Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Semin Cancer Biol ; 86(Pt 2): 93-100, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36096316

RESUMO

The energy metabolism of tumor cells is considered one of the hallmarks of cancer because it is different from normal cells and mainly consists of aerobic glycolysis, fatty acid oxidation, and glutaminolysis. It is about one hundred years ago since Warburg observed that cancer cells prefer aerobic glycolysis even in normoxic conditions, favoring their high proliferation rate. A pivotal enzyme driving this phenomenon is lactate dehydrogenase (LDH), and this review describes prognostic and therapeutic opportunities associated with this enzyme, focussing on tumors with limited therapeutic strategies and life expectancy (i.e., pancreatic and thoracic cancers). Expression levels of LDH-A in pancreatic cancer tissues correlate with clinicopathological features: LDH-A is overexpressed during pancreatic carcinogenesis and showed significantly higher expression in more aggressive tumors. Similarly, LDH levels are a marker of negative prognosis in patients with both adenocarcinoma or squamous cell lung carcinoma, as well as in malignant pleural mesothelioma. Additionally, serum LDH levels may play a key role in the clinical management of these diseases because they are associated with tissue damage induced by tumor burden. Lastly, we discuss the promising results of strategies targeting LDH as a treatment strategy, reporting recent preclinical and translational studies supporting the use of LDH-inhibitors in combinations with current/novel chemotherapeutics that can synergistically target the oxygenated cells present in the tumor.


Assuntos
Metabolismo Energético , Lactato Desidrogenase 5 , Neoplasias Pancreáticas , Neoplasias Torácicas , Humanos , Glicólise/fisiologia , Isoenzimas/metabolismo , L-Lactato Desidrogenase/metabolismo , Lactato Desidrogenase 5/biossíntese , Neoplasias Pulmonares/metabolismo , Neoplasias Pancreáticas/metabolismo , Mesotelioma/metabolismo , Neoplasias Pleurais/metabolismo , Neoplasias Torácicas/metabolismo
2.
Int J Mol Sci ; 22(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374446

RESUMO

Adequate tissue engineered models are required to further understand the (patho)physiological mechanism involved in the destructive processes of cartilage and subchondral bone during rheumatoid arthritis (RA). Therefore, we developed a human in vitro 3D osteochondral tissue model (OTM), mimicking cytokine-induced cellular and matrix-related changes leading to cartilage degradation and bone destruction in order to ultimately provide a preclinical drug screening tool. To this end, the OTM was engineered by co-cultivation of mesenchymal stromal cell (MSC)-derived bone and cartilage components in a 3D environment. It was comprehensively characterized on cell, protein, and mRNA level. Stimulating the OTM with pro-inflammatory cytokines, relevant in RA (tumor necrosis factor α, interleukin-6, macrophage migration inhibitory factor), caused cell- and matrix-related changes, resulting in a significantly induced gene expression of lactate dehydrogenase A, interleukin-8 and tumor necrosis factor α in both, cartilage and bone, while the matrix metalloproteases 1 and 3 were only induced in cartilage. Finally, application of target-specific drugs prevented the induction of inflammation and matrix-degradation. Thus, we here provide evidence that our human in vitro 3D OTM mimics cytokine-induced cell- and matrix-related changes-key features of RA-and may serve as a preclinical tool for the evaluation of both new targets and potential drugs in a more translational setup.


Assuntos
Artrite Reumatoide/metabolismo , Cartilagem Articular/patologia , Citocinas/metabolismo , Idoso , Osso e Ossos/metabolismo , Fosfatos de Cálcio/metabolismo , Condrócitos/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Técnicas In Vitro , Interleucina-6/biossíntese , Interleucina-8/biossíntese , Lactato Desidrogenase 5/biossíntese , Fatores Inibidores da Migração de Macrófagos/biossíntese , Masculino , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Membrana Sinovial/patologia , Engenharia Tecidual/métodos , Pesquisa Translacional Biomédica , Fator de Necrose Tumoral alfa/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...