Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.944
Filtrar
1.
World J Microbiol Biotechnol ; 40(7): 228, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822927

RESUMO

Doramectin, an essential animal anthelmintic, is synthesized through the fermentation process of Streptomyces avermitilis. This study delves into the transcriptomic profiles of two strains, namely the doramectin-producing wild-type S. avermitilis N72 and its highly doramectin-producing mutant counterpart, S. avermitilis XY-62. Comparative analysis revealed 860 up-regulated genes and 762 down-regulated genes in the mutant strain, notably impacting the expression of key genes pivotal in doramectin biosynthesis, including aveA1, aveA2, aveA3, aveA4, aveE, and aveBI. These findings shed light on the molecular mechanisms underpinning the heightened doramectin production in S. avermitilis XY-62, presenting promising avenues for optimizing doramectin production processes.


Assuntos
Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Ivermectina , Mutação , Streptomyces , Transcriptoma , Streptomyces/genética , Streptomyces/metabolismo , Ivermectina/análogos & derivados , Ivermectina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fermentação , Anti-Helmínticos/metabolismo
2.
Vet Med Sci ; 10(4): e1500, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38864312

RESUMO

BACKGROUND: Sarcoptic mange is rare in cats. The main symptoms reported in cases of feline sarcoptic mange include crusty lesions and pruritus, although these may vary in severity among individuals. OBJECTIVES: This report describes three cats infested with Sarcoptes scabiei, all presenting with pruritus and excoriation. METHODS: The diagnosis was confirmed by microscopic observation of skin scrape samples. RESULTS: All three cats were treated successfully using moxidectin and imidacloprid, selamectin and ivermectin, respectively. CONCLUSIONS: The clinical presentation of feline scabies appears to be more variable in cats than in dogs. Infestation with S. scabiei should be considered a differential diagnosis for cats presenting with pruritic inflammatory skin disease.


Assuntos
Doenças do Gato , Sarcoptes scabiei , Escabiose , Animais , Escabiose/veterinária , Escabiose/tratamento farmacológico , Escabiose/diagnóstico , Doenças do Gato/parasitologia , Doenças do Gato/tratamento farmacológico , Doenças do Gato/diagnóstico , Gatos , Masculino , Feminino , Polônia , Sarcoptes scabiei/efeitos dos fármacos , Ivermectina/uso terapêutico , Ivermectina/análogos & derivados , Nitrocompostos/uso terapêutico , Neonicotinoides/uso terapêutico , Inseticidas/uso terapêutico , Macrolídeos
3.
Pestic Biochem Physiol ; 202: 105941, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879332

RESUMO

Emamectin benzoate (EMB) is extensively used as a crop protection agent. Overuse of EMB poses a serious threat to the quality of water and non-target organisms in the environment. Resveratrol (RES) is a natural phytoalexin with the function of anti-oxidation and anti-inflammation. Nonetheless, it is unclear whether EMB affects the expression of cytokines and induces autophagy, apoptosis, and necroptosis of hepatocytes (L8824 cell) in grass carp (Ctenopharyngodon idella), and whether RES has an attenuate function in this process. Therefore, we established the L8824 cells model of EMB exposure and treated it with RES. The results showed that compared with the control (CON) group, EMB exposure significantly increased the nitric oxide (NO) content, inducible nitric oxide synthase (iNOS) activity, and the expression of iNOS and phosphorylated nuclear factor kappa B (p-NF-κB) (P < 0.05). In addition, compared with the CON group, the results of flow cytometry and dansylcadaverine (MDC) staining showed a significant increase in apoptosis and autophagy in the EMB-exposed group (P < 0.05) with the activation of the B-cell lymphoma-2 (Bcl-2)/Bcl-2 associated X (Bax)/cysteine-aspartic acid protease 3 (Caspase-3)/cysteine-aspartic acid protease 9 (Caspase-9) pathway and microtubule-associated protein light chain 3 (LC3)/sequestosome 1 (p62)/Beclin1 pathway. EMB exposure significantly increased the mRNA and protein expression of receptor-interacting protein 1 (RIPK1)/receptor-interacting protein 3 (RIPK3)/mixed the lineage kinase domain-like (MLKL) pathway (P < 0.05). Moreover, EMB exposure significantly increased the expression of genes related to immunity (immunoglobulin G (IgG), immunoglobulin M (IgM), and immunoglobulin D (IgD), and antimicrobial peptide-related genes expression including ß-defensin and hepcidin) (P < 0.05). The addition of RES significantly diminished autophagy, apoptosis, necroptosis, and immunity-related gene expression by inhibiting iNOS activity, NO content, and the protein expression of iNOS and p-NF-κB. In conclusion, RES attenuated autophagy, apoptosis, and necroptosis in EMB-exposed L8824 cells via suppression of the NO system/NF-κB signaling pathway.


Assuntos
Carpas , Ivermectina , NF-kappa B , Óxido Nítrico , Resveratrol , Transdução de Sinais , Animais , Carpas/metabolismo , NF-kappa B/metabolismo , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Ivermectina/farmacologia , Óxido Nítrico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Resveratrol/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Apoptose/efeitos dos fármacos , Linhagem Celular , Autofagia/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo
4.
Langmuir ; 40(21): 10992-11010, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38743441

RESUMO

The exploration of environmentally friendly, less toxic, sustained-release insecticide is increasing with the growing demand for food to meet the requirements of the expanding population. As a sustained-release carrier, the unique, environmentally friendly intelligent responsive hydrogel system is an important factor in improving the efficiency of insecticide utilization and accurate release. In this study, we developed a facile approach for incorporating the natural compound rosin (dehydroabietic acid, DA) and zinc ions (Zn2+) into a poly(N-isopropylacrylamide) (PNIPAM) hydrogel network to construct a controlled-release hydrogel carrier (DA-PNIPAM-Zn2+). Then, the model insecticide avermectin (AVM) was encapsulated in the carrier at a drug loading rate of 36.32% to form AVM@DA-PNIPAM-Zn2+. Surprisingly, the smart controlled carrier exhibited environmental responsiveness, strongly enhanced mechanical properties, self-healing ability, hydrophobicity, and photostability to ensure a balance between environmental friendliness and the precision of the drug release. The release experiments showed that the carboxyl and amide groups in the polymer chains alter the intermolecular forces within the hydrogel meshes and ingredient diffusion by changing temperatures (25 and 40 °C) and pH values (5.8, 7.4, and 8.5), leading to different release behaviors. The insecticidal activity of the AVM@DA-PNIPAM-Zn2+ against oriental armyworms was good, with an effective minimum toxicity toward aquatic animals. Therefore, AVM@DA-PNIPAM-Zn2+ is an effective drug delivery system against oriental armyworms. We anticipate that this ecofriendly, sustainable, smart-response carrier may broaden the utilization rosin and its possible applications in the agricultural sector.


Assuntos
Portadores de Fármacos , Hidrogéis , Inseticidas , Ivermectina , Resinas Vegetais , Ivermectina/análogos & derivados , Ivermectina/química , Ivermectina/farmacologia , Ivermectina/toxicidade , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Concentração de Íons de Hidrogênio , Inseticidas/química , Inseticidas/farmacologia , Resinas Vegetais/química , Portadores de Fármacos/química , Temperatura , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Liberação Controlada de Fármacos , Mariposas/efeitos dos fármacos , Rosaceae/química , Zinco/química , Zinco/farmacologia , Resinas Acrílicas
5.
ACS Nano ; 18(21): 13781-13793, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38752333

RESUMO

Pine wood nematode (PWN) disease is a globally devastating forest disease caused by infestation with PWN, Bursaphelenchus xylophilus, which mainly occurs through the vector insect Japanese pine sawyer (JPS), Monochamus alternatus. PWN disease is notoriously difficult to manage effectively and is known as the "cancer of pine trees." In this study, dual enzyme-responsive nanopesticides (AVM@EC@Pectin) were prepared using nanocoating avermectin (AVM) after modification with natural polymers. The proposed treatment can respond to the cell wall-degrading enzymes secreted by PWNs and vector insects during pine tree infestation to intelligently release pesticides to cut off the transmission and infestation pathways and realize the integrated control of PWN disease. The LC50 value of AVM@EC@Pectin was 11.19 mg/L for PWN and 26.31 mg/L for JPS. The insecticidal activity of AVM@EC@Pectin was higher than that of the commercial emulsifiable concentrate (AVM-EC), and the photostability, adhesion, and target penetration were improved. The half-life (t1/2) of AVM@EC@Pectin was 133.7 min, which is approximately twice that of AVM-EC (68.2 min). Sprayed and injected applications showed that nanopesticides had superior bidirectional transportation, with five-times higher AVM contents detected in the roots relative to those of AVM-EC when sprayed at the top. The safety experiment showed that the proposed treatment had lower toxicity and higher safety for nontarget organisms in the application environment and human cells. This study presents a green, safe, and effective strategy for the integrated management of PWN disease.


Assuntos
Biomassa , Ivermectina , Pinus , Animais , Pinus/parasitologia , Pinus/química , Ivermectina/análogos & derivados , Ivermectina/farmacologia , Ivermectina/química , Ivermectina/metabolismo , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Nematoides/efeitos dos fármacos , Inseticidas/farmacologia , Inseticidas/química , Nanopartículas/química , Humanos
6.
Sci Total Environ ; 933: 173126, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38734105

RESUMO

Studying the toxic effects of pesticides on bees has consistently been a prominent area of interest for researchers. Nonetheless, existing research has predominantly concentrated on individual toxicity assessments, leaving a gap in our understanding of mixed toxicity. This study delves into the individual and combined toxic effects of abamectin (ABA) and lambda-cyhalothrin (LCY) on honey bees (Apis mellifera) in laboratory settings. We discovered that ABA (96 h-LC50 value of 0.079 mg/L) exhibited greater acute toxicity to honey bees compared to LCY (96 h-LC50 value of 9.177 mg/L). Moreover, the mixture of ABA and LCY presented an acute antagonistic effect on honey bees. Additionally, our results indicated that exposure to LCY, at medium concentration, led to a reduction in the abundance of gut core bacterium Snodgrassella. However, an increase in the abundance of Bifidobacterium was noted when exposed to a medium concentration of LCY and its mixture with ABA. Transcriptomic analysis revealed significant regulation of certain genes in the medium concentration of all three treatments compared to the control group, primarily enriching in metabolism and immune-related pathways. Following chronic exposure to field-relevant concentrations of ABA, LCY, and their mixture, there were significant alterations in the activities of immunity-related enzyme polyphenol oxidase (PPO) and detoxification enzymes glutathione S-transferase (GST) and carboxylesterase (CarE). Additionally, the expression of four genes (abaecin, cyp9e2, cyp302a1, and GstD1) associated with immune and detoxification metabolism was significantly altered. These findings suggest a potential health risk posed by the insecticides ABA and LCY to honey bees. Despite exhibiting acute antagonistic effect, mixed exposure still induced damage to bees at all levels. This study advances our knowledge of the potential adverse effects of individual or combined exposure to these two pesticides on non-target pollinators and offers crucial guidance for the use of insecticides in agricultural production.


Assuntos
Inseticidas , Ivermectina , Nitrilas , Piretrinas , Animais , Piretrinas/toxicidade , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Nitrilas/toxicidade , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Inseticidas/toxicidade
7.
J Agric Food Chem ; 72(21): 12146-12155, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38747516

RESUMO

In this study, an α-amylase-responsive controlled-release formulation was developed by capping polydopamine onto ß-cyclodextrin-modified abamectin-loaded hollow mesoporous silica nanoparticles. The prepared Aba@HMS@CD@PDA were subjected to characterization using various analytical techniques. The findings revealed that Aba@HMS@CD@PDA, featuring a loading rate of 18.8 wt %, displayed noteworthy release behavior of abamectin in the presence of α-amylase. In comparison to abamectin EC, Aba@HMS@CD@PDA displayed a significantly foliar affinity and improved rainfastness on lotus leaves. The results of field trail demonstrated a significantly higher control efficacy against Spodoptera litura Fabricius compared to abamectin EC at all concentrations after 7, 14, and 21 days of spaying, showcasing the remarkable persistence of Aba@HMS@CD@PDA. These results underscore the potential of Aba@HMS@CD@PDA as a novel and persistently effective strategy for sustainable on-demand crop protection. The application of nanopesticides can enhance the effectiveness and efficiency of pesticide utilization, contributing to more sustainable agricultural practices.


Assuntos
Proteção de Cultivos , Inseticidas , Nanopartículas , Spodoptera , alfa-Amilases , Animais , alfa-Amilases/química , alfa-Amilases/metabolismo , alfa-Amilases/antagonistas & inibidores , Nanopartículas/química , Proteção de Cultivos/métodos , Spodoptera/efeitos dos fármacos , Inseticidas/química , Inseticidas/farmacologia , Ivermectina/análogos & derivados , Ivermectina/química , Ivermectina/farmacologia , Polímeros/química , Dióxido de Silício/química , Controle de Insetos , Praguicidas/química , Praguicidas/farmacologia , Indóis/química , Indóis/farmacologia
8.
J Agric Food Chem ; 72(19): 10842-10852, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38708761

RESUMO

Guvermectin, as a novel nucleoside-like biopesticide, could increase the rice yield excellently, but the potential environmental behaviors remain unclear, which pose potential health risks. Therefore, the uptake and biotransformation of guvermectin in three types of crops (rice, lettuce, and carrot) were first evaluated with a hydroponic system. Guvermectin could be rapidly absorbed and reached equilibrium in roots (12-36 h) and shoots (24-60 h) in three plants, and guvermectin was also vulnerable to dissipation in roots (t1/2 1.02-3.65 h) and shoots (t1/2 9.30-17.91 h). In addition, 8 phase I and 2 phase II metabolites, transformed from guvermectin degradation in vivo and in vitro exposure, were identified, and one was confirmed as psicofuranine, which had antibacterial and antitumor properties; other metabolites were nucleoside-like chemicals. Molecular simulation and quantitative polymerase chain reaction further demonstrated that guvermectin was metabolized by the catabolism pathway of an endogenous nucleotide. Guvermectin had similar metabolites in three plants, but the biotransformation ability had a strong species dependence. In addition, all the metabolites exhibit neglectable toxicities (bioconcentration factor <2000 L/kg b.w., LC50,rat > 5000 mg/kg b.w.) by prediction. The study provided valuable evidence for the application of guvermectin and a better understanding of the biological behavior of nucleoside-like pesticides.


Assuntos
Biotransformação , Daucus carota , Ivermectina , Lactuca , Oryza , Raízes de Plantas , Ivermectina/metabolismo , Ivermectina/análogos & derivados , Raízes de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Lactuca/metabolismo , Lactuca/química , Lactuca/crescimento & desenvolvimento , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/química , Daucus carota/metabolismo , Daucus carota/química , Produtos Agrícolas/metabolismo , Produtos Agrícolas/química , Produtos Agrícolas/crescimento & desenvolvimento
9.
Fish Shellfish Immunol ; 150: 109624, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740228

RESUMO

Avermectin is one of the widely used anthelmintics in aquaculture and exhibits substantial toxicity to aquatic organisms. Silybin is extensively used for its anti-inflammatory, antioxidant and anti-apoptotic biological properties. Heart is essential for the survival of fish and plays a vital role in pumping blood oxygen and nutrients. Residual avermectin in water poses harm to carp. However, there is still insufficient research on whether silybin can mitigate the toxicity of avermectin to carp heart tissues. In this research, we established a model involving carp subjected to acute avermectin exposure and administered diets containing silybin to explore the potential protective effects of silybin against avermectin-induced cardiotoxicity. The results revealed that avermectin induced oxidative stress, inflammation, endoplasmic reticulum (ER) stress, mitochondrial pathway apoptosis and autophagy in the cardiac tissues of carp. Compared with the avermectin group, silybin significantly reduced ROS accumulation in cardiac tissues, restored antioxidant enzyme activity, inhibited mRNA transcript levels of pro-inflammatory-related factors, and attenuated ER stress, mitochondrial pathway apoptosis and autophagy. Protein-protein interaction (PPI) analysis demonstrated that silybin mitigated avermectin-induced cardiac oxidative stress, inflammation, ER stress, mitochondrial pathway apoptosis and autophagy. Silybin exerted anti-inflammatory effects through the Nuclear Factor kappa B (NF-κB) pathway, antioxidant effects through the Nuclear factor erythroid 2-related factor 2 (Nrf2) - Kelch-like ECH-associated protein 1 (Keap1) pathway, alleviated cardiac ER stress through the Glucose-regulated protein 78 (GRP78)/Activating Transcription Factor 6 (ATF6)/C/EBP homologous protein (CHOP) axis, suppressed apoptosis through the mitochondrial pathway, and inhibited excessive autophagy initiation through the PTEN-induced putative kinase 1 (PINK1)/Parkin RBR E3 ubiquitin protein ligase (PARKIN) signaling pathway. This study provided evidence supporting the protective effect of silybin against avermectin-induced cardiotoxicity in carp, highlighting its potential as a dietary additive to protect fish from adverse effects caused by avermectin exposure.


Assuntos
Apoptose , Autofagia , Cardiotoxicidade , Carpas , Estresse do Retículo Endoplasmático , Inflamação , Ivermectina , Estresse Oxidativo , Silibina , Animais , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carpas/imunologia , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Cardiotoxicidade/etiologia , Silibina/farmacologia , Silibina/administração & dosagem , Inflamação/induzido quimicamente , Inflamação/veterinária , Doenças dos Peixes/induzido quimicamente , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/imunologia , Mitocôndrias/efeitos dos fármacos , Anti-Helmínticos/toxicidade , Anti-Helmínticos/farmacologia
10.
Int J Biol Macromol ; 270(Pt 2): 132228, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734355

RESUMO

Panonychus citri (McGregor) strains have developed a high level of resistance to abamectin, but the underlying molecular mechanism is unknown. Uridine diphosphate (UDP)-glycosyltransferases (UGTs) are critical for the removal of a variety of exogenous and endogenous substances. In this study, an enzyme activity assay revealed that UGTs potentially contribute to P. citri abamectin resistance. Spatiotemporal expression profiles showed that only PcUGT202A9 was significantly overexpressed in the abamectin-resistant strain (AbR) at all developmental stages. Moreover, UGT activity decreased significantly, whereas abamectin susceptibility increased significantly, in AbR after PcUGT202A9 was silenced. Three-dimensional modeling and molecular docking analyses revealed that PcUGT202A9 can bind stably to abamectin. Recombinant PcUGT202A9 activity was detected when α-naphthol was used, but the enzymatic activity was inhibited by abamectin (50 % inhibitory concentration: 803.3 ±â€¯14.20 µmol/L). High-performance liquid chromatography and mass spectrometry analyses indicated that recombinant PcUGT202A9 can effectively degrade abamectin and catalyze the conjugation of UDP-glucose to abamectin. These results imply PcUGT202A9 contributes to P. citri abamectin resistance.


Assuntos
Glicosiltransferases , Ivermectina , Simulação de Acoplamento Molecular , Ivermectina/análogos & derivados , Ivermectina/farmacologia , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Glicosiltransferases/química , Animais , Resistência a Medicamentos/genética
11.
J Agric Food Chem ; 72(22): 12489-12497, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38773677

RESUMO

The glutathione S-transferases (GSTs) are important detoxifying enzymes in insects. Our previous studies found that the susceptibility of Chilo suppressalis to abamectin was significantly increased when the CsGST activity was inhibited by glutathione (GSH) depletory. In this study, the potential detoxification mechanisms of CsGSTs to abamectin were explored. Six CsGSTs of C. suppressalis were expressed in vitro. Enzymatic kinetic parameters including Km and Vmax of recombinant CsGSTs were determined, and results showed that all of the six CsGSTs were catalytically active and displaying glutathione transferase activity. Insecticide inhibitions revealed that a low concentration of abamectin could effectively inhibit the activities of CsGSTs including CsGSTd1, CsGSTe4, CsGSTo2, CsGSTs3, and CsGSTu1. However, the in vitro metabolism assay found that the six CsGSTs could not metabolize abamectin directly. Additionally, the glutathione transferase activity of CsGSTs in C. suppressalis was significantly increased post-treatment with abamectin. Comprehensive analysis of the results in present and our previous studies demonstrated that CsGSTs play an important role in detoxification of abamectin by catalyzing the conjugation of GSH to abamectin in C. suppressalis, and the high binding affinities of CsGSTd1, CsGSTe4, CsGSTo2, CsGSTs3, and CsGSTu1 with abamectin might also suggest the involvement of CsGSTs in detoxification of abamectin via the noncatalytic passive binding and sequestration instead of direct metabolism. These studies are helpful to better understand the detoxification mechanisms of GSTs in insects.


Assuntos
Glutationa Transferase , Proteínas de Insetos , Inseticidas , Ivermectina , Mariposas , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/química , Animais , Inseticidas/metabolismo , Inseticidas/farmacologia , Inseticidas/química , Mariposas/metabolismo , Mariposas/efeitos dos fármacos , Mariposas/enzimologia , Ivermectina/análogos & derivados , Ivermectina/metabolismo , Ivermectina/farmacologia , Ivermectina/química , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/química , Cinética , Oryza/metabolismo , Oryza/parasitologia , Oryza/química , Glutationa/metabolismo , Glutationa/química
12.
Toxicon ; 244: 107755, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38740097

RESUMO

Avermectin (AVM) has been utilized extensively in agricultural production since it is a low-toxicity pesticide. However, the pollution caused by its residues to fisheries aquaculture has been neglected. As an abundant polyphenolic substance in plants, ferulic acid (FA) possesses anti-inflammatory and antioxidant effects. The goal of the study is to assess the FA's ability to reduce liver damage in carp brought on by AVM exposure. Four groups of carp were created at random: the control group; the AVM group; the FA group; and the FA + AVM group. On day 30, and the liver tissues of carp were collected and examined for the detection of four items of blood lipid as well as the activity of the antioxidant enzymes catalase (CAT), glutathione (GSH) and malondialdehyde (MDA) in carp liver tissues by biochemical kits, and the transcript levels of indicators of oxidative stress, inflammation and apoptosis by qPCR. The results showed that liver injury, inflammation, oxidative stress, and apoptosis were attenuated in the FA + AVM group compared to the AVM group. In summary, dietary addition of FA could ameliorate the hepatotoxicity caused by AVM in carp by alleviating oxidative stress, inflammation, apoptosis in liver tissues.


Assuntos
Apoptose , Carpas , Ácidos Cumáricos , Inflamação , Ivermectina , Fígado , Estresse Oxidativo , Animais , Ácidos Cumáricos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Apoptose/efeitos dos fármacos , Inflamação/tratamento farmacológico , Suplementos Nutricionais , Antioxidantes/farmacologia
13.
Chemosphere ; 359: 142288, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38750729

RESUMO

Helicoverpa armigera, a ubiquitous polyphagous pest, poses a significant threat to global agriculture, causing substantial economic losses and demonstrating resistance to synthetic pesticides. This study investigates the potential of emamectin benzoate (EMB), an avermectin derivative, as an effective control agent against H. armigera. The larvae of the NBII-MP-NOC-01 strain of H. armigera were reared on an artificial diet. The impact of dietary EMB was examined on four midgut enzymes; alanine aminotransferase (ALT), aspartate aminotransferase (AST), acid phosphatase (ACP), and alkaline phosphatase (ALP). Results showed a dose-dependent and time-dependent reduction in ALT and AST activity, while an initial increase and subsequent decline in ACP and ALP activity at higher EMB concentrations. Computational modelling of enzyme structures and molecular docking studies revealed differential binding of EMB with the midgut enzymes. The strongest interaction was observed between EMB and ALT residues, contrasting with weakest interactions observed with AST. The study also showed that decreased activity of transaminases in H. armigera caused by EMB may be because of stability-activity trade-off, while in phosphatases reverse may be the case. This research provides crucial insights into the biochemical responses and the intricate insecticide-enzyme interactions in H. armigera caused by EMB exposure. This study lays the foundation for further research aimed at developing environmentally friendly approaches for managing H. armigera, addressing the challenges associated with conventional pesticides.


Assuntos
Fosfatase Ácida , Alanina Transaminase , Fosfatase Alcalina , Aspartato Aminotransferases , Inseticidas , Ivermectina , Larva , Simulação de Acoplamento Molecular , Mariposas , Animais , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Larva/efeitos dos fármacos , Mariposas/efeitos dos fármacos , Inseticidas/toxicidade , Inseticidas/química , Inseticidas/metabolismo , Fosfatase Alcalina/metabolismo , Fosfatase Ácida/metabolismo , Alanina Transaminase/metabolismo , Aspartato Aminotransferases/metabolismo , Helicoverpa armigera
14.
Parasit Vectors ; 17(1): 211, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730429

RESUMO

BACKGROUND: The health and productivity of dairy goats continue to be impacted by gastrointestinal nematodes (GIN) and lungworms (LW). Eprinomectin (EPN) is frequently selected for treatment because it is generally effective and does not require a milk withdrawal period. However, some factors, such as lactation, can have an impact on EPN pharmacokinetics and potentially its efficacy. To evaluate whether this can alter the efficacy of Eprecis® 2%, an eprinomectin injectable solution, a study was performed in lactating goats using the dose currently registered in cattle, sheep and goats (0.2 mg/kg). METHODS: This study was a blinded, randomized, controlled trial performed according to the VICH guidelines. Eighteen (18) worm-free lactating goats were included and experimentally challenged on day 28 with a mixed culture of infective gastrointestinal and lung nematode larvae (Haemonchus contortus, Trichostrongylus colubriformis, Teladorsagia circumcincta, Dictyocaulus filaria). At D-1, fecal samples were collected to confirm patent infection in all animals. On D0, the goats were randomly allocated into two groups of nine goats; group 1 was treated with Eprecis® 2% at 0.2 mg/kg BW by subcutaneous injection, while group 2 remained untreated. Fecal samples for egg counts were collected from all animals on days 3, 5, 7, 9, 11 and 14. On D14, all goats were killed, and the abomasum, small intestine and lungs were removed, processed and subsampled to record the number and species of worms. RESULTS: The treatment was well tolerated. After treatment, the arithmetic mean FEC decreased in the treated group and remained < 5 EPG until the end of the study, while the arithmetic mean FEC in the control group remained > 849.0 EPG. At D14, goats in the treated group had very limited or zero total worm counts, whereas all animals from the control group had a high worm burden. The measured efficacy was 100.0% against H. contortus and T. colubriformis, 99.9% against T. circumcincta and 98.0% against D. filaria. CONCLUSIONS: Eprinomectin (Eprecis®, 20 mg/ml), administered at the label dose (0.2 mg/kg), is highly effective against gastrointestinal nematodes and lungworms in lactating goats.


Assuntos
Fezes , Doenças das Cabras , Cabras , Ivermectina , Lactação , Infecções por Nematoides , Animais , Ivermectina/análogos & derivados , Ivermectina/administração & dosagem , Ivermectina/farmacocinética , Ivermectina/uso terapêutico , Doenças das Cabras/tratamento farmacológico , Doenças das Cabras/parasitologia , Feminino , Infecções por Nematoides/veterinária , Infecções por Nematoides/tratamento farmacológico , Infecções por Nematoides/parasitologia , Fezes/parasitologia , Lactação/efeitos dos fármacos , Contagem de Ovos de Parasitas/veterinária , Injeções Subcutâneas/veterinária , Anti-Helmínticos/administração & dosagem , Anti-Helmínticos/uso terapêutico , Anti-Helmínticos/farmacocinética , Nematoides/efeitos dos fármacos , Gastroenteropatias/veterinária , Gastroenteropatias/parasitologia , Gastroenteropatias/tratamento farmacológico , Pulmão/parasitologia
15.
Sci Rep ; 14(1): 9385, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654030

RESUMO

This study aims to assess in situ the impact of effluents originating from an Atlantic salmon (Salmo salar) farm on a nearby slender sea pen (Virgularia mirabilis) field. We evidenced (1) the presence and persistence of emamectin residues (i.e. a common chemotherapeutants used for treating ectoparasites in salmons) in V. mirabilis tissue 56 days after treatment and (2) lethal and sublethal responses of V. mirabilis to effluents discharged by the salmon farm. Particularly, sea pens near the fish farm exhibited significant overproduction of mucus, contraction of polyps' tentacles, and disappearance of associated fauna. Furthermore, sea pens located directly underneath the farm showed substantial tissue necrosis and, in the most severe case, complete tissue loss and mortality. Our results suggest that lethal damages on sea pens occur directly below the farm, and that sublethal effects are visible up to 500 m from the farm. However, the presence of V. mirabilis below the studied farm, which has been active for more than twenty years, suggests that V. mirabilis population possesses the capacity to recover from the impacts of the farm, thereby preventing the complete disappearance from the area. In this context, it would be particularly interesting to run a temporal survey following the health state of V. mirabilis during an entire production cycle to have a more precise overview of fish farm impacts on this species, including during and after the post-production fallowing period.


Assuntos
Aquicultura , Salmo salar , Animais , Salmo salar/parasitologia , Poluentes Químicos da Água/toxicidade , Ivermectina/análogos & derivados , Ivermectina/farmacologia
16.
Hum Exp Toxicol ; 43: 9603271241249965, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38662433

RESUMO

BACKGROUND: The mechanism of emamectin benzoate (EMB-a macrocyclic lactone insecticide like abamectin) action involves the disruption of glutamate-gated chloride channels and GABA receptors in insects, leading to paralysis and death. EMB overdose can breach the blood-brain barrier, resulting in severe poisoning and altered consciousness. AIM: Review EMB poisoning presentations in patients and reevaluate clinical manifestations. MATERIALS AND METHODS: This retrospective study reviewed (August 31, 2008-August 31, 2023) medical university hospital records. We analyzed symptoms, patient characteristics, vital signs, Glasgow Coma Scale scores, laboratory findings, and outcomes. RESULTS: Ten patients (males: 6, females: 4, median age = 64.5 years) experienced EMB poisoning. Common symptoms included sore throat, gastrointestinal distress, dyspnea, and altered consciousness; two patients showed laryngeal corrosive injuries. Management involved activated charcoal administration, gastric lavage, and intensive care unit admission. DISCUSSION: Sore throat and corrosive injuries were distinctive presentations of EMB poisoning, warranting vigilance. Potential mechanisms of corrosive injury include skin and eye irritation effects of EMB, the solvents of which might exert corrosive action. CONCLUSION: EMB poisoning manifests as diverse symptoms, including sore throat, gastrointestinal symptoms, central nervous system depression, and potential aspiration pneumonia. Recognizing and promptly managing EMB poisoning are crucial for enhancing patient outcomes and minimizing complications.


Assuntos
Ivermectina , Ivermectina/análogos & derivados , Humanos , Ivermectina/intoxicação , Ivermectina/toxicidade , Feminino , Pessoa de Meia-Idade , Masculino , Estudos Retrospectivos , Idoso , Inseticidas/intoxicação , Inseticidas/toxicidade , Adulto , Idoso de 80 Anos ou mais
17.
Microb Biotechnol ; 17(5): e14470, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38683675

RESUMO

Avermectins (AVEs), a family of macrocyclic polyketides produced by Streptomyces avermitilis, have eight components, among which B1a is noted for its strong insecticidal activity. Biosynthesis of AVE "a" components requires 2-methylbutyryl-CoA (MBCoA) as starter unit, and malonyl-CoA (MalCoA) and methylmalonyl-CoA (MMCoA) as extender units. We describe here a novel strategy for increasing B1a production by enhancing acyl-CoA precursor supply. First, we engineered meilingmycin (MEI) polyketide synthase (PKS) for increasing MBCoA precursor supply. The loading module (using acetyl-CoA as substrate), extension module 7 (using MMCoA as substrate) and TE domain of MEI PKS were assembled to produce 2-methylbutyrate, providing the starter unit for B1a production. Heterologous expression of the newly designed PKS (termed Mei-PKS) in S. avermitilis wild-type (WT) strain increased MBCoA level, leading to B1a titer 262.2 µg/mL - 4.36-fold higher than WT value (48.9 µg/mL). Next, we separately inhibited three key nodes in essential pathways using CRISPRi to increase MalCoA and MMCoA levels in WT. The resulting strains all showed increased B1a titer. Combined inhibition of these key nodes in Mei-PKS expression strain increased B1a titer to 341.9 µg/mL. Overexpression of fatty acid ß-oxidation pathway genes in the strain further increased B1a titer to 452.8 µg/mL - 8.25-fold higher than WT value. Finally, we applied our precursor supply strategies to high-yield industrial strain A229. The strategies, in combination, led to B1a titer 8836.4 µg/mL - 37.8% higher than parental A229 value. These findings provide an effective combination strategy for increasing AVE B1a production in WT and industrial S. avermitilis strains, and our precursor supply strategies can be readily adapted for overproduction of other polyketides.


Assuntos
Acil Coenzima A , Ivermectina , Ivermectina/análogos & derivados , Engenharia Metabólica , Redes e Vias Metabólicas , Policetídeo Sintases , Streptomyces , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Acil Coenzima A/metabolismo , Acil Coenzima A/genética , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/enzimologia , Redes e Vias Metabólicas/genética , Ivermectina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
18.
Pestic Biochem Physiol ; 201: 105888, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685219

RESUMO

Bemisia tabaci is a formidable insect pest worldwide, and it exhibits significant resistance to various insecticides. Dimpropyridaz is a novel pyridazine pyrazolecarboxamide insecticide used against sucking insect pests, but there is little information regarding its metabolic detoxification in arthropods or cross-resistance with other insecticides. In this study, we found that dimpropyridaz shows no cross-resistance with three other popular insecticides, namely abamectin, cyantraniliprole, and flupyradifurone. After treatment of B. tabaci adults with a high dose of dimpropyridaz, higher cytochrome P450 monooxygenase (P450) activity was detected in the survivors, and the expression of the P450 gene CYP6DW4 was highly induced. Cloning and characterization of the full-length amino acid sequence of CYP6DW4 indicated that it contains conserved domains typical of P450 genes, phylogenetic analysis revealed that it was closely related to a B. tabaci protein, CYP6DW3, known to be involved in detoxification of imidacloprid. Silencing of CYP6DW4 by feeding insects with dsRNA significantly increased the susceptibility of B. tabaci to dimpropyridaz. In addition, homology modeling and molecular docking analyses showed the stable binding of dimpropyridaz to CYP6DW4, with binding free energy of -6.65 kcal/mol. Our findings indicate that CYP6DW4 plays an important role in detoxification of dimpropyridaz and possibly promotes development of resistance in B. tabaci.


Assuntos
Sistema Enzimático do Citocromo P-450 , Hemípteros , Proteínas de Insetos , Resistência a Inseticidas , Inseticidas , Ivermectina/análogos & derivados , Pirazóis , Piridazinas , ortoaminobenzoatos , Animais , Hemípteros/efeitos dos fármacos , Hemípteros/genética , Inseticidas/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Piridazinas/farmacologia , Resistência a Inseticidas/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Pirazóis/farmacologia , Filogenia , Neonicotinoides/farmacologia , Técnicas de Silenciamento de Genes , Simulação de Acoplamento Molecular , Sequência de Aminoácidos , Ivermectina/farmacologia , Ivermectina/toxicidade
19.
Pestic Biochem Physiol ; 201: 105903, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685225

RESUMO

Abamectin (AB) is widely used in agriculture and has been employed as an insecticide, nematicide, and livestock pest control agent. However, it may also pose a serious threat to mammals. The primary purpose of this research was to compare the sex variations between male and female rats during exposure and to assess the risk of toxicity of abamectin, which are still largely unknown. The twenty albino rats were divided randomly into four groups (n = 5): 1) the male control group; 2) the male treatment group treated with AB (1 mg/kg B.W.); 3) the female control group; and 4) the female treatment group treated with AB (1 mg/kg B.W.). AB administration caused a drop in body weight in females more than males with showing oxidative stress in both sexes of animals, as characterized by an increase in MDA content and a decrease in glutathione (GSH) content and superoxide dismutase (SOD) activity. Reported sex-specific effects suggested that females are more susceptible from males in brain tissues for alteration of antioxidant markers while females' liver and kidney tissues showed more level of lipid peroxidation than males. In addition, mitochondrial dysfunction was associated with a significant decrease in NADH dehydrogenase (Complex I) and a significant decrease in mitochondrial ATPase, which led to apoptosis and histopathological alterations in the targeted tissues, indicating that females are higher sensitive than males to these biological events. In brief, the results of this study led to female rats are generally more sensitive than male rats to neurobehavioral and hepatic complications associated with abamectin treatment. Further evaluation should be performed to determine the adverse outcome pathways involved and to determine the effects of sex on improving the risk assessment of abamectin in both sexes.


Assuntos
Apoptose , Ivermectina , Ivermectina/análogos & derivados , Mitocôndrias , Estresse Oxidativo , Animais , Ivermectina/toxicidade , Feminino , Masculino , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Ratos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Malondialdeído/metabolismo , Inseticidas/toxicidade
20.
Pestic Biochem Physiol ; 201: 105897, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685223

RESUMO

Solid nanodispersion (SND) is an important variety of nanopesticides which have been extensively studied in recent years. However, the key influencing factors for bioactivity enhancement of nanopesticides remain unclear, which not only limits the exploration of relevant mechanisms, but also hinders the precise design and development of nanopesticides. In this study, we explored the potential of SND in enhancing the bioactivity of nanopesticides, specifically focusing on abamectin SND prepared using a self-emulsifying-carrier solidifying technique combined with parameter optimization. Our formulation, consisting of 8% abamectin, 1% antioxidant BHT (2,6-di-tert-butyl-4-methylphenol), 12% complex surfactants, and 79% sodium benzoate, significantly increased the pseudo-solubility of abamectin by at least 3300 times and reduced its particle size to a mere 15 nm, much smaller than traditional emulsion in water (EW) and water-dispersible granule (WDG) forms. This reduction in particle size and increase in surface activity resulted in improved foliar adhesion and retention, enabling a more efficient application without the need for organic solvents. The inclusion of antioxidants also enhanced photostability compared to EW, and overall stability tests confirmed SND's resilience under various storage conditions. Bioactivity tests demonstrated a marked increase in toxicity against diamondback moths (Plutella xylostella L.) with abamectin SND, which exhibited 3.7 and 7.6 times greater efficacy compared to EW and WDG, respectively. These findings underscore the critical role of small particle size, high surface activity, and strong antioxidant properties in improving the performance and bioactivity of abamectin SND, highlighting its significance in the design and development of high-efficiency, eco-friendly nanopesticides and contributing valuably to sustainable agricultural practices.


Assuntos
Ivermectina , Ivermectina/análogos & derivados , Ivermectina/farmacologia , Ivermectina/química , Animais , Inseticidas/farmacologia , Inseticidas/química , Tamanho da Partícula , Antioxidantes/farmacologia , Antioxidantes/química , Nanopartículas/química , Mariposas/efeitos dos fármacos , Tensoativos/farmacologia , Tensoativos/química , Larva/efeitos dos fármacos , Emulsões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...