Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.806
Filtrar
1.
Nutrients ; 16(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38999800

RESUMO

In this study, we investigated the effect of monobutyrin (MB) on the gut microbiota and intestinal health of weaned mice. MB was administered via gavage to 21-day-old weaned mice. Samples of small intestinal and ileal contents were collected on day 1, day 7, and day 21 post-administration. Seven days of MB administration enhanced the mucin layer and morphological structure of the intestine and the integrity of the intestinal brush border. Both MB and sodium butyrate (SB) accelerated tight junction development. Compared to SB, MB modulated intestinal T cells in a distinct manner. MB increased the ratio of Treg cells in the small intestine upon the cessation of weaning. After 21 days of MB administration, enhancement of the villus structure of the ileum was observed. MB increased the proportion of Th17 cells in the ileum. MB facilitated the transition of the small intestinal microbiota toward an adult microbial community structure and enhanced the complexity of the microbial community structure. An increase in Th17 cells enhanced intestinal barrier function. The regulatory effect of MB on Th17 cells may occur through the intestinal microbiota. Therefore, MB can potentially be used to promote intestinal barrier function, especially for weaning animals, with promising application prospects.


Assuntos
Microbioma Gastrointestinal , Mucosa Intestinal , Células Th17 , Desmame , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Masculino , Camundongos Endogâmicos C57BL , Íleo/microbiologia , Intestino Delgado/microbiologia , Intestino Delgado/efeitos dos fármacos , Ácido Butírico/farmacologia , Ácido Butírico/metabolismo , Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Linfócitos T Reguladores , Função da Barreira Intestinal
2.
Nutrients ; 16(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38999898

RESUMO

Alpinia officinarum Hance is rich in carbohydrates and is flavored by natives. The polysaccharide fraction 30 is purified from the rhizome of A. officinarum Hance (AOP30) and shows excellent immunoregulatory ability when administered to regulate immunity. However, the effect of AOP30 on the intestinal epithelial barrier is not well understood. Therefore, the aim of this study is to investigate the protective effect of AOP30 on the intestinal epithelial barrier using a lipopolysaccharide (LPS)-induced intestinal epithelial barrier dysfunction model and further explore its underlying mechanisms. Cytotoxicity, transepithelial electrical resistance (TEER) values, and Fluorescein isothiocyanate (FITC)-dextran flux are measured. Simultaneously, the protein and mRNA levels of tight junction (TJ) proteins, including zonula occludens-1 (ZO-1), Occludin, and Claudin-1, are determined using Western blotting and reverse-transcription quantitative polymerase chain reaction methods, respectively. The results indicate that AOP30 restores the LPS-induced decrease in the TEER value and cell viability. Furthermore, it increases the mRNA and protein expression of ZO-1, Occludin, and Claudin-1. Notably, ZO-1 is the primary tight junction protein altered in response to LPS-induced intestinal epithelial dysfunction. Additionally, AOP30 downregulates the production of TNFα via the Toll-like receptor 4 (TLR4)/NF-κB signaling pathway. Collectively, the findings of this study indicate that AOP30 can be developed as a functional food ingredient or natural therapeutic agent for addressing intestinal epithelial barrier dysfunction. It sheds light on the role of AOP30 in improving intestinal epithelial function.


Assuntos
Alpinia , Mucosa Intestinal , Lipopolissacarídeos , NF-kappa B , Polissacarídeos , Rizoma , Transdução de Sinais , Receptor 4 Toll-Like , Receptor 4 Toll-Like/metabolismo , Humanos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Rizoma/química , Polissacarídeos/farmacologia , Células CACO-2 , Alpinia/química , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo
3.
Pediatr Surg Int ; 40(1): 185, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-38997605

RESUMO

PURPOSE: This study aimed to investigate the impact of hepatocyte growth factor (HGF) on colonic morphology and gut microbiota in a rat model of short bowel syndrome (SBS). METHODS: SD rats underwent jugular vein catheterization for total parenteral nutrition (TPN) and 90% small bowel resection [TPN + SBS (control group) or TPN + SBS + intravenous HGF (0.3 mg/kg/day, HGF group)]. Rats were harvested on day 7. Colonic morphology, gut microflora, tight junction, and Toll-like receptor-4 (TLR4) were evaluated. RESULTS: No significant differences were observed in the colonic morphological assessment. No significant differences were observed in the expression of tight junction-related genes in the proximal colon. However, the claudin-1 expression tended to increase and the claudin-3 expression tended to decrease in the distal colon of the HGF group. The Verrucomicrobiota in the gut microflora of the colon tended to increase in the HGF group. The abundance of most LPS-producing microbiota was lower in the HGF group than in the control group. The gene expression of TLR4 was significantly downregulated in the distal colon of the HGF group. CONCLUSION: HGF may enhance the mucus barrier through the tight junctions or gut microbiome in the distal colon.


Assuntos
Colo , Modelos Animais de Doenças , Microbioma Gastrointestinal , Fator de Crescimento de Hepatócito , Ratos Sprague-Dawley , Síndrome do Intestino Curto , Animais , Ratos , Fator de Crescimento de Hepatócito/metabolismo , Fator de Crescimento de Hepatócito/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Colo/microbiologia , Colo/patologia , Síndrome do Intestino Curto/metabolismo , Síndrome do Intestino Curto/microbiologia , Masculino , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Claudina-1/metabolismo , Claudina-1/genética
4.
PLoS One ; 19(6): e0304686, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38837998

RESUMO

Microplastics, which are tiny plastic particles less than 5 mm in diameter, are widely present in the environment, have become a serious threat to aquatic life and human health, potentially causing ecosystem disorders and health problems. The present study aimed to investigate the effects of microplastics, specifically microplastics-polystyrene (MPs-PS), on the structural integrity, gene expression related to tight junctions, and gut microbiota in mice. A total of 24 Kunming mice aged 30 days were randomly assigned into four groups: control male (CM), control female (CF), PS-exposed male (PSM), and PS-exposed female (PSF)(n = 6). There were significant differences in villus height, width, intestinal surface area, and villus height to crypt depth ratio (V/C) between the PS group and the control group(C) (p <0.05). Gene expression analysis demonstrated the downregulation of Claudin-1, Claudin-2, Claudin-15, and Occludin, in both duodenum and jejunum of the PS group (p < 0.05). Analysis of microbial species using 16S rRNA sequencing indicated decreased diversity in the PSF group, as well as reduced diversity in the PSM group at various taxonomic levels. Beta diversity analysis showed a significant difference in gut microbiota distribution between the PS-exposed and C groups (R2 = 0.113, p<0.01), with this difference being more pronounced among females exposed to MPs-PS. KEGG analysis revealed enrichment of differential microbiota mainly involved in seven signaling pathways, such as nucleotide metabolism(p<0.05). The relative abundance ratio of transcriptional pathways was significantly increased for the PSF group (p<0.01), while excretory system pathways were for PSM group(p<0.05). Overall findings suggest that MPs-PS exhibit a notable sex-dependent impact on mouse gut microbiota, with a stronger effect observed among females; reduced expression of tight junction genes may be associated with dysbiosis, particularly elevated levels of Prevotellaceae.


Assuntos
Microbioma Gastrointestinal , Microplásticos , Poliestirenos , Junções Íntimas , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Microplásticos/toxicidade , Poliestirenos/toxicidade , Camundongos , Masculino , Feminino , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , RNA Ribossômico 16S/genética , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Ocludina/metabolismo , Ocludina/genética , Claudinas/genética , Claudinas/metabolismo , Claudina-1/genética , Claudina-1/metabolismo , Proteínas de Junções Íntimas/metabolismo , Proteínas de Junções Íntimas/genética
5.
J Hazard Mater ; 475: 134900, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878440

RESUMO

The expected increments in the production/use of bioplastics, as an alternative to petroleum-based plastics, require a deep understanding of their potential environmental and health hazards, mainly as nanoplastics (NPLs). Since one important exposure route to NPLs is through inhalation, this study aims to determine the fate and effects of true-to-life polylactic acid nanoplastics (PLA-NPLs), using the in vitro Calu-3 model of bronchial epithelium, under air-liquid interphase exposure conditions. To determine the harmful effects of PLA-NPLs in a more realistic scenario, both acute (24 h) and long-term (1 and 2 weeks) exposures were used. Flow cytometry results indicated that PLA-NPLs internalized easily in the barrier (∼10 % at 24 h and ∼40 % after 2 weeks), which affected the expression of tight-junctions formation (∼50 % less vs control) and the mucus secretion (∼50 % more vs control), both measured by immunostaining. Interestingly, significant genotoxic effects (DNA breaks) were detected by using the comet assay, with long-term effects being more marked than acute ones (7.01 vs 4.54 % of DNA damage). When an array of cellular proteins including cytokines, chemokines, and growth factors were used, a significant over-expression was mainly found in long-term exposures (∼20 proteins vs 5 proteins after acute exposure). Overall, these results described the potential hazards posed by PLA-NPLs, under relevant long-term exposure scenarios, highlighting the advantages of the model used to study bronchial epithelium tissue damage, and signaling endpoints related to inflammation.


Assuntos
Poliésteres , Poliésteres/toxicidade , Poliésteres/química , Humanos , Linhagem Celular , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Citocinas/metabolismo , Microplásticos/toxicidade , Dano ao DNA/efeitos dos fármacos , Nanopartículas/toxicidade , Nanopartículas/química , Epitélio/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Células Epiteliais/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos
6.
J Physiol Investig ; 67(3): 107-117, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38857204

RESUMO

Diabetic retinopathy (DR) is a secondary complication of diabetes that can lead to visual impairment and blindness. The retinal pigment epithelium (RPE) is a monolayer of pigment cells that forms the blood-retinal barrier (BRB) via tight junction (TJ) proteins and plays a crucial role in the physiological function of the retina. Hyperglycemia induces RPE death and BRB breakdown, which accelerates the process of DR. Curcumin, an active extract of Curcuma longa , has anti-inflammatory, antioxidant, antiapoptotic, and neuroprotective properties. However, the effect of Curcumin on the BRB under high glucose conditions remains unknown. This study aimed to investigate the protective effects of Curcumin on RPE physiology in vitro and in vivo . Curcumin significantly alleviated cell viability inhibition under high glucose conditions. Moreover, high glucose reduced extracellular signal-regulated kinase and Akt pathways activation to diminish RPE cell growth but reversed by Curcumin treatment. Curcumin protected not only TJ integrity but also retinoid regeneration through TJ proteins and isomerase modulation in diabetic retina. Furthermore, Curcumin decreased the expression of angiogenic factor to inhibit retinal neovascularization. Finally, Curcumin treatment markedly reduced apoptosis during hyperglycemia. In conclusion, Curcumin can alleviate the progression of DR by promoting RPE survival, TJ integrity, retinoid isomerase activity, RPE senescence inhibition, and neovascularization. Therefore, Curcumin exhibits high potential for use as a therapeutic agent for early DR.


Assuntos
Senescência Celular , Curcumina , Retinopatia Diabética , Epitélio Pigmentado da Retina , Junções Íntimas , Curcumina/farmacologia , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/patologia , Retinopatia Diabética/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/metabolismo , Humanos , Senescência Celular/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Animais , Masculino , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Barreira Hematorretiniana/efeitos dos fármacos , Barreira Hematorretiniana/metabolismo , Barreira Hematorretiniana/patologia , Camundongos Endogâmicos C57BL , Camundongos
7.
Ecotoxicol Environ Saf ; 280: 116578, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38861803

RESUMO

Sertoli cells (SCs) maintain testicular homeostasis and promote spermatogenesis by forming the blood-testis barrier (BTB) and secreting growth factors. The pro-proliferative and anti-apoptotic effects of nerve growth factor (NGF) on SCs have been proved previously. It is still unclear whether the damage effect of arsenic on testis is related to the inhibition of NGF expression, and whether NGF can mitigate arsenic-induced testicular damage by decreasing the damage of SCs induced by arsenic. Here, the lower expression of NGF in testes of arsenic exposed mice (freely drinking water containing 15 mg/l of NaAsO2) was observed through detection of Western blot and Real-time PCR. Subsequently, hematoxylin and eosin (HE) staining, Evans blue staining and transmission electron microscopy were used to evaluate the pathology, BTB permeability and tight junction integrity in testes of control mice, arsenic exposed mice (freely drinking water containing 15 mg/l of NaAsO2) and arsenic + NGF treated mice (freely drinking water containing 15 mg/l of NaAsO2 + intraperitoneal injection with 30 µg/kg of NGF), respectively. Evidently, spermatogenic tubule epithelial cells in testis of arsenic exposed mice were disordered and the number of cell layers was reduced, accompanied by increased permeability and damaged integrity of the tight junction in BTB, but these changes were less obvious in testes of mice treated with arsenic + NGF. In addition, the sperm count, motility and malformation rate of mice treated with arsenic + NGF were also improved. On the basis of the above experiments, the viability and apoptosis of primary cultured SCs treated with arsenic (10 µM NaAsO2) or arsenic + NGF (10 µM NaAsO2 + 100 ng/mL NGF) were detected by Cell counting kit-8 (CCK8) and transferase-mediated DUTP-biotin nick end labeling (TUNEL) staining, respectively. It is found that NGF ameliorated the decline of growth activity and the increase of apoptosis in arsenic-induced SCs. This remarkable biological effect that NGF inhibited the increase of Bax expression and the decrease of Bcl-2 expression in arsenic-induced SCs was also determined by western blot and Real-time PCR. Moreover, the decrease in transmembrane resistance (TEER) and the expression of tight junction proteins ZO-1 and occludin was mitigated in SCs induced by arsenic due to NGF treatment. In conclusion, the above results confirmed that NGF could ameliorate the injury effects of arsenic on testis, which might be related to the function of NGF to inhibit arsenic-induced SCs injury.


Assuntos
Arsênio , Barreira Hematotesticular , Fator de Crescimento Neural , Células de Sertoli , Testículo , Animais , Masculino , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/metabolismo , Camundongos , Arsênio/toxicidade , Testículo/efeitos dos fármacos , Testículo/patologia , Barreira Hematotesticular/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos
8.
Food Funct ; 15(13): 6943-6954, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38855989

RESUMO

Growing evidence showed the capacity of (poly)phenols to exert a protective role on intestinal health. Nevertheless, the existing findings are still heterogeneous and the underlying mechanisms remain unclear. This study investigated the potential benefits of a red raspberry (Rubus idaeus) powder on the integrity of the intestinal barrier, focusing on its ability to mitigate the effects of tumor necrosis factor-α (TNF-α)-induced intestinal permeability. Human colorectal adenocarcinoma cells (i.e., Caco-2 cells) were used as a model to assess the impact of red raspberry on intestinal permeability, tight junction expression, and oxidative stress. The Caco-2 cells were differentiated into polarized monolayers and treated with interferon-γ (IFN-γ) (10 ng mL-1) for 24 hours, followed by exposure to TNF-α (10 ng mL-1) in the presence or absence of red raspberry extract (1-5 mg mL-1). The integrity of the intestinal monolayer was evaluated using transepithelial electrical resistance (TEER) and fluorescein isothiocyanate-dextran (FITC-D) efflux assay. Markers of intestinal permeability (claudin-1, occludin, and zonula occludens-1 (ZO-1)) and oxidative stress (8-hydroxy-2-deoxyguanosine (8-OHdG) and protein carbonyl) were assessed using ELISA kits. Treatment with red raspberry resulted in a significant counteraction of TEER value loss (41%; p < 0.01) and a notable reduction in the efflux of FITC-D (-2.5 times; p < 0.01). Additionally, red raspberry attenuated the levels of 8-OHdG (-48.8%; p < 0.01), mitigating the detrimental effects induced by TNF-α. Moreover, red raspberry positively influenced the expression of the integral membrane protein claudin-1 (+18%; p < 0.01), an essential component of tight junctions. These findings contribute to the growing understanding of the beneficial effects of red raspberry in the context of the intestinal barrier. The effect of red raspberry against TNF-α-induced intestinal permeability observed in our in vitro model suggests, for the first time, its potential as a dietary strategy to promote gastrointestinal health.


Assuntos
Mucosa Intestinal , Estresse Oxidativo , Permeabilidade , Extratos Vegetais , Rubus , Junções Íntimas , Fator de Necrose Tumoral alfa , Humanos , Rubus/química , Células CACO-2 , Estresse Oxidativo/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Extratos Vegetais/farmacologia , Permeabilidade/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Ocludina/metabolismo , Ocludina/genética , Claudina-1/metabolismo , Claudina-1/genética , Proteína da Zônula de Oclusão-1/metabolismo , Proteína da Zônula de Oclusão-1/genética , Interferon gama/metabolismo , Frutas/química
9.
Eur J Med Res ; 29(1): 349, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937814

RESUMO

BACKGROUND: Sepsis is one of the most common clinical diseases, which is characterized by a serious and uncontrollable inflammatory response. LPS-induced inflammation is a critical pathological event in sepsis, but the underlying mechanism has not yet been fully elucidated. METHODS: The animal model was established for two batches. In the first batch of experiments, Adult C57BL/6J mice were randomly divided into control group and LPS (5 mg/kg, i.p.)group . In the second batch of experiments, mice were randomly divided into control group, LPS group, and LPS+VX765(10 mg/kg, i.p., an inhibitor of NLRP3 inflammasome) group. After 24 hours, mice were anesthetized with isoflurane, blood and intestinal tissue were collected for tissue immunohistochemistry, Western blot analysis and ELISA assays. RESULTS: The C57BL/6J mice injected with LPS for twenty-four hours could exhibit severe inflammatory reaction including an increased IL-1ß, IL-18 in serum and activation of NLRP3 inflammasome in intestine. The injection of VX765 could reverse these effects induced by LPS. These results indicated that the increased level of IL-1ß and IL-18 in serum induced by LPS is related to the increased intestinal permeability and activation of NLRP3 inflammasome. In the second batch of experiments, results of western blot and immunohistochemistry showed that Slit2 and Robo4 were significant decreased in intestine of LPS group, while the expression of VEGF was significant increased. Meanwhile, the protein level of tight junction protein ZO-1, occludin, and claudin-5 were significantly lower than in control group, which could also be reversed by VX765 injection. CONCLUSIONS: In this study, we revealed that Slit2-Robo4 signaling pathway and tight junction in intestine may be involved in LPS-induced inflammation in mice, which may account for the molecular mechanism of sepsis.


Assuntos
Inflamação , Peptídeos e Proteínas de Sinalização Intercelular , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso , Transdução de Sinais , Junções Íntimas , Animais , Lipopolissacarídeos/toxicidade , Camundongos , Transdução de Sinais/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Inflamação/metabolismo , Inflamação/induzido quimicamente , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Masculino , Receptores de Superfície Celular/metabolismo , Receptores Imunológicos/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Intestinos/efeitos dos fármacos , Intestinos/patologia , Modelos Animais de Doenças , Inflamassomos/metabolismo
10.
Analyst ; 149(13): 3596-3606, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38767610

RESUMO

Real-time and non-invasive assessment of tissue health is crucial for maximizing the potential of microphysiological systems (MPS) for drug-induced nephrotoxicity screening. Although impedance has been widely considered as a measure of the barrier function, it has not been incorporated to detect cell detachment in MPS with top and bottom microfluidic channels separated by a porous membrane. During cell delamination from the porous membrane, the resistance between both channels decreases, while capacitance increases, allowing the detection of such detachment. Previously reported concepts have solely attributed the decrease in the resistance to the distortion of the barrier function, ignoring the resistance and capacitance changes due to cell detachment. Here, we report a two-channel MPS with integrated indium tin oxide (ITO) electrodes capable of measuring impedance in real time. The trans-epithelial electrical resistance (TEER) and tissue reactance (capacitance) were extracted from the impedance profiles. We attributed the anomalous initial increase observed in TEER, upon cisplatin administration, to the distortion of tight junctions. Cell detachment was captured by sudden jumps in capacitance. TEER profiles illuminated the effects of cisplatin and cimetidine treatments in a dose-dependent and polarity-dependent manner. The correspondence between TEER and barrier function was validated for a continuous tissue using the capacitance profiles. These results demonstrate that capacitance can be used as a real-time and non-invasive indicator of confluence and will support the accuracy of the drug-induced cytotoxicity assessed by TEER profiles in the two-channel MPS for the barrier function of a cell monolayer.


Assuntos
Cisplatino , Impedância Elétrica , Túbulos Renais Proximais , Cisplatino/toxicidade , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/patologia , Animais , Compostos de Estanho/química , Compostos de Estanho/toxicidade , Cinética , Cimetidina/farmacologia , Adesão Celular/efeitos dos fármacos , Eletrodos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Linhagem Celular , Humanos , Junções Íntimas/efeitos dos fármacos
11.
Free Radic Biol Med ; 221: 261-272, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38815773

RESUMO

Despite of yet unknown mechanism, microvascular deposition of oligomeric Tau (oTau) has been implicated in alteration of the Blood-Brain Barrier (BBB) function in Alzheimer's disease (AD) brains. In this study, we employed an in vitro BBB model using primary mouse cerebral endothelial cells (CECs) to investigate the mechanism underlying the effects of oTau on BBB function. We found that exposing CECs to oTau induced oxidative stress through NADPH oxidase, increased oxidative damage to proteins, decreased proteasome activity, and expressions of tight junction (TJ) proteins including occludin, zonula occludens-1 (ZO-1) and claudin-5. These effects were suppressed by the pretreatment with Fasudil, a RhoA/ROCK signaling inhibitor. Consistent with the biochemical alterations, we found that exposing the basolateral side of CECs to oTau in the BBB model disrupted the integrity of the BBB, as indicated by an increase in FITC-dextran transport across the model, and a decrease in trans endothelial electrical resistance (TEER). oTau also increased the transmigration of peripheral blood mononuclear cells (PBMCs) in the BBB model. These functional alterations in the BBB induced by oTau were also suppressed by Fasudil. Taken together, our findings suggest that targeting the RhoA/ROCK pathway can be a potential therapeutic strategy to maintain BBB function in AD.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Transdução de Sinais , Proteínas tau , Animais , Humanos , Camundongos , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais/efeitos dos fármacos , Estresse Oxidativo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Proteínas tau/metabolismo , Proteínas tau/genética , Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Proteína da Zônula de Oclusão-1/metabolismo , Proteína da Zônula de Oclusão-1/genética
12.
Nutrients ; 16(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38732497

RESUMO

Laurus nobilis L. (LNL) belongs to the evergreen Lauraceae family. It is native to the Mediterranean and widely distributed in the southern United States, Europe, and the Middle East. LNL is rich in active ingredients of the sesquiterpene lactone series and has been reported to have antioxidant, anti-inflammatory, and anticancer effects. And parthenolide, known as a sesquiterpene lactone-based compound, inhibits the activation of lipopolysaccharide-binding protein (LBP), which is a major trigger for leaky gut syndrome. However, the effectiveness of LNL in improving the state of increased intestinal permeability has not yet been reported. Therefore, we demonstrated the efficacy of LNL, which is known to be rich in parthenolide, in improving intestinal permeability induced by IL-13. We investigated the improvement in permeability and analyzed major tight junction proteins (TJs), permeability-related mechanisms, weight and disease activity indices, and corresponding cytokine mechanisms. LNL maintained TJs homeostasis and clinical improvement by reducing increased claudin-2 through the inhibition of IL-13/STAT6 activation in TJ-damaged conditions. These results are expected to be effective in preventing leaky gut syndrome through the TJ balance and to further improve intestinal-related diseases, such as inflammatory bowel disease.


Assuntos
Laurus , Proteínas de Junções Íntimas , Animais , Proteínas de Junções Íntimas/metabolismo , Laurus/química , Permeabilidade , Extratos Vegetais/farmacologia , Masculino , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Camundongos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Humanos , Citocinas/metabolismo
13.
Int Immunopharmacol ; 135: 112322, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38788452

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive respiratory disorder characterized by poor prognosis, often presenting with acute exacerbation. The primary cause of death associated with IPF is acute exacerbation of IPF (AE-IPF). However, the pathophysiology of acute exacerbation has not been clearly elucidated yet. This study aims to investigate the underlying pathophysiological molecular mechanism in a mouse AE-PF model. C57BL/6J mice were intratracheally administered bleomycin (BLM, 5 mg/kg) to induce pulmonary fibrosis. After 14 days, lipopolysaccharide (LPS, 2 mg/kg) was injected via the trachea route. Histological assessments, including H&E and Masson staining, as well as inflammatory indicators, were included to evaluate the induction of AE-PF by BLM and LPS in mice. Transcriptomic profiling of pulmonary tissues identified CSF3 as one of the top 10 upregulated DEGs in AE-PF mice. Indeed, administration of exogenous CSF3 protein exacerbated AE-PF in mice. Mechanistically, CSF3 disrupted alveolar epithelial barrier integrity and permeability by regulating specialized cell adhesion complexes such as tight junctions (TJs) and adherens junctions (AJs) via PI3K/p-Akt/Snail pathway, contributing to the aggravation of AE-PF in mice. Moreover, the discovery of elevated sera CSF3 indicated a notable increase in IPF patients during the exacerbation of the disease. Pearson correlation analysis in IPF patients revealed significant positive associations between CSF3 levels and KL-6 levels, LDH levels, CRP levels, respectively. These results provide mechanistic insights into the role of CSF3 in exacerbating of lung fibrotic disease and indicate monitoring CSF3 levels may aid in early clinical decisions for alternative therapy in the management of rapidly progressing IPF.


Assuntos
Bleomicina , Fibrose Pulmonar Idiopática , Camundongos Endogâmicos C57BL , Animais , Humanos , Camundongos , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/induzido quimicamente , Masculino , Modelos Animais de Doenças , Progressão da Doença , Feminino , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Transdução de Sinais , Pessoa de Meia-Idade , Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/patologia , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição da Família Snail/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
14.
Int Immunopharmacol ; 135: 112290, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38796964

RESUMO

Anesthesia and surgery activate matrix metalloproteinase 9 (MMP9), leading to blood-brain barrier (BBB) disruption and postoperative delirium (POD)-like behavior, especially in the elderly. Aged mice received intraperitoneal injections of either the MMP9 inhibitor SB-3CT, melatonin, or solvent, and underwent laparotomy under 3 % sevoflurane anesthesia(anesthesia/surgery). Behavioral tests were performed 24 h pre- and post-operatively. Serum and cortical tissue levels of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α (TNF-α) were measured using ELISA. Levels of PDGFRß, MMP9, tight junction, Mfsd2a, caveolin-1, synaptophysin, and postsynaptic densin (PSD)-95 proteins in the prefrontal cortex were assayed using Western blotting. BBB permeability was assessed by detecting IgG in the prefrontal cortex and serum S100ß levels. Anesthesia/surgery-induced peripheral inflammation activated MMP9, which in turn injured pericytes and tight junctions and increased transcytosis, thereby disrupting the BBB. Impaired BBB allowed the migration of peripheral inflammation into the central nervous system (CNS), thereby inducing neuroinflammation, synaptic dysfunction, and POD-like behaviors. However, MMP9 inhibition reduced pericyte and tight junction injury and transcytosis, thereby preserving BBB function and preventing the migration of peripheral inflammation into the CNS, thus attenuating synaptic dysfunction and POD-like behavior. In addition, to further validate the above findings, we showed that melatonin exerted similar effects through inhibition of MMP9. The present study shows that after anesthesia/surgery, inflammatory cytokines upregulation is involved in regulating BBB permeability in aged mice through activation of MMP9, suggesting that MMP9 may be a potential target for the prevention of POD.


Assuntos
Barreira Hematoencefálica , Metaloproteinase 9 da Matriz , Melatonina , Doenças Neuroinflamatórias , Sevoflurano , Animais , Metaloproteinase 9 da Matriz/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Masculino , Camundongos , Sevoflurano/farmacologia , Doenças Neuroinflamatórias/imunologia , Melatonina/farmacologia , Envelhecimento , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Citocinas/metabolismo , Complicações Pós-Operatórias , Anestesia , Comportamento Animal/efeitos dos fármacos , Laparotomia/efeitos adversos , Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Compostos Heterocíclicos com 1 Anel , Sulfonas
15.
Environ Int ; 186: 108638, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593689

RESUMO

Microplastics (MPs) are pervasive pollutants in the natural environment and contribute to increased levels of illness in both animals and humans. However, thespecific impacts of MPs on skin damage and alopeciaare not yet well understood. In this study, we have examined the effects of two types of polystyrene MPs (pristine and aged) on skin and hair follicle damage in mice. UV irradiation changed the chemical and physical properties of the aged MPs, including functional groups, surface roughness, and contact angles. In both in vivo and in vitro experiments, skin and cell injuries related to oxidative stress, apoptosis, tight junctions (TJs), alopecia, mitochondrial dysfunction, and other damages were observed. Mechanistically, MPs and aged MPs can induce TJs damage via the oxidative stress pathway and inhibition of antioxidant-related proteins, and this can lead to alopecia. The regulation of cell apoptosis was also observed, and this is involved in the ROS-mediated mitochondrial signaling pathway. Importantly, aged MPs showed exacerbated toxicity, which may be due to their elevated surface irregularities and altered chemical compositions. Collectively, this study suggests a potential therapeutic approach for alopecia and hair follicle damage caused by MPs pollution.


Assuntos
Alopecia , Apoptose , Microplásticos , Estresse Oxidativo , Poliestirenos , Pele , Junções Íntimas , Alopecia/induzido quimicamente , Microplásticos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Animais , Camundongos , Poliestirenos/toxicidade , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Pele/efeitos dos fármacos , Pele/patologia , Folículo Piloso/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
16.
J Agric Food Chem ; 72(18): 10328-10338, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38651941

RESUMO

This work seeks to generate new knowledge about the mechanisms underlying the protective effects of cranberry against urinary tract infections (UTI). Using Caco-2 cells grown in Transwell inserts as an intestinal barrier model, we found that a cranberry-derived digestive fluid (containing 135 ± 5 mg of phenolic compounds/L) increased transepithelial electrical resistance with respect to control (ΔTEER = 54.5 Ω cm2) and decreased FITC-dextran paracellular transport by about 30%, which was related to the upregulation of the gene expression of tight junction (TJ) proteins (i.e., occludin, zonula occludens-1 [ZO-1], and claudin-2) (∼3-4-fold change with respect to control for claudin-2 and ∼2-3-fold for occludin and ZO-1). Similar protective effects, albeit to a lesser extent, were observed when Caco-2 cells were previously infected with uropathogenic Escherichia coli (UPEC). In a urinary barrier model comprising T24 cells grown in Transwell inserts and either noninfected or UPEC-infected, treatments with the cranberry-derived phenolic metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and phenylacetic acid (PAA) (250 µM) also promoted favorable changes in barrier integrity and permeability. In this line, incubation of noninfected T24 cells with these metabolites induced positive regulatory effects on claudin-2 and ZO-1 expression (∼3.5- and ∼2-fold change with respect to control for DOPAC and ∼1.5- and >2-fold change with respect to control for PAA, respectively). Overall, these results suggest that the protective action of cranberry polyphenols against UTI might involve molecular mechanisms related to the integrity and functionality of the urothelium and intestinal epithelium.


Assuntos
Extratos Vegetais , Polifenóis , Infecções Urinárias , Vaccinium macrocarpon , Vaccinium macrocarpon/química , Humanos , Infecções Urinárias/prevenção & controle , Infecções Urinárias/microbiologia , Polifenóis/farmacologia , Polifenóis/química , Polifenóis/metabolismo , Células CACO-2 , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Proteína da Zônula de Oclusão-1/metabolismo , Proteína da Zônula de Oclusão-1/genética , Escherichia coli Uropatogênica/efeitos dos fármacos , Escherichia coli Uropatogênica/genética , Ocludina/genética , Ocludina/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Frutas/química , Intestinos/efeitos dos fármacos , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/microbiologia
17.
PLoS One ; 19(4): e0302851, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38687777

RESUMO

Allergic inflammation, which is the pathogenesis of allergic rhinitis and asthma, is associated with disruption of the airway epithelial barrier due to the effects of type 2 inflammatory cytokines, i.e. interleukin-4 and interleukin-13 (IL-4/13). The anti-allergic inflammatory effect of ß-eudesmol (BE) on the tight junction (TJ) of the airway epithelium has not previously been reported. Herein, the barrier protective effect of BE was determined by measurement of transepithelial electrical resistance and by paracellular permeability assay in an IL-4/13-treated 16HBE14o- monolayer. Pre-treatment of BE concentration- and time- dependently inhibited IL-4/13-induced TJ barrier disruption, with the most significant effect observed at 20 µM. Cytotoxicity analyses showed that BE, either alone or in combination with IL-4/13, had no effect on cell viability. Western blot and immunofluorescence analyses showed that BE inhibited IL-4/13-induced mislocalization of TJ components, including occludin and zonula occludens-1 (ZO-1), without affecting the expression of these two proteins. In addition, the mechanism of the TJ-protective effect of BE was mediated by inhibition of IL-4/13-induced STAT6 phosphorylation, in which BE might serve as an antagonist of cytokine receptors. In silico molecular docking analysis demonstrated that BE potentially interacted with the site I pocket of the type 2 IL-4 receptor, likely at Asn-126 and Tyr-127 amino acid residues. It can therefore be concluded that BE is able to prevent IL-4/13-induced TJ disassembly by interfering with cytokine-receptor interaction, leading to suppression of STAT6-induced mislocalization of occludin and ZO-1. BE is a promising candidate for a therapeutic intervention for inflammatory airway epithelial disorders driven by IL-4/13.


Assuntos
Células Epiteliais , Interleucina-13 , Interleucina-4 , Fator de Transcrição STAT6 , Junções Íntimas , Proteína da Zônula de Oclusão-1 , Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Humanos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Interleucina-4/metabolismo , Interleucina-4/farmacologia , Interleucina-13/metabolismo , Fator de Transcrição STAT6/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Ocludina/metabolismo , Linhagem Celular , Simulação de Acoplamento Molecular , Citocinas/metabolismo , Sobrevivência Celular/efeitos dos fármacos
18.
Phytomedicine ; 129: 155541, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579640

RESUMO

BACKGROUND: Diarrheal irritable bowel syndrome (IBS-D), characterized primarily by the presence of diarrhea and abdominal pain, is a clinical manifestation resulting from a multitude of causative factors. Furthermore, Sishen Wan (SSW) has demonstrated efficacy in treating IBS-D. Nevertheless, its mechanism of action remains unclear. METHODS: A model of IBS-D was induced by a diet containing 45 % lactose and chronic unpredictable mild stress. Additionally, the impact of SSW was assessed by measuring body weight, visceral sensitivity, defecation parameters, intestinal transport velocity, intestinal neurotransmitter levels, immunohistochemistry, and transmission electron microscopy analysis. Immunofluorescent staining was used to detect the expression of Mucin 2 (MUC2) and Occludin in the colon. Western blotting was used to detect changes in proteins related to tight junction (TJ), autophagy, and endoplasmic reticulum (ER) stress in the colon. Finally, 16S rRNA amplicon sequencing was used to monitor the alteration of gut microbiota after SSW treatment. RESULTS: Our study revealed that SSW administration resulted in reduced visceral sensitivity, improved defecation parameters, decreased intestinal transport velocity, and reduced intestinal permeability in IBS-D mice. Furthermore, SSW promotes the secretion of colonic mucus by enhancing autophagy and inhibiting ER stress. SSW treatment caused remodeling of the gut microbiome by increasing the abundance of Blautia, Muribaculum and Ruminococcus torques group. CONCLUSION: SSW can improve intestinal barrier function by promoting autophagy and inhibiting ER stress, thus exerting a therapeutic effect on IBS-D.


Assuntos
Diarreia , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Estresse do Retículo Endoplasmático , Microbioma Gastrointestinal , Mucosa Intestinal , Síndrome do Intestino Irritável , Síndrome do Intestino Irritável/tratamento farmacológico , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Diarreia/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Mucosa Intestinal/efeitos dos fármacos , Mucina-2/metabolismo , Colo/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Ocludina/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Camundongos Endogâmicos C57BL , Função da Barreira Intestinal
19.
Water Res ; 257: 121660, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38688190

RESUMO

Pesticides and plastics bring convenience to agriculture and life, but also bring residual pollution in the environment. Emamectin benzoate (EMB) is the most popular pesticide at present. The harm of microplastics (MPs) to water and aquatic organisms is gradually increasing, and the possibility that it appears synchronously with various pesticides increases. However, the damage of EMB and MPs to the carp midgut and its mechanism have not been clarified. Therefore, based on the EMB or/and MPs exposure models, this study explored the mechanism of midgut injury through transcriptomics, immunofluorescence, western blot methods, and so on. Studies in vivo and in vitro showed that EMB or MPs exposure caused cilia shortening, lysosome damage, and ROS overproduction, which led to Fe2+ content increase, GSH/GSSG system disorder, lipid peroxidation, and ferroptosis. This process further led to the down-regulation of Cx43, Occludin, Claudin, and ZO-1, which further caused barrier damage, immune-related genes (immunoglobulin, IFN-γ) decrease and inflammation-related genes (TNF-α, IL-1ß) increase. Combined exposure was more significant than that of single exposure, and the addition of EN6 and NAC proved that lysosome/ROS/ferroptosis regulated these midgut damages. In conclusion, EMB or/and MPs exposure induce tight junction disorder, immune disorder and inflammation in carp midgut through the lysosome/ROS/ferroptosis pathway.


Assuntos
Carpas , Inflamação , Ivermectina , Lisossomos , Microplásticos , Animais , Microplásticos/toxicidade , Lisossomos/efeitos dos fármacos , Inflamação/induzido quimicamente , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Ferroptose/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Espécies Reativas de Oxigênio/metabolismo
20.
Free Radic Biol Med ; 218: 132-148, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554812

RESUMO

Acute respiratory distress syndrome (ARDS) is an acute and severe clinical complication lacking effective therapeutic interventions. The disruption of the lung epithelial barrier plays a crucial role in ARDS pathogenesis. Recent studies have proposed the involvement of abnormal mitochondrial dynamics mediated by dynamin-related protein 1 (Drp1) in the mechanism of impaired epithelial barrier in ARDS. Hydrogen is an anti-oxidative stress molecule that regulates mitochondrial function via multiple signaling pathways. Our previous study confirmed that hydrogen modulated oxidative stress and attenuated acute pulmonary edema in ARDS by upregulating thioredoxin 1 (Trx1) expression, but the exact mechanism remains unclear. This study aimed to investigate the effects of hydrogen on mitochondrial dynamics both in vivo and in vitro. Our study revealed that hydrogen inhibited lipopolysaccharide (LPS)-induced phosphorylation of Drp1 (at Ser616), suppressed Drp1-mediated mitochondrial fission, alleviated epithelial tight junction damage and cell apoptosis, and improved the integrity of the epithelial barrier. This process was associated with the upregulation of Trx1 in lung epithelial tissues of ARDS mice by hydrogen. In addition, hydrogen treatment reduced the production of reactive oxygen species in LPS-induced airway epithelial cells (AECs) and increased the mitochondrial membrane potential, indicating that the mitochondrial dysfunction was restored. Then, the expression of tight junction proteins occludin and zonula occludens 1 was upregulated, and apoptosis in AECs was alleviated. Remarkably, the protective effects of hydrogen on the mitochondrial and epithelial barrier were eliminated after applying the Trx1 inhibitor PX-12. The results showed that hydrogen significantly inhibited the cell apoptosis and the disruption of epithelial tight junctions, maintaining the integrity of the epithelial barrier in mice of ARDS. This might be related to the inhibition of Drp1-mediated mitochondrial fission through the Trx1 pathway. The findings of this study provided a new theoretical basis for the application of hydrogen in the clinical treatment of ARDS.


Assuntos
Dinaminas , Hidrogênio , Lipopolissacarídeos , Dinâmica Mitocondrial , Síndrome do Desconforto Respiratório , Tiorredoxinas , Animais , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Dinâmica Mitocondrial/efeitos dos fármacos , Dinaminas/metabolismo , Dinaminas/genética , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/patologia , Camundongos , Humanos , Hidrogênio/farmacologia , Lipopolissacarídeos/toxicidade , Pulmão/patologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Masculino , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Modelos Animais de Doenças , Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/patologia , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...