Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RNA Biol ; 18(sup1): 139-147, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34308760

RESUMO

The ribonucleoprotein RNase MRP is responsible for the processing of ribosomal RNA precursors. It is found in virtually all eukaryotes that have been examined. In the Euglenozoa, including the genera Euglena, Diplonema and kinetoplastids, MRP RNA and protein subunits have so far escaped detection using bioinformatic methods. However, we now demonstrate that the RNA component is widespread among the Euglenozoa and that these RNAs have secondary structures that conform to the structure of all other phylogenetic groups. In Euglena, we identified the same set of P/MRP protein subunits as in many other protists. However, we failed to identify any of these proteins in the kinetoplastids. This finding poses interesting questions regarding the structure and function of RNase MRP in these species.


Assuntos
DNA de Cinetoplasto/metabolismo , Endorribonucleases/metabolismo , Euglena/enzimologia , Conformação de Ácido Nucleico , Proteínas de Protozoários/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Protozoário/metabolismo , Pareamento de Bases , Sequência de Bases , DNA de Cinetoplasto/química , DNA de Cinetoplasto/genética , Endorribonucleases/química , Endorribonucleases/genética , Euglena/genética , Euglena/crescimento & desenvolvimento , Kinetoplastida/enzimologia , Kinetoplastida/genética , Kinetoplastida/crescimento & desenvolvimento , Filogenia , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , RNA de Protozoário/química , RNA de Protozoário/genética
2.
Genome Biol Evol ; 13(2)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33432342

RESUMO

Mitochondria retain their own genomes as other bacterial endosymbiont-derived organelles. Nevertheless, no protein for DNA replication and repair is encoded in any mitochondrial genomes (mtDNAs) assessed to date, suggesting that the nucleus primarily governs the maintenance of mtDNA. As the proteins of diverse evolutionary origins occupy a large proportion of the current mitochondrial proteomes, we anticipate finding the same evolutionary trend in the nucleus-encoded machinery for mtDNA maintenance. Indeed, none of the DNA polymerases (DNAPs) in the mitochondrial endosymbiont, a putative α-proteobacterium, seemingly had been inherited by their descendants (mitochondria), as none of the known types of mitochondrion-localized DNAP showed a specific affinity to the α-proteobacterial DNAPs. Nevertheless, we currently have no concrete idea of how and when the known types of mitochondrion-localized DNAPs emerged. We here explored the origins of mitochondrion-localized DNAPs after the improvement of the samplings of DNAPs from bacteria and phages/viruses. Past studies have revealed that a set of mitochondrion-localized DNAPs in kinetoplastids and diplonemids, namely PolIB, PolIC, PolID, PolI-Perk1/2, and PolI-dipl (henceforth designated collectively as "PolIBCD+") have emerged from a single DNAP. In this study, we recovered an intimate connection between PolIBCD+ and the DNAPs found in a particular group of phages. Thus, the common ancestor of kinetoplastids and diplonemids most likely converted a laterally acquired phage DNAP into a mitochondrion-localized DNAP that was ancestral to PolIBCD+. The phage origin of PolIBCD+ hints at a potentially large contribution of proteins acquired via nonvertical processes to the machinery for mtDNA maintenance in kinetoplastids and diplonemids.


Assuntos
Bacteriófagos/genética , DNA Polimerase Dirigida por DNA/genética , Euglenozoários/genética , Transferência Genética Horizontal , Kinetoplastida/genética , Bacteriófagos/enzimologia , DNA Polimerase Dirigida por DNA/classificação , Euglenozoários/enzimologia , Kinetoplastida/enzimologia , Mitocôndrias/enzimologia , Mitocôndrias/genética , Filogenia
3.
Open Biol ; 10(11): 200302, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33234025

RESUMO

Phosphoglycerate kinase (PGK) is a glycolytic enzyme that is well conserved among the three domains of life. PGK is usually a monomeric enzyme of about 45 kDa that catalyses one of the two ATP-producing reactions in the glycolytic pathway, through the conversion of 1,3-bisphosphoglycerate (1,3BPGA) to 3-phosphoglycerate (3PGA). It also participates in gluconeogenesis, catalysing the opposite reaction to produce 1,3BPGA and ADP. Like most other glycolytic enzymes, PGK has also been catalogued as a moonlighting protein, due to its involvement in different functions not associated with energy metabolism, which include pathogenesis, interaction with nucleic acids, tumorigenesis progression, cell death and viral replication. In this review, we have highlighted the overall aspects of this enzyme, such as its structure, reaction kinetics, activity regulation and possible moonlighting functions in different protistan organisms, especially both free-living and parasitic Kinetoplastea. Our analysis of the genomes of different kinetoplastids revealed the presence of open-reading frames (ORFs) for multiple PGK isoforms in several species. Some of these ORFs code for unusually large PGKs. The products appear to contain additional structural domains fused to the PGK domain. A striking aspect is that some of these PGK isoforms are predicted to be catalytically inactive enzymes or 'dead' enzymes. The roles of PGKs in kinetoplastid parasites are analysed, and the apparent significance of the PGK gene duplication that gave rise to the different isoforms and their expression in Trypanosoma cruzi is discussed.


Assuntos
Fosfoglicerato Quinase/química , Fosfoglicerato Quinase/metabolismo , Sítios de Ligação , Catálise , Ativação Enzimática , Evolução Molecular , Regulação Enzimológica da Expressão Gênica , Humanos , Kinetoplastida/classificação , Kinetoplastida/enzimologia , Kinetoplastida/genética , Modelos Moleculares , Fosfoglicerato Quinase/genética , Filogenia , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
4.
Curr Issues Mol Biol ; 31: 45-62, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31165719

RESUMO

Topoisomerases are a group of enzymes that resolve DNA topological problems and aid in different DNA transaction processes viz. replication, transcription, recombination, etc. inside cells. These proteins accomplish their feats by steps of DNA strand(s) scission, strand passage or rotation and subsequent rejoining activities. Topoisomerases of kinetoplastid parasites have been extensively studied because of their unusual features. The unique presence of heterodimeric Type IB topoisomerase and prokaryotic 'TopA homologue' Type IA topoisomerase in kinetoplastids still generates immense interest among scientists. Moreover, because of their structural dissimilarity with the host enzymes, topoisomerases of kinetoplastid parasites are attractive targets for chemotherapeutic interventions to kill these deadly parasites. In this review, we summarize historical perspectives and recent advances in kinetoplastid topoisomerase research and how these proteins are exploited for drug targeting.


Assuntos
DNA Topoisomerases/fisiologia , Kinetoplastida/enzimologia , Parasitos/enzimologia , Animais , DNA Topoisomerases/química , Sistemas de Liberação de Medicamentos/métodos , Infecções por Euglenozoa/tratamento farmacológico , Infecções por Euglenozoa/parasitologia , Interações Hospedeiro-Parasita/fisiologia , Humanos , Kinetoplastida/genética , Parasitos/genética , Conformação Proteica , Multimerização Proteica/fisiologia , Especificidade da Espécie
5.
Eur J Med Chem ; 155: 135-152, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29885575

RESUMO

To study the antiparasitic 8-nitroquinolin-2(1H)-one pharmacophore, a series of 31 derivatives was synthesized in 1-5 steps and evaluated in vitro against both Leishmania infantum and Trypanosoma brucei brucei. In parallel, the reduction potential of all molecules was measured by cyclic voltammetry. Structure-activity relationships first indicated that antileishmanial activity depends on an intramolecular hydrogen bond (described by X-ray diffraction) between the lactam function and the nitro group, which is responsible for an important shift of the redox potential (+0.3 V in comparison with 8-nitroquinoline). With the assistance of computational chemistry, a set of derivatives presenting a large range of redox potentials (from -1.1 to -0.45 V) was designed and provided a list of suitable molecules to be synthesized and tested. This approach highlighted that, in this series, only substrates with a redox potential above -0.6 V display activity toward L. infantum. Nevertheless, such relation between redox potentials and in vitro antiparasitic activities was not observed in T. b. brucei. Compound 22 is a new hit compound in the series, displaying both antileishmanial and antitrypanosomal activity along with a low cytotoxicity on the human HepG2 cell line. Compound 22 is selectively bioactivated by the type 1 nitroreductases (NTR1) of L. donovani and T. brucei brucei. Moreover, despite being mutagenic in the Ames test, as most of nitroaromatic derivatives, compound 22 was not genotoxic in the comet assay. Preliminary in vitro pharmacokinetic parameters were finally determined and pointed out a good in vitro microsomal stability (half-life > 40 min) and a 92% binding to human albumin.


Assuntos
Antiprotozoários/farmacologia , Técnicas Eletroquímicas , Kinetoplastida/efeitos dos fármacos , Nitroquinolinas/farmacologia , Nitrorredutases/metabolismo , Antiprotozoários/síntese química , Antiprotozoários/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Kinetoplastida/enzimologia , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/enzimologia , Estrutura Molecular , Nitroquinolinas/síntese química , Nitroquinolinas/química , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/enzimologia
6.
Gene ; 656: 95-105, 2018 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-29501621

RESUMO

Unicellular flagellates that make up the class Kinetoplastida include multiple parasites responsible for public health concerns, including Trypanosoma brucei and T. cruzi (agents of African sleeping sickness and Chagas disease, respectively), and various Leishmania species, which cause leishmaniasis. These diseases are generally difficult to eradicate, with treatments often having lethal side effects and/or being effective only during the acute phase of the diseases, when most patients are still asymptomatic. Phospholipid signaling and metabolism are important in the different life stages of Trypanosoma, including playing a role in transitions between stages and in immune system evasion, thus, making the responsible enzymes into potential therapeutic targets. However, relatively little is understood about how the pathways function in these pathogens. Thus, in this study we examined evolutionary history of proteins from one such signaling pathway, namely phospholipase D (PLD) homologs. PLD is an enzyme responsible for synthesizing phosphatidic acid (PA) from membrane phospholipids. PA is not only utilized for phospholipid synthesis, but is also involved in many other signaling pathways, including biotic and abiotic stress response. 37 different representative Kinetoplastida genomes were used for an exhaustive search to identify putative PLD homologs. The genome of Bodo saltans was the only one of surveyed Kinetoplastida genomes that encoded a protein that clustered with plant PLDs. The representatives from other Kinetoplastida species clustered together in two different clades, thought to be homologous to the PLD superfamily, but with shared sequence similarity with cardiolipin synthases (CLS), and phosphatidylserine synthases (PSS). The protein structure predictions showed that most Kinetoplastida sequences resemble CLS and PSS, with the exception of 5 sequences from Bodo saltans that shared significant structural similarities with the PLD sequences, suggesting the loss of PLD-like sequences during the evolution of parasitism in kinetoplastids. On the other hand, diacylglycerol kinase (DGK) homologs were identified for all species examined in this study, indicating that DGK could be the only pathway for the synthesis of PA involved in lipid signaling in these organisms due to genome streamlining during transition to parasitic lifestyle. Our findings offer insights for development of potential therapeutic and/or intervention approaches, particularly those focused on using PA, PLD and/or DGK related pathways, against trypanosomiasis, leishmaniasis, and Chagas disease.


Assuntos
Kinetoplastida/genética , Kinetoplastida/metabolismo , Metabolismo dos Lipídeos/genética , Fosfolipase D/genética , Filogenia , Animais , Kinetoplastida/enzimologia , Redes e Vias Metabólicas/genética , Ácidos Fosfatídicos/metabolismo , Fosfolipase D/química , Fosfolipase D/metabolismo , Isoformas de Proteínas/genética , Homologia de Sequência de Aminoácidos
7.
Sci Rep ; 7(1): 12073, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28935948

RESUMO

American Trypanosomiasis or Chagas disease is a prevalent, neglected and serious debilitating illness caused by the kinetoplastid protozoan parasite Trypanosoma cruzi. The current chemotherapy is limited only to nifurtimox and benznidazole, two drugs that have poor efficacy in the chronic phase and are rather toxic. In this scenario, more efficacious and safer drugs, preferentially acting through a different mechanism of action and directed against novel targets, are particularly welcome. Cruzipain, the main papain-like cysteine peptidase of T. cruzi, is an important virulence factor and a chemotherapeutic target with excellent pre-clinical validation evidence. Here, we present the identification of new Cruzipain inhibitory scaffolds within the GlaxoSmithKline HAT (Human African Trypanosomiasis) and Chagas chemical boxes, two collections grouping 404 non-cytotoxic compounds with high antiparasitic potency, drug-likeness, structural diversity and scientific novelty. We have adapted a continuous enzymatic assay to a medium-throughput format and carried out a primary screening of both collections, followed by construction and analysis of dose-response curves of the most promising hits. Using the identified compounds as a starting point a substructure directed search against CHEMBL Database revealed plausible common scaffolds while docking experiments predicted binding poses and specific interactions between Cruzipain and the novel inhibitors.


Assuntos
Antiprotozoários/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Kinetoplastida/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Antiprotozoários/química , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Interações Hospedeiro-Parasita/efeitos dos fármacos , Humanos , Kinetoplastida/enzimologia , Kinetoplastida/fisiologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Nifurtimox/química , Nifurtimox/farmacologia , Nitroimidazóis/química , Nitroimidazóis/farmacologia , Domínios Proteicos , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/fisiologia
8.
Nature ; 537(7619): 229-233, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27501246

RESUMO

Chagas disease, leishmaniasis and sleeping sickness affect 20 million people worldwide and lead to more than 50,000 deaths annually. The diseases are caused by infection with the kinetoplastid parasites Trypanosoma cruzi, Leishmania spp. and Trypanosoma brucei spp., respectively. These parasites have similar biology and genomic sequence, suggesting that all three diseases could be cured with drugs that modulate the activity of a conserved parasite target. However, no such molecular targets or broad spectrum drugs have been identified to date. Here we describe a selective inhibitor of the kinetoplastid proteasome (GNF6702) with unprecedented in vivo efficacy, which cleared parasites from mice in all three models of infection. GNF6702 inhibits the kinetoplastid proteasome through a non-competitive mechanism, does not inhibit the mammalian proteasome or growth of mammalian cells, and is well-tolerated in mice. Our data provide genetic and chemical validation of the parasite proteasome as a promising therapeutic target for treatment of kinetoplastid infections, and underscore the possibility of developing a single class of drugs for these neglected diseases.


Assuntos
Doença de Chagas/tratamento farmacológico , Kinetoplastida/efeitos dos fármacos , Kinetoplastida/enzimologia , Leishmaniose/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Pirimidinas/farmacologia , Triazóis/farmacologia , Tripanossomíase Africana/tratamento farmacológico , Animais , Doença de Chagas/parasitologia , Quimotripsina/antagonistas & inibidores , Quimotripsina/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Concentração Inibidora 50 , Leishmaniose/parasitologia , Camundongos , Estrutura Molecular , Terapia de Alvo Molecular , Inibidores de Proteassoma/efeitos adversos , Inibidores de Proteassoma/classificação , Pirimidinas/efeitos adversos , Pirimidinas/química , Pirimidinas/uso terapêutico , Especificidade da Espécie , Triazóis/efeitos adversos , Triazóis/química , Triazóis/uso terapêutico , Tripanossomíase Africana/parasitologia
9.
J Eukaryot Microbiol ; 63(5): 657-78, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27009761

RESUMO

Comparison of the genomes of free-living Bodo saltans and those of parasitic trypanosomatids reveals that the transition from a free-living to a parasitic life style has resulted in the loss of approximately 50% of protein-coding genes. Despite this dramatic reduction in genome size, B. saltans and trypanosomatids still share a significant number of common metabolic traits: glycosomes; a unique set of the pyrimidine biosynthetic pathway genes; an ATP-PFK which is homologous to the bacterial PPi -PFKs rather than to the canonical eukaryotic ATP-PFKs; an alternative oxidase; three phosphoglycerate kinases and two GAPDH isoenzymes; a pyruvate kinase regulated by fructose-2,6-bisphosphate; trypanothione as a substitute for glutathione; synthesis of fatty acids via a unique set of elongase enzymes; and a mitochondrial acetate:succinate coenzyme A transferase. B. saltans has lost the capacity to synthesize ubiquinone. Among genes that are present in B. saltans and lost in all trypanosomatids are those involved in the degradation of mureine, tryptophan and lysine. Novel acquisitions of trypanosomatids are components of pentose sugar metabolism, pteridine reductase and bromodomain-factor proteins. In addition, only the subfamily Leishmaniinae has acquired a gene for catalase and the capacity to convert diaminopimelic acid to lysine.


Assuntos
Kinetoplastida/genética , Kinetoplastida/metabolismo , Trypanosomatina/genética , Trypanosomatina/metabolismo , Aminoácidos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Metabolismo dos Carboidratos , Coenzimas/metabolismo , Dolicóis/metabolismo , Ergosterol/biossíntese , Eucariotos/genética , Eucariotos/metabolismo , Ácido Fólico/metabolismo , Genes de Protozoários/genética , Gluconeogênese , Glicólise , Kinetoplastida/enzimologia , Metabolismo dos Lipídeos , Ácido Mevalônico/metabolismo , Microcorpos/metabolismo , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Oxirredutases/metabolismo , Via de Pentose Fosfato , Peroxissomos/metabolismo , Fosfolipídeos/metabolismo , Poliaminas/metabolismo , Prenilação de Proteína , Proteínas de Protozoários/genética , Purinas/biossíntese , Purinas/metabolismo , Pirimidinas/biossíntese , Pirimidinas/metabolismo , Espécies Reativas de Oxigênio , Trypanosomatina/enzimologia , Ubiquinona/metabolismo , Ureia/metabolismo , Vitaminas/metabolismo
10.
BMC Evol Biol ; 15: 261, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26588894

RESUMO

BACKGROUND: Leptomonas is monogenetic kinetoplastid parasite of insects and is primitive in comparison to Leishmania. Comparative studies of these two kinetoplastid may share light on the evolutionary transition to dixenous parasitism in Leishmania. In order to adapt and survive within two hosts, Leishmania species must have acquired virulence factors in addition to mechanisms that mediate susceptibility/resistance to infection in the pathology associated with disease. Rab proteins are key mediators of vesicle transport and contribute greatly to the evolution of complexity of membrane transport system. In this study we used our whole genome sequence data of these two divergent kinetoplastids to analyze the orthologues/paralogues of Rab proteins. RESULTS: During change of lifestyle from monogenetic (Leptomonas) to digenetic (Leishmania), we found that the prenyl machinery remained unchanged. Geranylgeranyl transferase-I (GGTase-I) was absent in both Leishmania and its sister Leptomonas. Farnesyltransferase (FTase) and geranylgeranyl transferase-II (GGTase-II) were identified for protein prenylation. We predict that activity of the missing alpha-subunit (α-subunit) of GGTase-II in Leptomonas was probably contributed by the α-subunit of FTase, while beta-subunit (ß-subunit) of GGTase-II was conserved and indicated functional conservation in the evolution of these two kinetoplastids. Therefore the ß-subunit emerges as an excellent target for compounds inhibiting parasite activity in clinical cases of co-infections. We also confirmed that during the evolution to digenetic life style in Leishmania, the parasite acquired capabilities to evade drug action and maintain parasite virulence in the host with the incorporation of short-chain dehydrogenase/reductase (SDR/MDR) superfamily in Rab genes. CONCLUSION: Our study based on whole genome sequences is the first to build comparative evolutionary analysis and identification of prenylation proteins in Leishmania and its sister Leptomonas. The information presented in our present work has importance for drug design targeted to kill L. donovani in humans but not affect the human form of the prenylation enzymes.


Assuntos
Kinetoplastida/genética , Leishmania/genética , Prenilação de Proteína , Alquil e Aril Transferases/metabolismo , Animais , Evolução Biológica , Genoma de Protozoário , Humanos , Insetos/parasitologia , Kinetoplastida/citologia , Kinetoplastida/enzimologia , Kinetoplastida/metabolismo , Leishmania/citologia , Leishmania/enzimologia , Leishmania/metabolismo , Leishmaniose/parasitologia , Redes e Vias Metabólicas
11.
PLoS Negl Trop Dis ; 9(9): e0004026, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26402733

RESUMO

Due to an increasing problem of drug resistance among almost all parasites species ranging from protists to worms, there is an urgent need to explore new drug targets and their inhibitors to provide new and effective parasitic therapeutics. In this regard, there is growing interest in exploring known drug leads of human epigenetic enzymes as potential starting points to develop novel treatments for parasitic diseases. This approach of repurposing (starting with validated targets and inhibitors) is quite attractive since it has the potential to reduce the expense of drug development and accelerate the process of developing novel drug candidates for parasite control. Lysine deacetylases (KDACs) are among the most studied epigenetic drug targets of humans, and a broad range of small-molecule inhibitors for these enzymes have been reported. In this work, we identify the KDAC protein families in representative species across important classes of parasites, screen a compound library of 23 hydroxamate- or benzamide-based small molecules KDAC inhibitors, and report their activities against a range of parasitic species, including the pathogen of malaria (Plasmodium falciparum), kinetoplastids (Trypanosoma brucei and Leishmania donovani), and nematodes (Brugia malayi, Dirofilaria immitis and Haemonchus contortus). Compound activity against parasites is compared to that observed against the mammalian cell line (L929 mouse fibroblast) in order to determine potential parasite-versus-host selectivity). The compounds showed nanomolar to sub-nanomolar potency against various parasites, and some selectivity was observed within the small panel of compounds tested. The possible binding modes of the active compounds at the different protein target sites within different species were explored by docking to homology models to help guide the discovery of more selective, parasite-specific inhibitors. This current work supports previous studies that explored the use of KDAC inhibitors in targeting Plasmodium to develop new anti-malarial treatments, and also pioneers experiments with these KDAC inhibitors as potential new anthelminthics. The selectivity observed begins to address the challenges of targeting specific parasitic diseases while limiting host toxicity.


Assuntos
Antiparasitários/metabolismo , Inibidores de Histona Desacetilases/metabolismo , Histona Desacetilases/metabolismo , Kinetoplastida/enzimologia , Nematoides/enzimologia , Plasmodium falciparum/enzimologia , Animais , Antiparasitários/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Fibroblastos/efeitos dos fármacos , Inibidores de Histona Desacetilases/toxicidade , Histona Desacetilases/química , Kinetoplastida/efeitos dos fármacos , Camundongos , Simulação de Acoplamento Molecular , Nematoides/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Ligação Proteica
12.
Mol Microbiol ; 90(6): 1293-308, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24134817

RESUMO

Conserved from yeast to humans, TFIIH is essential for RNA polymerase II transcription and nucleotide excision repair (NER). TFIIH consists of a core that includes the DNA helicase Xeroderma pigmentosum B (XPB) and a kinase subcomplex. Trypanosoma brucei TFIIH harbours all core complex components and is indispensable for RNA polymerase II transcription of spliced leader RNA genes (SLRNAs). Kinetoplastid organisms, however, possess two highly divergent XPB paralogues with only the larger being identified as a TFIIH subunit in T. brucei. Here we show that a knockout of the gene for the smaller paralogue, termed XPB-R (R for repair) resulted in viable cultured trypanosomes that grew slower than normal. XPB-R depletion did not affect transcription in vivo or in vitro and XPB-R was not found to occupy the SLRNA promoter which assembles a RNA polymerase II transcription pre-initiation complex including TFIIH. However, XPB-R(-/-) cells were much less tolerant than wild-type cells to UV light- and cisplatin-induced DNA damage, which require NER. Since XPB-R(-/-) cells were not impaired in DNA base excision repair, XPB-R appears to function specifically in NER. Interestingly, several other protists possess highly divergent XPB paralogues suggesting that XPBs specialized in transcription or NER exist beyond the Kinetoplastida.


Assuntos
DNA Helicases/metabolismo , Reparo do DNA , Genes de Protozoários , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética , DNA Helicases/genética , Evolução Molecular , Técnicas de Inativação de Genes , Humanos , Kinetoplastida/classificação , Kinetoplastida/enzimologia , Kinetoplastida/genética , Filogenia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos , Fator de Transcrição TFIIH/metabolismo
13.
Prog Lipid Res ; 52(4): 488-512, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23827884

RESUMO

Lipid metabolism is of crucial importance for pathogens. Lipids serve as cellular building blocks, signalling molecules, energy stores, posttranslational modifiers, and pathogenesis factors. Parasites rely on a complex system of uptake and synthesis mechanisms to satisfy their lipid needs. The parameters of this system change dramatically as the parasite transits through the various stages of its life cycle. Here we discuss the tremendous recent advances that have been made in the understanding of the synthesis and uptake pathways for fatty acids and phospholipids in apicomplexan and kinetoplastid parasites, including Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and Leishmania. Lipid synthesis differs in significant ways between parasites from both phyla and the human host. Parasites have acquired novel pathways through endosymbiosis, as in the case of the apicoplast, have dramatically reshaped substrate and product profiles, and have evolved specialized lipids to interact with or manipulate the host. These differences potentially provide opportunities for drug development. We outline the lipid pathways for key species in detail as they progress through the developmental cycle and highlight those that are of particular importance to the biology of the pathogens and/or are the most promising targets for parasite-specific treatment.


Assuntos
Apicomplexa/metabolismo , Kinetoplastida/metabolismo , Metabolismo dos Lipídeos/fisiologia , Acetiltransferases/antagonistas & inibidores , Acetiltransferases/metabolismo , Animais , Apicomplexa/enzimologia , Elongases de Ácidos Graxos , Ácido Graxo Sintase Tipo II/antagonistas & inibidores , Ácido Graxo Sintase Tipo II/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Kinetoplastida/enzimologia , Fosfolipídeos/metabolismo
14.
PLoS One ; 7(12): e52379, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300657

RESUMO

Bodonids and trypanosomatids are derived from a common ancestor with the bodonids being a more primitive lineage. The Neobodonida, one of the three clades of bodonids, can be free-living, commensal or parasitic. Despite the ecological and evolutionary significance of these organisms, however, many of their biological and pathological features are currently unknown. Here, we employed metatranscriptomics using RNA-seq technology combined with field-emission microscopy to reveal the virulence factors of a recently described genus of Neobodonida that is considered to be responsible for ascidian soft tunic syndrome (AsSTS), but whose pathogenesis is unclear. Our microscopic observation of infected tunic tissues suggested putative virulence factors, enabling us to extract novel candidate transcripts; these included cysteine proteases of the families C1 and C2, serine proteases of S51 and S9 families, and metalloproteases grouped into families M1, M3, M8, M14, M16, M17, M24, M41, and M49. Protease activity/inhibition assays and the estimation of expression levels within gene clusters allowed us to identify metalloprotease-like enzymes as potential virulence attributes for AsSTS. Furthermore, a multimarker-based phylogenetic analysis using 1,184 concatenated amino acid sequences clarified the order Neobodo sp. In sum, we herein used metatranscriptomics to elucidate the in situ expression profiles of uncharacterized putative transcripts of Neobodo sp., combined these results with microscopic observation to select candidate genes relevant to pathogenesis, and used empirical screening to define important virulence factors.


Assuntos
Infecções por Euglenozoa/parasitologia , Perfilação da Expressão Gênica , Kinetoplastida/ultraestrutura , Metaloproteases/genética , Análise de Sequência de RNA , Urocordados/parasitologia , Fatores de Virulência/genética , Animais , Flagelos/enzimologia , Flagelos/genética , Flagelos/fisiologia , Flagelos/ultraestrutura , Kinetoplastida/enzimologia , Kinetoplastida/genética , Kinetoplastida/fisiologia , Metaloproteases/antagonistas & inibidores , Metaloproteases/metabolismo , Microscopia Eletrônica de Varredura , Anotação de Sequência Molecular , Filogenia , Inibidores de Proteases/farmacologia , RNA de Protozoário/genética , Especificidade da Espécie , Fatores de Virulência/antagonistas & inibidores , Fatores de Virulência/metabolismo
15.
Handb Exp Pharmacol ; (204): 487-510, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21695653

RESUMO

Protozoan parasites of the order kinetoplastida are the causative agents of three of the world's most important neglected human diseases: African trypanosomiasis, American trypanosomiasis, and leishmaniasis. Current therapies are limited, with some treatments having serious and sometimes lethal side effects. The growing number of cases that are refractory to treatment is also of concern. With few new drugs in development, there is an unmet medical need for new, more effective, and safer medications. Recent studies employing genetic and pharmacological techniques have begun to shed light on the role of the cyclic nucleotide phosphodiesterases in the life cycle of these pathogens and suggest that these important regulators of cyclic nucleotide signaling may be promising new targets for the treatment of parasitic diseases.


Assuntos
Leishmaniose/tratamento farmacológico , Inibidores de Fosfodiesterase/uso terapêutico , Tripanossomíase/tratamento farmacológico , Animais , Cristalização , Humanos , Kinetoplastida/enzimologia , Leishmaniose/enzimologia , Nucleotídeos Cíclicos/fisiologia , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/fisiologia , Transdução de Sinais/fisiologia , Tripanossomíase/enzimologia
16.
Mol Biochem Parasitol ; 174(2): 141-4, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20801163

RESUMO

ADP-ribosylation factor-like (ARL) proteins are small GTPases that undergo conformational changes upon nucleotide binding, and which regulate the affinity of ARLs for binding other proteins, lipids or membranes. There is a paucity of structural data on this family of proteins in the Kinetoplastida, despite studies implicating them in key events related to vesicular transport and regulation of microtubule-dependent processes. The crystal structure of Leishmania major ARL1 in complex with GDP has been determined to 2.1 Å resolution and reveals a high degree of structural conservation with human ADP-ribosylation factor 1 (ARF1). Putative L. major and Trypanosoma brucei ARF/ARL family members have been classified based on structural considerations, amino acid sequence conservation combined with functional data on Kinetoplastid and human orthologues. This classification may guide future studies designed to elucidate the function of specific family members.


Assuntos
Fator 1 de Ribosilação do ADP/química , GTP Fosfo-Hidrolases/classificação , Kinetoplastida/enzimologia , Leishmania major/metabolismo , Fator 1 de Ribosilação do ADP/metabolismo , Animais , Cristalização , Cristalografia , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Humanos , Leishmania major/química , Modelos Moleculares , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo
17.
J Mol Model ; 16(1): 61-76, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19471975

RESUMO

Kinetoplastid RNA editing ligases 1 and 2 (KREL1 and KREL2) share a significant degree of sequence homology. However, biochemical experiments have reported that KREL1 and KREL2 differ in their functional roles during the RNA editing process. In this study, we hypothesize that dissimilar roles for KREL1 and KREL2 proteins arise from their different physicochemical characteristics. To test our hypothesis at sequence level, we plotted theoretical titration curves for KREL1, KREL2 and their binding partner proteins. The plots showed a lower isoelectric point for KREL1 compared to that for KREL2 as well as more relative alkalinity and acidity for binding partner proteins of KREL1 and KREL2 at net charge zero, respectively. At structure level, based on the available high resolution structure of KREL1 N-terminal domain and strong sequence similarity between KRELs and other ligases, we built the homology model of KREL2 N-terminal domain. Using Poisson-Boltzmann continuum approach, we calculated the electrostatic potential isosurfaces of KREL1 structure and KREL2 model. KREL1 and KREL2 coordinates differed in their electrostatic isopotential patterns. A wider negative patch on the surface of KREL1 suggests differential affinity for another protein compared to KREL2. In contrast, a larger positive patch on the KREL2 surface predicts its differential affinity and/or specificity for its RNA substrate. Subsequently, we employed in silico mutational scanning and identified the surface-exposed residues contributing to the long-range electrostatic energy of KRELs. We predict that two structurally conserved loops of KRELs, not previously reported in the literature, also recognize their RNA substrates. Our results provide important information about the physicochemical properties of RNA editing ligases that could contribute to the ligation step of RNA editing.


Assuntos
Kinetoplastida/enzimologia , Edição de RNA , RNA Ligase (ATP)/química , Trypanosoma/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Especificidade por Substrato
18.
J Eukaryot Microbiol ; 56(5): 454-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19737198

RESUMO

We report the characterization of cell-associated and extracellular peptidases of Bodo sp., a free-living flagellate of the Bodonidae family, order Kinetoplastida, which is considered ancestral to the trypanosomatids. This bodonid isolate is phylogenetically related to Bodo caudatus and Bodo curvifilus. The proteolytic activity profiles of Bodo sp. were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis containing co-polymerized gelatin, casein, hemoglobin, or bovine serum albumin as substrates. The enzymatic complex degraded gelatin better in acidic pH, and under these conditions four proteolytic bands (120, 100, 90, and 75 kDa) were detected in the cellular or extracellular extracts. Two peptidases (250 and 200 kDa) were exclusively detected with the substrate casein. All these enzymes belong to the serine peptidase class, based on inhibition by aprotinin and phenylmethylsulfonyl fluoride. This is the first biochemical characterization of peptidases in a free-living Bodo sp., potentially providing insight into the physiology of these protozoa and the evolutionary importance of peptidases to the order Kinetoplastida as some of these enzymes are important virulence factors in pathogenic trypanosomatids.


Assuntos
Kinetoplastida/enzimologia , Proteínas de Protozoários/análise , Proteínas de Protozoários/genética , Serina Endopeptidases/análise , Serina Endopeptidases/genética , Animais , Aprotinina/farmacologia , Análise por Conglomerados , Cocos/parasitologia , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eletroforese em Gel de Poliacrilamida/métodos , Inibidores Enzimáticos/farmacologia , Genes de RNAr , Dados de Sequência Molecular , Peso Molecular , Fluoreto de Fenilmetilsulfonil/farmacologia , Filogenia , Proteínas de Protozoários/química , RNA de Protozoário/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Serina Endopeptidases/química
19.
Mol Biochem Parasitol ; 167(1): 12-9, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19409421

RESUMO

Cysteine peptidases are important for growth and survival of kinetoplastid parasites. The best characterised are those homologous to mammalian cathepsins B and L. To address a somewhat confusing terminology, we introduce a unifying nomenclature for kinetoplastid CATB and CATL peptidases. We review their evolutionary relatedness, genomic organisation, developmental expression, subcellular location and physiological functions. In addition, the applications of kinetoplastid CATB and CATL enzymes as vaccine candidates, diagnostic markers and drug targets are discussed.


Assuntos
Cisteína Endopeptidases/fisiologia , Kinetoplastida/enzimologia , Animais , Antígenos de Protozoários/imunologia , Cisteína Endopeptidases/análise , Cisteína Endopeptidases/classificação , Cisteína Endopeptidases/genética , Kinetoplastida/química , Kinetoplastida/genética , Vacinas Protozoárias/imunologia , Terminologia como Assunto
20.
BMC Genomics ; 9: 455, 2008 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-18831753

RESUMO

BACKGROUND: In a previous study, we conducted a large-scale similarity-free function prediction of mitochondrion-encoded hypothetical proteins, by which the hypothetical gene murf1 (maxicircle unidentified reading frame 1) was assigned as nad2, encoding subunit 2 of NADH dehydrogenase (Complex I of the respiratory chain). This hypothetical gene occurs in the mitochondrial genome of kinetoplastids, a group of unicellular eukaryotes including the causative agents of African sleeping sickness and leishmaniasis. In the present study, we test this assignment by using bioinformatics methods that are highly sensitive in identifying remote homologs and confront the prediction with available biological knowledge. RESULTS: Comparison of MURF1 profile Hidden Markov Model (HMM) against function-known profile HMMs in Pfam, Panther and TIGR shows that MURF1 is a Complex I protein, but without specifying the exact subunit. Therefore, we constructed profile HMMs for each individual subunit, using all available sequences clustered at various identity thresholds. HMM-HMM comparison of these individual NADH subunits against MURF1 clearly identifies this hypothetical protein as NAD2. Further, we collected the relevant experimental information about kinetoplastids, which provides additional evidence in support of this prediction. CONCLUSION: Our in silico analyses provide convincing evidence for MURF1 being a highly divergent member of NAD2.


Assuntos
Biologia Computacional/métodos , Kinetoplastida/genética , NADH Desidrogenase/genética , Sequência de Aminoácidos , Animais , Inteligência Artificial , Genoma Mitocondrial , Kinetoplastida/enzimologia , Cadeias de Markov , Dados de Sequência Molecular , Fases de Leitura Aberta , Alinhamento de Sequência , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...