Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Plant Sci ; 344: 112100, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38679393

RESUMO

Jatropha curcas (J. curcas) is a perennial oil-seed plant with vigorous vegetative growth but relatively poor reproductive growth and low seed yield. Gibberellins (GAs) promotes flowering in most annual plants but inhibits flowering in many woody plants, including J. curcas. However, the underlying mechanisms of GA inhibits flowering in perennial woody plants remain unclear. Here, we found that overexpression of the GA biosynthesis gene JcGA20ox1 inhibits flowering in J. curcas and in J. curcas × J. integerrima hybrids. Consistent with this finding, overexpression of the GA catabolic gene JcGA2ox6 promotes flowering in J. curcas. qRTPCR revealed that inhibits floral transition by overexpressing JcGA20ox1 resulted from a decrease in the expression of JcFT and other flowering-related genes, which was restored by overexpressing JcFT in J. curcas. Overexpression of JcGA20ox1 or JcGA2ox6 reduced seed yield, but overexpression of JcFT significantly increased seed yield. Furthermore, hybridization experiments showed that the reduction in seed yield caused by overexpression of JcGA20ox1 or JcGA2ox6 was partially restored by the overexpression of JcFT. In addition, JcGA20ox1, JcGA2ox6 and JcFT were also found to be involved in the regulation of seed oil content and endosperm development. In conclusion, our study revealed that the inhibitory effect of GA on flowering is mediated through JcFT and demonstrated the effects of JcGA20ox1, JcGA2ox6 and JcFT on agronomic traits in J. curcas. This study also indicates the potential value of GA metabolism genes and JcFT in the breeding of new varieties of woody oil-seed plants.


Assuntos
Flores , Giberelinas , Jatropha , Proteínas de Plantas , Giberelinas/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Jatropha/genética , Jatropha/metabolismo , Jatropha/crescimento & desenvolvimento , Jatropha/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
2.
Int J Mol Sci ; 21(2)2020 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-31963715

RESUMO

Jatropha curcas L. is monoecious with a low female-to-male ratio, which is one of the factors restricting its seed yield. Because the phytohormone cytokinins play an essential role in flower development, particularly pistil development, in this study, we elevated the cytokinin levels in J. curcas flowers through transgenic expression of a cytokinin biosynthetic gene (AtIPT4) from Arabidopsis under the control of a J. curcas orthologue of TOMATO MADS BOX GENE 6 (JcTM6) promoter that is predominantly active in flowers. As expected, the levels of six cytokinin species in the inflorescences were elevated, and flower development was modified without any alterations in vegetative growth. In the transgenic J. curcas plants, the flower number per inflorescence was significantly increased, and most flowers were pistil-predominantly bisexual, i.e., the flowers had a huge pistil surrounded with small stamens. Unfortunately, both the male and the bisexual flowers of transgenic J. curcas were infertile, which might have resulted from the continuously high expression of the transgene during flower development. However, the number and position of floral organs in the transgenic flowers were well defined, which suggested that the determinacy of the floral meristem was not affected. These results suggest that fine-tuning the endogenous cytokinins can increase the flower number and the female-to-male ratio in J. curcas.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Citocininas/metabolismo , Jatropha/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vias Biossintéticas , Citocininas/genética , Flores/genética , Flores/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Inflorescência , Jatropha/fisiologia , Plantas Geneticamente Modificadas/fisiologia , Regiões Promotoras Genéticas , Reprodução Assexuada
3.
Int J Mol Sci ; 20(1)2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30626061

RESUMO

As a promising energy plant for biodiesel, Jatropha curcas is a tropical and subtropical shrub and its growth is affected by one of major abiotic stress, chilling. Therefore, we adopt the phosphoproteomic analysis, physiological measurement and ultrastructure observation to illustrate the responsive mechanism of J. curcas seedling under chilling (4 °C) stress. After chilling for 6 h, 308 significantly changed phosphoproteins were detected. Prolonged the chilling treatment for 24 h, obvious physiological injury can be observed and a total of 332 phosphoproteins were examined to be significantly changed. After recovery (28 °C) for 24 h, 291 phosphoproteins were varied at the phosphorylation level. GO analysis showed that significantly changed phosphoproteins were mainly responsible for cellular protein modification process, transport, cellular component organization and signal transduction at the chilling and recovery periods. On the basis of protein-protein interaction network analysis, phosphorylation of several protein kinases, such as SnRK2, MEKK1, EDR1, CDPK, EIN2, EIN4, PI4K and 14-3-3 were possibly responsible for cross-talk between ABA, Ca2+, ethylene and phosphoinositide mediated signaling pathways. We also highlighted the phosphorylation of HOS1, APX and PIP2 might be associated with response to chilling stress in J. curcas seedling. These results will be valuable for further study from the molecular breeding perspective.


Assuntos
Temperatura Baixa , Jatropha/metabolismo , Jatropha/fisiologia , Fosfoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Proteômica/métodos , Plântula/metabolismo , Estresse Fisiológico , Motivos de Aminoácidos , Sequência de Aminoácidos , Ontologia Genética , Jatropha/ultraestrutura , Anotação de Sequência Molecular , Fosfopeptídeos/metabolismo , Fosfoproteínas/química , Fosforilação , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Proteínas de Plantas/química , Mapas de Interação de Proteínas , Plântula/anatomia & histologia , Plântula/fisiologia , Plântula/ultraestrutura
4.
Plant Cell Physiol ; 60(2): 462-475, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30476253

RESUMO

The lipid biosynthesis pathway in plants has been studied in detail; however, the factors that regulate the pathway at the transcription level are largely unknown. LEAFY COTYLEDON1 (LEC1), WRINKLED1 (WRI1) and FUSCA3 (FUS3) are considered master regulators to control seed oil content in Arabidopsis. Beside these master regulators, several other transcription factors that may regulate the pathway in plants are poorly studied. In the present work, we have shown the involvement of an uncharacterized Jatropha curcas R2R3MYB gene (JcMYB1) in seed oil biosynthesis. Seed oil analysis and expression profiling of fatty acid (FA) and triacylglycerol (TAG) biosynthetic genes in transgenic Arabidopsis and tobacco plants revealed that JcMYB1 enhances seed oil accumulation and alters FA composition by regulating the expression of endogenous pathway genes in transgenics. Using virus-induced gene silencing (VIGS) in Jatropha, we demonstrated that the suppression of JcMYB1 reduced lipid content with altered FA composition. Agro-infiltration and yeast one-hybrid assay results showed that JcMYB1 protein directly binds to the diacylglycerol acyltransferase1 (DGAT1) promoter, a rate-limiting enzyme of TAG biosynthesis, and activates its expression. These results suggested that JcMYB1 may augment the lipid content by regulating lipid biosynthetic genes. Additionally, manipulation of JcMYB1 in oil crop plants may be used for the potential improvement of oil production and quality.


Assuntos
Genes de Plantas/fisiologia , Jatropha/genética , Lipídeos/biossíntese , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Arabidopsis , Ácidos Graxos/biossíntese , Genes de Plantas/genética , Jatropha/fisiologia , Redes e Vias Metabólicas , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Nicotiana , Fatores de Transcrição/fisiologia , Triglicerídeos/biossíntese , Técnicas do Sistema de Duplo-Híbrido
5.
Sci Rep ; 8(1): 1635, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29374257

RESUMO

Environmental pollution by potentially toxic elements (PTEs) has become a serious problem with increasing industrialization and the disturbance of natural biogeochemical cycles. Jatropha is an oilseed-bearing shrub with high potential for biodiesel production in arid regions. In this study, we examined the physiological responses of this plant to five representative PTEs (Cd, Cr, Cu, Ni, and Zn) in a hydroponic culture. Application of higher concentrations of Cd and Zn led to severe leaf chlorosis, and Cd, Cu, and Ni treatments resulted in significant growth retardation. Higher enrichment of the applied PTEs in the shoots was observed for Zn- and Cd-treated plants, with the latter reaching 24-fold enrichment in plants exposed to 10 µM Cd, suggesting that Jatropha can cope with relatively higher internal concentrations of toxic Cd. Although Cd stress led to the disturbance of essential mineral homeostasis and photosynthesis, this induced an increase in thiol compounds in the roots, suggesting defensive responses of Jatropha to PTEs. This study showed that Jatropha exhibits distinct sensitivities and physiological responses to different PTEs. This study also provides basic knowledge for diagnosing the physiological status of Jatropha trees for potential dual use in afforestation and as a sustainable energy supply.


Assuntos
Poluentes Ambientais/toxicidade , Jatropha/efeitos dos fármacos , Jatropha/fisiologia , Metais Pesados/toxicidade , Doenças das Plantas/induzido quimicamente , Estresse Fisiológico , Hidroponia
6.
Sci Rep ; 7(1): 16421, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-29180629

RESUMO

The seeds of Jatropha curcas contain a high percentage of biodiesel. However, low seed yield which was limited by its poor female flowers was a bottleneck for its utilization. Here, we compared the transcriptomic profiles of five different samples during floral sex differentiation stages using Illumina Hiseq 4000. Our results showed that hundreds of differentially expressed genes (DEGs) were detected in floral sex initiation period, but thousands of DEGs were involved in the stamens and ovules development process. Moreover, the DEGs were mainly shown up-regulation in male floral initiation, but mainly down-regulation in female floral initiation. Male floral initiation was associated with the flavonoid biosynthesis pathway while female floral initiation was related to the phytohormone signal transduction pathway. Cytokinin (CTK) signaling triggered the initiation of female floral primordium, thereafter other phytohormones co-promoted the female floral development. In addition, the floral organ identity genes played important roles in floral sex differentiation process and displayed a general conservation of the ABCDE model in J. curcas. To the best of our knowledge, this data is the first comprehensive analysis of the underlying regulatory mechanism and the related genes during floral sex differentiation in J. curcas, which help in engineering high-yielding varieties of J. curcas.


Assuntos
Flores/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Jatropha/fisiologia , Desenvolvimento Vegetal/genética , Reprodução/genética , Transcriptoma , Fenótipo
7.
Sci Rep ; 7(1): 11417, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900192

RESUMO

Cytokinin (CK) is the primary hormone that positively regulates axillary bud outgrowth. However, in many woody plants, such as Jatropha curcas, gibberellin (GA) also promotes shoot branching. The molecular mechanisms underlying GA and CK interaction in the regulation of bud outgrowth in Jatropha remain unclear. To determine how young axillary buds respond to GA3 and 6-benzyladenine (BA), we performed a comparative transcriptome analysis of the young axillary buds of Jatropha seedlings treated with GA3 or BA. Two hundred and fifty genes were identified to be co-regulated in response to GA3 or BA. Seven NAC family members were down-regulated after treatment with both GA3 and BA, whereas these genes were up-regulated after treatment with the shoot branching inhibitor strigolactone. The expressions of the cell cycle genes CDC6, CDC45 and GRF5 were up-regulated after treatment with both GA3 and BA, suggesting they may promote bud outgrowth via regulation of the cell cycle machinery. In the axillary buds, BA significantly increased the expression of GA biosynthesis genes JcGA20oxs and JcGA3ox1, and down-regulated the expression of GA degradation genes JcGA2oxs. Overall, the comprehensive transcriptome data set provides novel insight into the responses of young axillary buds to GA and CK.


Assuntos
Compostos de Benzil/farmacologia , Perfilação da Expressão Gênica , Giberelinas/farmacologia , Jatropha/efeitos dos fármacos , Jatropha/fisiologia , Desenvolvimento Vegetal/efeitos dos fármacos , Desenvolvimento Vegetal/genética , Purinas/farmacologia , Transcriptoma , Biologia Computacional/métodos , Metabolismo Energético , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Dormência de Plantas/genética , Reguladores de Crescimento de Plantas/farmacologia , Transdução de Sinais
8.
Plant Cell Rep ; 36(11): 1707-1716, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28721520

RESUMO

KEY MESSAGE: This work provides a detailed histological analysis of the development of Jatropha curcas seeds, together with an assessment of the role of programmed cell death in this process. Seeds of Jatropha curcas are a potential source of raw material for the production of biodiesel, but very little is known about how the architecture of the seeds is shaped by the coordinated development of the embryo, endosperm and maternal tissues, namely integuments and nucellus. This study used standard anatomical and ultrastructural techniques to evaluate seed development and programmed cell death (PCD) in the inner integument was monitored by qPCR. In these studies, we found that the embryo sac formation is of the Polygonum type. We also found that embryogenesis is a slow process and the embryo is nourished by the suspensor at earlier stages and by nutrients remobilized from the lysis of the inner integument at later stages. Two types of programmed cell death contribute to the differentiation of the inner integument that begins at early stages of seed development. In addition, the mature embryo presents features of adaptation to dry environments such as the presence of four seminal roots, water absorbing stomata in the root zone and already differentiated protoxylem elements. The findings in this study fill in gaps related to the ontogeny of J. curcas seed development and provide novel insights regarding the types of PCD occurring in the inner integument.


Assuntos
Euphorbiaceae/fisiologia , Jatropha/fisiologia , Sementes/fisiologia , Euphorbiaceae/genética , Euphorbiaceae/metabolismo , Regulação da Expressão Gênica de Plantas , Jatropha/genética , Jatropha/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteômica , Sementes/genética , Sementes/metabolismo
9.
Plant Biol (Stuttg) ; 19(4): 650-659, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28403551

RESUMO

Although plant physiological responses to drought have been widely studied, the interaction between photoprotection, photorespiration and antioxidant metabolism in water-stressed plants is scarcely addressed. This study aimed to evaluate the physiological adjustments preserving photosynthesis and growth in two plant species with different tolerance to drought: Jatropha curcas and Ricinus communis. We measured stress indicators, gas exchange, photochemistry of PSII and PSI, antioxidant enzymes, cyclic electron flow and photorespiration. Physiological stress indicators associated with reduction in growth confirmed R. communis as sensitive and J. curcas as tolerant to drought. Drought induced loss of photosynthesis in R. communis, whereas J. curcas maintained higher leaf gas exchange and photochemistry under drought. In addition, J. curcas showed higher dissipation of excess energy and presented higher cyclic electron flow when exposed to drought. Although none of these mechanisms have been triggered in R. communis, this species showed increases in photorespiration. R. communis displayed loss of Rubisco content while the Rubisco relative abundance did not change in J. curcas under drought. Accordingly, the in vivo maximum Rubisco carboxylation rate (Vcmax ) and the maximum photosynthetic electron transport rate driving RuBP regeneration (Jmax ) were less affected in J. curcas. Both species displayed an efficient antioxidant mechanism by increasing activities of ascorbate peroxidase (APX) and superoxide dismutase (SOD). Overall, we suggest that the modulation of different photoprotective mechanisms is crucial to mitigate the effects caused by excess energy, maintaining photosynthetic apparatus efficiency and promoting the establishment of young plants of these two species under drought.


Assuntos
Secas , Jatropha/metabolismo , Ricinus/metabolismo , Ascorbato Peroxidases/metabolismo , Transporte de Elétrons/genética , Transporte de Elétrons/fisiologia , Jatropha/fisiologia , Fotossíntese/genética , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Ribulose-Bifosfato Carboxilase/metabolismo , Ricinus/fisiologia , Água/metabolismo
10.
PLoS One ; 12(3): e0173368, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28296913

RESUMO

Genomic wide selection is a promising approach for improving the selection accuracy in plant breeding, particularly in species with long life cycles, such as Jatropha. Therefore, the objectives of this study were to estimate the genetic parameters for grain yield (GY) and the weight of 100 seeds (W100S) using restricted maximum likelihood (REML); to compare the performance of GWS methods to predict GY and W100S; and to estimate how many markers are needed to train the GWS model to obtain the maximum accuracy. Eight GWS models were compared in terms of predictive ability. The impact that the marker density had on the predictive ability was investigated using a varying number of markers, from 2 to 1,248. Because the genetic variance between evaluated genotypes was significant, it was possible to obtain selection gain. All of the GWS methods tested in this study can be used to predict GY and W100S in Jatropha. A training model fitted using 1,000 and 800 markers is sufficient to capture the maximum genetic variance and, consequently, maximum prediction ability of GY and W100S, respectively. This study demonstrated the applicability of genome-wide prediction to identify useful genetic sources of GY and W100S for Jatropha breeding. Further research is needed to confirm the applicability of the proposed approach to other complex traits.


Assuntos
Jatropha/fisiologia , Modelos Biológicos , Seleção Genética , Biomarcadores/metabolismo , Jatropha/genética , Funções Verossimilhança , Projetos Piloto
11.
Int J Phytoremediation ; 19(2): 174-182, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27408989

RESUMO

Soil pollution is an important ecological problem worldwide. Phytoremediation is an environmental-friendly option for reducing metal pollution. A greenhouse experiment was conducted to determine the growth and physiological response, metal uptake, and the phytostabilization potential of a nontoxic Jatropha curcas L. genotype when grown in multimetal-polluted conditions. Plants were established on a mine residue (MR) amended or not amended with corn biochar (B) and inoculated or not inoculated with the mycorrhizal fungus Acaulospora sp. (arbuscular mycorrhizal fungus, AMF). J. curcas was highly capable of growing in an MR and showed no phytotoxic symptoms. After J. curcas growth (105 days), B produced high desorption of Cd and Pb from the MR; however, no increases in metal shoot concentrations were observed. Therefore, Jatropha may be useful for phytostabilization of metals in mine tailings. The use of B is recommended because improved MR chemical properties conduced to plant growth (cation-exchange capacity, organic matter content, essential nutrients, electrical conductivity, water-holding capacity) and plant growth development (higher biomass, nutritional and physiological performance). Inoculation with an AMF did not improve any plant growth or physiological plant characteristic. Only higher Zn shoot concentration was observed, but it was not phytotoxic. Future studies of B use and its long-term effect on MR remediation should be conducted under field conditions.


Assuntos
Carvão Vegetal/análise , Glomeromycota/fisiologia , Jatropha/fisiologia , Metais Pesados/metabolismo , Micorrizas/fisiologia , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Jatropha/efeitos dos fármacos , Jatropha/crescimento & desenvolvimento , Jatropha/microbiologia , Mineração
12.
Trends Plant Sci ; 21(12): 1045-1057, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27639951

RESUMO

Jatropha curcas L. (jatropha) has a high, untapped potential to contribute towards sustainable production of food and bioenergy, rehabilitation of degraded land, and reduction of atmospheric carbon dioxide. Tremendous progress in jatropha domestication and breeding has been achieved during the past decade. This review: (i) summarizes current knowledge about the domestication and breeding of jatropha; (ii) identifies and prioritizes areas for further research; and (iii) proposes strategies to exploit the full genetic potential of this plant species. Altogether, the outlook is promising for accelerating the domestication of jatropha by applying modern scientific methods and novel technologies developed in plant breeding.


Assuntos
Cruzamento , Domesticação , Jatropha/metabolismo , Jatropha/fisiologia
13.
Plant Biol (Stuttg) ; 18(6): 1053-1057, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27419375

RESUMO

Jatropha curcas is an oilseed crop renowned for its tolerance to a diverse range of environmental stresses. In Brazil, this species is grown in semiarid regions where crop establishment requires a better understanding of the mechanisms underlying appropriate seed, seedling and plant behaviour under water restriction conditions. In this context, the objective of this study was to investigate the physiological and cytological profiles of J. curcas seeds in response to imbibition in water (control) and in polyethylene glycol solution (osmoticum). Seed germinability and reactivation of cell cycle events were assessed by means of different germination parameters and immunohistochemical detection of tubulin and microtubules, i.e. tubulin accumulation and microtubular cytoskeleton configurations in water imbibed seeds (control) and in seeds imbibed in the osmoticum. Immunohistochemical analysis revealed increasing accumulation of tubulin and appearance of microtubular cytoskeleton in seed embryo radicles imbibed in water from 48 h onwards. Mitotic microtubules were only visible in seeds imbibed in water, after radicle protrusion, as an indication of cell cycle reactivation and cell proliferation, with subsequent root development. Imbibition in osmoticum prevented accumulation of microtubules, i.e. activation of cell cycle, therefore germination could not be resumed. Osmoconditioned seeds were able to survive re-drying and could resume germination after re-imbibition in water, however, with lower germination performance, possibly due to acquisition of secondary dormancy. This study provides important insights into understanding of the physiological aspects of J. curcas seed germination in response to water restriction conditions.


Assuntos
Citoesqueleto/metabolismo , Germinação , Jatropha/fisiologia , Pressão Osmótica , Ciclo Celular , Jatropha/citologia , Microtúbulos/metabolismo , Plântula/citologia , Plântula/fisiologia , Sementes/citologia , Sementes/fisiologia , Estresse Fisiológico , Tubulina (Proteína)/metabolismo , Água/fisiologia
14.
J Plant Res ; 129(6): 1141-1150, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27417098

RESUMO

We studied the possible roles of flavonoids in the antioxidant and antiherbivore chemistry in Jatropha curcas (L.), a Latin American shrub that holds great potential as a source of biofuel. Changes in flavonoid concentrations in the leaves of J. curcas seedlings exposed to artificial damage and to different rainfall patterns were assessed by applying a 32-factorial experiment in a greenhouse. The concentrations of different flavonoids in the leaves of seedlings were significantly affected by interaction effects of artificial damage, drought stress and age of the seedling. The highest flavonoid concentrations were obtained in seedlings imposed to the highest percentage of artificial damage (50 %) and grown under extreme drought stress (200 mm year-1). In this treatment combination, flavonoid concentrations were three-fold as compared to seedlings exposed to the same level of artificial damage but grown in 1900 mm year-1 rainfall application. Without artificial damage, the concentration of flavonoids in the seedlings grown in 200 mm year-1 rainfall application was still two-fold compared to seedlings grown in higher (>800 mm year-1) rainfall applications. Thus, the observed flavonoid concentration patterns in the leaves of J. curcas seedlings were primarily triggered by drought stress and light rather than by artificial damage, suggesting that drought causes oxidative stress in J. curcas.


Assuntos
Antioxidantes/metabolismo , Secas , Flavonoides/metabolismo , Herbivoria , Jatropha/fisiologia , Antibiose , Jatropha/crescimento & desenvolvimento , Estresse Fisiológico
15.
J Plant Physiol ; 195: 39-49, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-26995646

RESUMO

Abiotic stress leads to the generation of reactive oxygen species (ROS) which further results in the production of reactive carbonyls (RCs) including methylglyoxal (MG). MG, an α, ß-dicarbonyl aldehyde, is highly toxic to plants and the mechanism behind its detoxification is not well understood. Aldo-keto reductases (AKRs) play a role in detoxification of reactive aldehydes and ketones. In the present study, we cloned and characterised a putative AKR from Jatropha curcas (JcAKR). Phylogenetically, it forms a small clade with AKRs of Glycine max and Rauwolfia serpentina. JcAKR was heterologously expressed in Escherichia coli BL-21(DE3) cells and the identity of the purified protein was confirmed through MALDI-TOF analysis. The recombinant protein had high enzyme activity and catalytic efficiency in assays containing MG as the substrate. Protein modelling and docking studies revealed MG was efficiently bound to JcAKR. Under progressive drought and salinity stress, the enzyme and transcript levels of JcAKR were higher in leaves compared to roots. Further, the bacterial and yeast cells expressing JcAKR showed more tolerance towards PEG (5%), NaCl (200mM) and MG (5mM) treatments compared to controls. In conclusion, our results project JcAKR as a possible and potential target in crop improvement for abiotic stress tolerance.


Assuntos
Aldeído Redutase/metabolismo , Jatropha/enzimologia , Aldeído Pirúvico/metabolismo , Aldeído Redutase/genética , Aldeídos/metabolismo , Aldeídos/toxicidade , Aldo-Ceto Redutases , Secas , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/fisiologia , Expressão Gênica , Jatropha/genética , Jatropha/fisiologia , Cetonas/metabolismo , Cetonas/toxicidade , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Polietilenoglicóis/metabolismo , Aldeído Pirúvico/toxicidade , Proteínas Recombinantes , Cloreto de Sódio/metabolismo , Estresse Fisiológico , Transgenes , Leveduras/enzimologia , Leveduras/genética , Leveduras/fisiologia
16.
Mol Biol Rep ; 43(4): 305-22, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26878857

RESUMO

Jatropha curcas, has been projected as a major source of biodiesel due to high seed oil content (42 %). A major roadblock for commercialization of Jatropha-based biodiesel is low seed yield per inflorescence, which is affected by low female to male flower ratio (1:25-30). Molecular dissection of female flower development by analyzing genes involved in phase transitions and floral organ development is, therefore, crucial for increasing seed yield. Expression analysis of 42 genes implicated in floral organ development and sex determination was done at six floral developmental stages of a J. curcas genotype (IC561235) with inherently higher female to male flower ratio (1:8-10). Relative expression analysis of these genes was done on low ratio genotype. Genes TFL1, SUP, AP1, CRY2, CUC2, CKX1, TAA1 and PIN1 were associated with reproductive phase transition. Further, genes CUC2, TAA1, CKX1 and PIN1 were associated with female flowering while SUP and CRY2 in female flower transition. Relative expression of these genes with respect to low female flower ratio genotype showed up to ~7 folds increase in transcript abundance of SUP, TAA1, CRY2 and CKX1 genes in intermediate buds but not a significant increase (~1.25 folds) in female flowers, thereby suggesting that these genes possibly play a significant role in increased transition towards female flowering by promoting abortion of male flower primordia. The outcome of study has implications in feedstock improvement of J. curcas through functional validation and eventual utilization of key genes associated with female flowering.


Assuntos
Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Genômica , Jatropha/fisiologia , Proteínas de Plantas/genética , Flores/metabolismo , Jatropha/metabolismo
17.
J Exp Bot ; 67(3): 845-60, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26602946

RESUMO

Jatropha curcas, a multipurpose plant attracting a great deal of attention due to its high oil content and quality for biofuel, is recognized as a drought-tolerant species. However, this drought tolerance is still poorly characterized. This study aims to contribute to uncover the molecular background of this tolerance, using a combined approach of transcriptional profiling and morphophysiological characterization during a period of water-withholding (49 d) followed by rewatering (7 d). Morphophysiological measurements showed that J. curcas plants present different adaptation strategies to withstand moderate and severe drought. Therefore, RNA sequencing was performed for samples collected under moderate and severe stress followed by rewatering, for both roots and leaves. Jatropha curcas transcriptomic analysis revealed shoot- and root-specific adaptations across all investigated conditions, except under severe stress, when the dramatic transcriptomic reorganization at the root and shoot level surpassed organ specificity. These changes in gene expression were clearly shown by the down-regulation of genes involved in growth and water uptake, and up-regulation of genes related to osmotic adjustments and cellular homeostasis. However, organ-specific gene variations were also detected, such as strong up-regulation of abscisic acid synthesis in roots under moderate stress and of chlorophyll metabolism in leaves under severe stress. Functional validation further corroborated the differential expression of genes coding for enzymes involved in chlorophyll metabolism, which correlates with the metabolite content of this pathway.


Assuntos
Adaptação Fisiológica/genética , Secas , Perfilação da Expressão Gênica/métodos , Jatropha/genética , Jatropha/fisiologia , Redes e Vias Metabólicas/genética , Clorofila/metabolismo , Clorofila A , Cromatografia Líquida de Alta Pressão , Análise por Conglomerados , Dessecação , Galactose/metabolismo , Gases/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Jatropha/crescimento & desenvolvimento , Modelos Biológicos , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Raízes de Plantas/genética , Estômatos de Plantas/fisiologia , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Amido/metabolismo , Estresse Fisiológico/genética , Água
18.
Plant Biol (Stuttg) ; 17(5): 1023-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25865670

RESUMO

This study assessed the capacity of Jatropha curcas to physiologically adjust to salinity. Seedlings were exposed to increasing NaCl concentrations (25, 50, 75 and 100 mm) for 15 days. Treatment without NaCl was adopted as control. Shoot dry weight was strongly reduced by NaCl, reaching values of 35% to 65% with 25 to 100 mm NaCl. The shoot/root ratio was only affected with 100 mm NaCl. Relative water content (RWC) increased only with 100 mm NaCl, while electrolyte leakage (EL) was much enhanced with 50 mm NaCl. The Na(+) transport rate to the shoot was more affected with 50 and 100 mm NaCl. In parallel, Cl(-) transport rate increased with 75 and 100 mm NaCl, while K(+) transport rate fell from 50 mm to 100 mm NaCl. In roots, Na(+) and Cl(-) transport rates fell slightly only in 50 mm (to Na(+)) and 50 and 100 mm (to Cl(-)) NaCl, while K(+) transport rate fell significantly with increasing NaCl. In general, our data demonstrate that J. curcas seedlings present changes in key physiological processes that allow this species to adjust to salinity. These responses are related to accumulation of Na(+) and Cl(-) in leaves and roots, K(+)/Na(+) homeostasis, transport of K(+) and selectivity (K-Na) in roots, and accumulation of organic solutes contributing to osmotic adjustment of the species.


Assuntos
Cloretos/metabolismo , Jatropha/fisiologia , Potássio/metabolismo , Cloreto de Sódio/metabolismo , Estresse Fisiológico , Transporte Biológico , Biomassa , Clorofila/metabolismo , Homeostase , Jatropha/efeitos dos fármacos , Pressão Osmótica , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/fisiologia , Salinidade , Tolerância ao Sal , Plântula/efeitos dos fármacos , Plântula/fisiologia , Cloreto de Sódio/farmacologia , Água/metabolismo
19.
Methods Mol Biol ; 1224: 25-35, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25416246

RESUMO

The seed oil of Jatropha (Jatropha curcas L.) as a source of biodiesel fuel is gaining worldwide importance. Commercial-scale exploration of Jatropha has not succeeded due to low and unstable seed yield in semiarid lands unsuitable for the food production and infestation to diseases. Genetic engineering is promising to improve various agronomic traits in Jatropha and to understand the molecular functions of key Jatropha genes for molecular breeding. We describe a protocol routinely followed in our laboratory for stable and efficient Agrobacterium tumefaciens-mediated transformation of Jatropha using cotyledonary leaf as explants. The 4-day-old explants are infected with Agrobacterium tumefaciens strain EHA105 harboring pBI121 plant binary vector, which contains nptII as plant selectable marker and gus as reporter. The putative transformed plants are selected on kanamycin, and stable integration of transgene(s) is confirmed by histochemical GUS assay, polymerase chain reaction, and Southern hybridization.


Assuntos
Engenharia Genética/métodos , Jatropha/crescimento & desenvolvimento , Jatropha/genética , Aclimatação , Agrobacterium tumefaciens/genética , Cotilédone/citologia , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Técnicas de Cultura , Jatropha/efeitos dos fármacos , Jatropha/fisiologia , Canamicina/farmacologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase , Transformação Genética
20.
Ying Yong Sheng Tai Xue Bao ; 25(5): 1335-9, 2014 May.
Artigo em Chinês | MEDLINE | ID: mdl-25129933

RESUMO

Jatropha curcas is the most promising energy tree, and soil moisture is the key factor which affects the seedling quality and water use efficiency of J. curcas. With aims to evaluate the effect of different irrigation amount on growth, morphological characteristics and water use of J. curcas, a pot experiment was conducted with four irrigation amounts, i. e., W1:472.49 mm, W2: 228.79 mm, W3:154.18 mm and W4:106.93 mm, respectively. Compared with W1 treatment, the leaf area and stem cross-section area of base significantly decreased in W2, W3 and W4 treatments, but Huber value significantly increased, which could improve the efficiency of water transfer from root to shoot, thus enhance the capability of resistance to drought stress. Compared with W, treatment, the healthy index of J. curcas seedlings decreased slightly in W2 treatment but significantly decreased in W3 and W4 treatments. Hence, the irrigation amount from 228.79 to 472.49 mm was beneficial to increase the healthy index of J. curcas seedlings. Compared with W1 treatment, irrigation water was saved by 67.4% in W3 treatment, and the total dry mass and evapotranspiration significantly decreased by 17.4% and 68.6%, and the irrigation water use efficiency and total water use efficiency increased by 153.2% and 163.2%, respectively. In the condition of this study, the irrigation amount of 154.18 mm was beneficial to increase water use efficiency.


Assuntos
Irrigação Agrícola , Jatropha/fisiologia , Água/fisiologia , Biomassa , Secas , Folhas de Planta , Raízes de Plantas , Plântula , Solo , Triticum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...