary, we provide a conceptual framework for the organization of cellular states in glioma, highlighting hypoxia as a long-range tissue organizer.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioblastoma/patologia , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Análise Espacial , Transcriptoma/genética , Microambiente Tumoral , Proteômica , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Regulação Neoplásica da Expressão Gênica
15.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38447055

RESUMO

Isocitrate dehydrogenase is an enzyme converting isocitrate to α-ketoglutarate in the canonical tricarboxylic acid (TCA) cycle. There are three different types of isocitrate dehydrogenase documented in eukaryotes. Our study points out the complex evolutionary history of isocitrate dehydrogenases across kinetoplastids, where the common ancestor of Trypanosomatidae and Bodonidae was equipped with two isoforms of the isocitrate dehydrogenase enzyme: the NADP+-dependent isocitrate dehydrogenase 1 with possibly dual localization in the cytosol and mitochondrion and NADP+-dependent mitochondrial isocitrate dehydrogenase 2. In the extant trypanosomatids, isocitrate dehydrogenase 1 is present only in a few species suggesting that it was lost upon separation of Trypanosoma spp. and replaced by the mainly NADP+-dependent cytosolic isocitrate dehydrogenase 3 of bacterial origin in all the derived lineages. In this study, we experimentally demonstrate that the omnipresent isocitrate dehydrogenase 2 has a dual localization in both mitochondrion and cytosol in at least four species that possess only this isoform. The apparent lack of the NAD+-dependent isocitrate dehydrogenase activity in trypanosomatid mitochondrion provides further support to the existence of the noncanonical TCA cycle across trypanosomatids and the bidirectional activity of isocitrate dehydrogenase 3 when operating with NADP+ cofactor instead of NAD+. This observation can be extended to all 17 species analyzed in this study, except for Leishmania mexicana, which showed only low isocitrate dehydrogenase activity in the cytosol. The variability in isocitrate oxidation capacity among species may reflect the distinct metabolic strategies and needs for reduced cofactors in particular environments.


Assuntos
Isocitrato Desidrogenase , NAD , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Isocitratos/metabolismo , NADP/metabolismo , NAD/metabolismo , Isoformas de Proteínas
16.
J Neurooncol ; 167(2): 305-313, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38424338

RESUMO

PURPOSE: Currently, there remains a scarcity of established preoperative tests to accurately predict the isocitrate dehydrogenase (IDH) mutation status in clinical scenarios, with limited research has explored the potential synergistic diagnostic performance among metabolite, perfusion, and diffusion parameters. To address this issue, we aimed to develop an imaging protocol that integrated 2-hydroxyglutarate (2HG) magnetic resonance spectroscopy (MRS) and intravoxel incoherent motion (IVIM) by comprehensively assessing metabolic, cellular, and angiogenic changes caused by IDH mutations, and explored the diagnostic efficiency of this imaging protocol for predicting IDH mutation status in clinical scenarios. METHODS: Patients who met the inclusion criteria were categorized into two groups: IDH-wild type (IDH-WT) group and IDH-mutant (IDH-MT) group. Subsequently, we quantified the 2HG concentration, the relative apparent diffusion coefficient (rADC), the relative true diffusion coefficient value (rD), the relative pseudo-diffusion coefficient (rD*) and the relative perfusion fraction value (rf). Intergroup differences were estimated using t-test and Mann-Whitney U test. Finally, we performed receiver operating characteristic (ROC) curve and DeLong's test to evaluate and compare the diagnostic performance of individual parameters and their combinations. RESULTS: 64 patients (female, 21; male, 43; age, 47.0 ± 13.7 years) were enrolled. Compared with IDH-WT gliomas, IDH-MT gliomas had higher 2HG concentration, rADC and rD (P < 0.001), and lower rD* (P = 0.013). The ROC curve demonstrated that 2HG + rD + rD* exhibited the highest areas under curve (AUC) value (0.967, 95%CI 0.889-0.996) for discriminating IDH mutation status. Compared with each individual parameter, the predictive efficiency of 2HG + rADC + rD* and 2HG + rD + rD* shows a statistically significant enhancement (DeLong's test: P < 0.05). CONCLUSIONS: The integration of 2HG MRS and IVIM significantly improves the diagnostic efficiency for predicting IDH mutation status in clinical scenarios.


Assuntos
Neoplasias Encefálicas , Glioma , Glutaratos , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Estudos Retrospectivos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioma/diagnóstico , Glioma/genética , Glioma/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Mutação
17.
BMC Cancer ; 24(1): 222, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365669

RESUMO

BACKGROUND: Glioma is a primary brain tumor and the assessment of its molecular profile in a minimally invasive manner is important in determining treatment strategies. Among the molecular abnormalities of gliomas, mutations in the isocitrate dehydrogenase (IDH) gene are strong predictors of treatment sensitivity and prognosis. In this study, we attempted to non-invasively diagnose glioma development and the presence of IDH mutations using multivariate analysis of the plasma mid-infrared absorption spectra for a comprehensive and sensitive view of changes in blood components associated with the disease and genetic mutations. These component changes are discussed in terms of absorption wavenumbers that contribute to differentiation. METHODS: Plasma samples were collected at our institutes from 84 patients with glioma (13 oligodendrogliomas, 17 IDH-mutant astrocytoma, 7 IDH wild-type diffuse glioma, and 47 glioblastomas) before treatment initiation and 72 healthy participants. FTIR-ATR spectra were obtained for each plasma sample, and PLS discriminant analysis was performed using the absorbance of each wavenumber in the fingerprint region of biomolecules as the explanatory variable. This data was used to distinguish patients with glioma from healthy participants and diagnose the presence of IDH mutations. RESULTS: The derived classification algorithm distinguished the patients with glioma from healthy participants with 83% accuracy (area under the curve (AUC) in receiver operating characteristic (ROC) = 0.908) and diagnosed the presence of IDH mutation with 75% accuracy (AUC = 0.752 in ROC) in cross-validation using 30% of the total test data. The characteristic changes in the absorption spectra suggest an increase in the ratio of ß-sheet structures in the conformational composition of blood proteins of patients with glioma. Furthermore, these changes were more pronounced in patients with IDH-mutant gliomas. CONCLUSIONS: The plasma infrared absorption spectra could be used to diagnose gliomas and the presence of IDH mutations in gliomas with a high degree of accuracy. The spectral shape of the protein absorption band showed that the ratio of ß-sheet structures in blood proteins was significantly higher in patients with glioma than in healthy participants, and protein aggregation was a distinct feature in patients with glioma with IDH mutations.


Assuntos
Neoplasias Encefálicas , Glioma , Isocitrato Desidrogenase , Humanos , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Sanguíneas/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/diagnóstico , Glioma/genética , Glioma/metabolismo , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Mutação , Agregados Proteicos , Espectroscopia de Infravermelho com Transformada de Fourier , Amiloide/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-38191174

RESUMO

Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are metabolic enzymes that interconvert isocitrate and 2-oxoglutarate (2OG). Gain-of-function mutations in IDH1 and IDH2 occur in a number of cancers, including acute myeloid leukemia, glioma, cholangiocarcinoma, and chondrosarcoma. These mutations cripple the wild-type activity of IDH and cause the enzymes to catalyze a partial reverse reaction in which 2OG is reduced but not carboxylated, resulting in production of the (R)-enantiomer of 2-hydroxyglutarate ((R)-2HG). (R)-2HG accumulation in IDH-mutant tumors results in profound dysregulation of cellular metabolism. The most well-characterized oncogenic effects of (R)-2HG involve the dysregulation of 2OG-dependent epigenetic tumor-suppressor enzymes. However, (R)-2HG has many other effects in IDH-mutant cells, some that promote transformation and others that induce metabolic dependencies. Herein, we review how cancer-associated IDH mutations impact epigenetic regulation and cellular metabolism and discuss how these effects can potentially be leveraged to therapeutically target IDH-mutant tumors.


Assuntos
Isocitrato Desidrogenase , Mutação , Neoplasias , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Humanos , Neoplasias/genética , Epigênese Genética , Glutaratos/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Animais
19.
Bioresour Technol ; 395: 130365, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266784

RESUMO

Regulatory complexities in lipogenesis hinder the harmonization of metabolic carbon precursors towards lipid synthesis. Exploring regulatory complexities in lipogenesis, this study identifies NADP+-dependent isocitrate dehydrogenase (IDH) in Tetradesmus obliquus as a key factor. Overexpression IDH in strains ToIDH-1 and ToIDH-2 resulted in a 1.69 and 1.64-fold increase in neutral lipids, respectively, compared to the wild type, with lipid yield reaching 234.56 and 227.17 mg/L. Notably, despite slower growth, the cellular biomass augmented to 790.67 mg/L. Metabolite analysis indicated a shift in carbon precursors from protein to lipid and carbohydrate synthesis. Morphological observations revealed increases in the volume and number of lipid droplets, alongside a change in the fatty acid profile favoring monounsaturated and saturated fatty acids. Furthermore, IDH overexpression enhanced NADPH production and antioxidant activity, thereby further boosting lipid accumulation when combined with salt stress. This study suggests a pathway for improved lipogenesis and algal growth via metabolic engineering.


Assuntos
Antioxidantes , Isocitrato Desidrogenase , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , NADP/metabolismo , NADPH Desidrogenase , Ácidos Graxos , Carbono
20.
Cell Mol Biol Lett ; 29(1): 8, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172700

RESUMO

BACKGROUND: Acute liver failure (ALF) is a life-threatening disease, but its pathogenesis is not fully understood. NETosis is a novel mode of cell death. Although the formation of neutrophil extracellular traps (NETs) has been found in various liver diseases, the specific mechanism by which NETosis regulates the development of ALF is unclear. In this article, we explore the role and mechanism of NETosis in the pathogenesis of ALF. METHODS: Clinically, we evaluated NETs-related markers in the liver and peripheral neutrophils of patients with ALF. In in vitro experiments, HL-60 cells were first induced to differentiate into neutrophil-like cells (dHL-60 cells) with dimethyl sulfoxide (DMSO). NETs were formed by inducing dHL-60 cells with PMA. In in vivo experiments, the ALF model in mice was established with LPS/D-gal, and the release of NETs was detected by immunofluorescence staining and western blotting. Finally, the acetylation levels of IDH1 and MDH1 were detected in dHL-60 cells and liver samples by immunoprecipitation. RESULTS: Clinically, increased release of NETs in liver tissue was observed in patients with ALF, and NETs formation was detected in neutrophils from patients with liver failure. In dHL-60 cells, mutations at IDH1-K93 and MDH1-K118 deacetylate IDH1 and MDH1, which promotes the formation of NETs. In a mouse model of ALF, deacetylation of IDH1 and MDH1 resulted in NETosis and promoted the progression of acute liver failure. CONCLUSIONS: Deacetylation of IDH1 and MDH1 reduces their activity and promotes the formation of NETs. This change aggravates the progression of acute liver failure.


Assuntos
Armadilhas Extracelulares , Falência Hepática Aguda , Humanos , Animais , Camundongos , Neutrófilos/metabolismo , Armadilhas Extracelulares/metabolismo , Processamento de Proteína Pós-Traducional , Modelos Animais de Doenças , Falência Hepática Aguda/metabolismo , Isocitrato Desidrogenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...