Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.285
Filtrar
1.
Sci Rep ; 14(1): 15387, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965339

RESUMO

Probiotics offer a promising prophylactic approach against various pathogens and represent an alternative strategy to combat biofilm-related infections. In this study, we isolated vaginal commensal microbiota from 54 healthy Indian women to investigate their probiotic traits. We primarily explored the ability of cell-free supernatant (CFS) from Lactobacilli to prevent Uropathogenic Escherichia coli (UPEC) colonization and biofilm formation. Our findings revealed that CFS effectively reduced UPEC's swimming and swarming motility, decreased cell surface hydrophobicity, and hindered matrix production by downregulating specific genes (fimA, fimH, papG, and csgA). Subsequent GC-MS analysis identified Tryptamine, a monoamine compound, as the potent bioactive substance from Lactobacilli CFS, inhibiting UPEC biofilms with an MBIC of 4 µg/ml and an MBEC of 8 µg/ml. Tryptamine induced significant changes in E. coli colony biofilm morphology, transitioning from the Red, Dry, and Rough (RDAR) to the Smooth and White phenotype, indicating reduced extracellular matrix production. Biofilm time-kill assays demonstrated a four-log reduction in UPEC viability when treated with Tryptamine, highlighting its potent antibacterial properties, comparable to CFS treatment. Biofilm ROS assays indicated a significant elevation in ROS generation within UPEC biofilms, suggesting a potential antibacterial mechanism. Gene expression studies with Tryptamine-treated samples showed a reduction in expression of curli gene (csgA), consistent with CFS treatment. This study underscores the potential of Tryptamine from probiotic Lactobacilli CFS as a promising antibiofilm agent against UPEC biofilms.


Assuntos
Biofilmes , Lactobacillus , Probióticos , Triptaminas , Escherichia coli Uropatogênica , Vagina , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Humanos , Triptaminas/farmacologia , Feminino , Escherichia coli Uropatogênica/efeitos dos fármacos , Escherichia coli Uropatogênica/fisiologia , Probióticos/farmacologia , Vagina/microbiologia , Lactobacillus/efeitos dos fármacos , Lactobacillus/metabolismo , Lactobacillus/fisiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/prevenção & controle , Adulto , Antibacterianos/farmacologia
2.
Curr Microbiol ; 81(7): 202, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829392

RESUMO

There are massive sources of lactic acid bacteria (LAB) in traditional dairy products. Some of these indigenous strains could be novel probiotics with applications in human health and supply the growing needs of the probiotic industry. In this work, were analyzed the probiotic and technological properties of three Lactobacilli strains isolated from traditional Brazilian cheeses. In vitro tests showed that the three strains are safe and have probiotic features. They presented antimicrobial activity against pathogenic bacteria, auto-aggregation values around 60%, high biofilm formation properties, and a survivor of more than 65% to simulated acid conditions and more than 100% to bile salts. The three strains were used as adjunct cultures separately in a pilot-scale production of Prato cheese. After 45 days of ripening, the lactobacilli counts in the cheeses were close to 8 Log CFU/g, and was observed a reduction in the lactococci counts (around -3 Log CFU/g) in a strain-dependent manner. Cheese primary and secondary proteolysis were unaffected by the probiotic candidates during the ripening, and the strains showed no lipolytic effect, as no changes in the fatty acid profile of cheeses were observed. Thus, our findings suggest that the three strains evaluated have probiotic properties and have potential as adjunct non-starter lactic acid bacteria (NSLAB) to improve the quality and functionality of short-aged cheeses.


Assuntos
Queijo , Probióticos , Queijo/microbiologia , Brasil , Microbiologia de Alimentos , Lactobacillus/metabolismo , Lactobacillus/fisiologia , Lactobacillales/fisiologia , Lactobacillales/isolamento & purificação , Lactobacillales/metabolismo , Lactobacillales/classificação , Biofilmes/crescimento & desenvolvimento , Ácidos Graxos/metabolismo , Fermentação , Ácidos e Sais Biliares/metabolismo
3.
J Appl Microbiol ; 135(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38857885

RESUMO

AIMS: Klebsiella pneumoniae, an important opportunistic pathogen of nosocomial inflection, is known for its ability to form biofilm. The purpose of the current study is to assess how co- or mono-cultured probiotics affect K. pneumoniae's ability to produce biofilms and investigate the potential mechanisms by using a polyester nonwoven chemostat and a Caco-2 cell line. METHODS AND RESULTS: Compared with pure cultures of Lactobacillus rhamnosus and Lactobacillus sake, the formation of K. pneumoniae biofilm was remarkably inhibited by the mixture of L. rhamnosus, L. sake, and Bacillus subtilis at a ratio of 5:5:1 by means of qPCR and FISH assays. In addition, Lactobacillus in combination with B. subtilis could considerably reduce the adherence of K. pneumoniae to Caco-2 cells by using inhibition, competition, and displacement assays. According to the RT-PCR assay, the adsorption of K. pneumoniae to Caco-2 cells was effectively inhibited by the co-cultured probiotics, leading to significant reduction in the expression of proinflammatory cytokines induced by K. pneumoniae. Furthermore, the HPLC and RT-PCR analyses showed that the co-cultured probiotics were able to successfully prevent the expression of the biofilm-related genes of K. pneumoniae by secreting plenty of organic acids as well as the second signal molecule (c-di-GMP), resulting in inhibition on biofilm formation. CONCLUSION: Co-culture of L. sake, L. rhamnosus, and B. subtilis at a ratio of 5:5:1 could exert an antagonistic effect on the colonization of pathogenic K. pneumoniae by down-regulating the expression of biofilm-related genes. At the same time, the co-cultured probiotics could effectively inhibit the adhesion of K. pneumoniae to Caco-2 cells and block the expression of proinflammatory cytokines induced by K. pneumoniae.


Assuntos
Biofilmes , Técnicas de Cocultura , Klebsiella pneumoniae , Probióticos , Biofilmes/crescimento & desenvolvimento , Klebsiella pneumoniae/fisiologia , Humanos , Probióticos/farmacologia , Células CACO-2 , Bacillus subtilis/fisiologia , Bacillus subtilis/genética , Lacticaseibacillus rhamnosus/fisiologia , Aderência Bacteriana , Lactobacillus/fisiologia , Citocinas/metabolismo
4.
Sci Rep ; 14(1): 9365, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654026

RESUMO

Strategies against the opportunistic fungal pathogen Candida albicans based on probiotic microorganisms represent a promising alternative to traditional antifungals. Here, we investigated the effects of Lactobacillaceae isolates from fermented foods or the human vagina, alone or in combination with the probiotic yeast Saccharomyces cerevisiae CNCM I-3856, against C. albicans in vitro. Nine out of nineteen tested strains of Lactobacillaceae inhibited growth of C. albicans with inhibition zones of 1-3 mm in spot assays. Five out of nineteen lactobacilli tested as such or in combination with S. cerevisiae CNCM I-3856 also significantly inhibited C. albicans hyphae formation, including Limosilactobacillus fermentum LS4 and L. fermentum LS5 resulting in respectively 62% and 78% hyphae inhibition compared to the control. Thirteen of the tested nineteen lactobacilli aggregated with the yeast form of C. albicans, with Lactiplantibacillus carotarum AMBF275 showing the strongest aggregation. The aggregation was enhanced when lactobacilli were combined with S. cerevisiae CNCM I-3856. No significant antagonistic effects were observed between the tested lactobacilli and S. cerevisiae CNCM I-3856. The multifactorial activity of Lactobacillaceae strains alone or combined with the probiotic S. cerevisiae CNCM I-3856 against C. albicans without antagonistic effects between the beneficial strains, paves the way for developing consortium probiotics for in vivo applications.


Assuntos
Candida albicans , Lactobacillus , Probióticos , Saccharomyces cerevisiae , Candida albicans/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/efeitos dos fármacos , Probióticos/farmacologia , Lactobacillus/fisiologia , Humanos , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Antibiose , Feminino , Vagina/microbiologia
5.
PLoS One ; 19(4): e0301822, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38603764

RESUMO

The human gut is a complex environment where the microbiota and its metabolites play a crucial role in the maintenance of a healthy state. The aim of the present work is the reconstruction of a new in vitro minimal human gut microbiota resembling the microbe-microbe networking comprising the principal phyla (Bacillota, Bacteroidota, Pseudomonadota, and Actinomycetota), to comprehend the intestinal ecosystem complexity. In the reductionist model, we mimicked the administration of Maitake extract as prebiotic and a probiotic formulation (three strains belonging to Lactobacillus and Bifidobacterium genera), evaluating the modulation of strain levels, the release of beneficial metabolites, and their health-promoting effects on human cell lines of the intestinal environment. The administration of Maitake and the selected probiotic strains generated a positive modulation of the in vitro bacterial community by qPCR analyses, evidencing the prominence of beneficial strains (Lactiplantibacillus plantarum and Bifidobacterium animalis subsp. lactis) after 48 hours. The bacterial community growths were associated with the production of metabolites over time through GC-MSD analyses such as lactate, butyrate, and propionate. Their effects on the host were evaluated on cell lines of the intestinal epithelium and the immune system, evidencing positive antioxidant (upregulation of SOD1 and NQO1 genes in HT-29 cell line) and anti-inflammatory effects (production of IL-10 from all the PBMCs). Therefore, the results highlighted a positive modulation induced by the synergic activities of probiotics and Maitake, inducing a tolerogenic microenvironment.


Assuntos
Bifidobacterium animalis , Microbioma Gastrointestinal , Grifola , Probióticos , Humanos , Ecossistema , Mucosa Intestinal/microbiologia , Lactobacillus/fisiologia , Probióticos/farmacologia
6.
Vet Med Sci ; 10(3): e1463, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38659354

RESUMO

BACKGROUND: The most prevalent probiotic bacterium employed in the food industry is Lactobacillus because it can produce metabolites with antibacterial capabilities and exhibits hostility towards infections and microorganisms that cause spoilage. AIM: This study set out to identify naturally occurring Lactobacillus and plantaricin (pln EF) coding genes in raw cow milk and to assess the antibacterial potency of isolated Lactobacillus isolates. METHODS: Following enrichment in De Man, Rogosa and Sharpe (MRS) broth, single colonies were isolated, and pure colonies were obtained by streaking on MRS agar. The 16S rRNA gene was amplified using polymerase chain reaction (PCR) to confirm the cultural positivity of all isolates. Additionally, the presence of plantaricin was verified by targeting the pln EF gene through PCR. OUTCOME: Out of the 166 raw milk specimens acquired from cows, 153 (91.17%; CI: 86.98-95.76) were identified as positive for Lactobacillus through both culture and biochemical screening. Subsequently, 121 (72.89%; CI: 65.46-79.49) of the isolates were affirmed to harbour Lactobacillus through PCR analysis. Within this subset, 6 isolates (4.96%; CI: 1.84-10.48) were found to possess the plnEF gene. When exposed to Lactobacillus isolates, Salmonella Typhimurium and Salmonella enterica displayed an average maximum zone of inhibition with a diameter measuring 24 mm. In contrast, Escherichia coli exhibited an average minimum zone of inhibition, featuring a diameter of 11 mm. Additionally, the Lactobacillus isolates demonstrated inhibitory zones against Staphylococcus aureus, Klebsiella pneumoniae and Klebsiella oxytoca, measuring 14, 22 and 19 mm, respectively. CLINICAL SIGNIFICANCE: Lactic acid bacteria, particularly Lactobacilli, are plentiful in cow milk and possess broad-spectrum antibacterial properties.


Assuntos
Lactobacillus , Leite , Leite/microbiologia , Animais , Bovinos , Lactobacillus/genética , Lactobacillus/fisiologia , Lactobacillus/isolamento & purificação , Bangladesh/epidemiologia , Antibacterianos/farmacologia , Feminino , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética
7.
Benef Microbes ; 15(3): 293-310, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38677716

RESUMO

Oral administration of probiotics has been proposed as a promising biotherapy to prevent and treat different diseases related to gastrointestinal disorders, such as irritable bowel syndrome (IBS). Due to the increasing research area on the characterisation of new probiotic bacterial strains, it is necessary to perform suitable in vitro experiments, using pertinent cellular models, in order to establish appropriate readout profiles based on IBS symptoms and subtypes. In this work, a collection of 30 candidate strains, belonging mainly to the Lactobacillus and Bifidobacterium genera, were screened using three different sets of in vitro experiments with different readouts to identify promising probiotic strains with: (1) the ability to inhibit the synthesis of IL-8 production by TNF-α stimulated HT-29 cells, (2) immunomodulatory properties quantified as increased IL-10 levels in peripheral blood mononuclear cell (PBMCs), and (3) the ability to maintain epithelial barrier integrity by increasing the trans-epithelial/endothelial electrical resistance (TEER) values in Caco-2 cells. Based on these criteria, three strains were selected: Lactobacillus gasseri PI41, Lacticaseibacillus rhamnosus PI48 and Bifidobacterium animalis subsp. lactis PI50, and tested in a murine model of low-grade inflammation induced by dinitrobenzene sulfonic acid (DNBS), which mimics some of the symptoms of IBS. Among the three strains, L. gasseri PI41 improved overall host well-being by preventing body weight loss in DNBS-treated mice and restored gut homeostasis by normalising the intestinal permeability and reducing pro-inflammatory markers. Therefore, the potential of this strain was confirmed in a second murine model known to reproduce IBS symptoms: the neonatal maternal separation (NMS) model. The PI41 strain was effective in preventing intestinal permeability and reducing colonic hypersensitivity. In conclusion, the set of in vitro experiments combined with in vivo assessments allowed us to identify a promising probiotic candidate strain, L. gasseri PI41, in the context of IBS.


Assuntos
Síndrome do Intestino Irritável , Probióticos , Probióticos/administração & dosagem , Probióticos/farmacologia , Síndrome do Intestino Irritável/terapia , Síndrome do Intestino Irritável/microbiologia , Humanos , Animais , Camundongos , Células CACO-2 , Células HT29 , Modelos Animais de Doenças , Leucócitos Mononucleares/imunologia , Lactobacillus/fisiologia , Interleucina-8/metabolismo , Bifidobacterium/fisiologia , Interleucina-10 , Lactobacillus gasseri , Lacticaseibacillus rhamnosus/fisiologia , Masculino , Bifidobacterium animalis/fisiologia
8.
Poult Sci ; 103(6): 103650, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38555756

RESUMO

Dietary ingredient and nutrient composition may affect the efficacy of additives in broilers. Specific feed ingredients can represent dietary challenging conditions for broilers, resulting in impaired performances and health, which might be alleviated by dietary probiotics and postbiotics. We assessed the effects of a Lactobacilli probiotic (Pro) and postbiotic (Post) when added to a standard (SD) and challenge (CD) diet. A completely randomized block study with 2 diets (SD, CD) and 3 additive conditions (Control, Pro and Post) involving 1,368 one-day-old Ross male broilers, equally distributed among 36 pens, from d1 to d42 was conducted. Both diets were formulated to contain identical levels of nutrients, with CD formulated to be richer than SD in nonstarch polysaccharides using rye and barley as ingredients. Readout parameters included growth performance parameters, footpad lesions score, blood minerals and biochemical parameters, and tibia health, strength, and composition. Compared to SD, CD decreased BW (1,936 vs. 2,033 g; p = 0.001), increased FCR (p < 0.01) and impaired tibia health and strength (p < 0.05) at d35, thereby confirming the challenging effect of CD. Pro and Post increased BW in CD (+4.7 and +3.2%, respectively, at d35; P < 0.05) but not in the SD group, without affecting FCR. Independently of the diet, Pro increased plasma calcium, phosphorus and uric acid at d21 (+6.2, +7.4, and +15.5%, respectively) and d35 (+6.6, +6.2 and +21.0%, respectively) (P < 0.05) while Post increased plasma magnesium only at d21 (+11.3%; P = 0.037). Blood bile acids were affected by additives in an age- and diet-dependent manner, with some opposite effects between dietary conditions. Diet composition modulated Pro and Post effects on broiler growth performance. Additionally, Pro and Post affected animal metabolism and leg health diet-dependently for some but not all investigated parameters. Our findings show that the effects of pro- and postbiotics on the growth performance and physiology of broilers can be dependent on diet composition and thus possibly other factors affecting diet characteristics.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Galinhas , Dieta , Probióticos , Distribuição Aleatória , Animais , Galinhas/crescimento & desenvolvimento , Galinhas/fisiologia , Probióticos/administração & dosagem , Probióticos/farmacologia , Masculino , Dieta/veterinária , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Suplementos Nutricionais/análise , Lactobacillus/fisiologia
9.
J Microbiol Biotechnol ; 34(4): 854-862, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38326923

RESUMO

Lactobacillus is a commonly used probiotic, and many researchers have focused on its stress response to improve its functionality and survival. However, studies on persister cells, dormant cells that aid bacteria in surviving general stress, have focused on pathogenic bacteria that cause infection, not Lactobacillus. Thus, understanding Lactobacillus persister cells will provide essential clues for understanding how Lactobacillus survives and maintains its function under various environmental conditions. We treated Lactobacillus strains with various antibiotics to determine the conditions required for persister formation using kill curves and transmission electron microscopy. In addition, we observed the resuscitation patterns of persister cells using single-cell analysis. Our results show that Lactobacillus creates a small population of persister cells (0.0001-1% of the bacterial population) in response to beta-lactam antibiotics such as ampicillin and amoxicillin. Moreover, only around 0.5-1% of persister cells are heterogeneously resuscitated by adding fresh media; the characteristics are typical of persister cells. This study provides a method for forming and verifying the persistence of Lactobacillus and demonstrates that antibiotic-induced Lactobacillus persister cells show characteristics of dormancy, sensitivity of antibiotics, same as exponential cells, multi-drug tolerance, and resuscitation, which are characteristics of general persister cells. This study suggests that the mechanisms of formation and resuscitation may vary depending on the characteristics, such as the membrane structure of the bacterial species.


Assuntos
Ampicilina , Antibacterianos , Lactobacillus , Testes de Sensibilidade Microbiana , Viabilidade Microbiana , Antibacterianos/farmacologia , Lactobacillus/fisiologia , Ampicilina/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Probióticos , Amoxicilina/farmacologia
10.
Nutrients ; 16(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38398870

RESUMO

Several billion microorganisms reside in the gastrointestinal lumen, including viruses, bacteria, fungi, and yeast. Among them, probiotics were primarily used to cure digestive disorders such as intestinal infections and diarrhea; however, with a paradigm shift towards alleviating health through food, their importance is large. Moreover, recent studies have changed the perspective that probiotics prevent numerous ailments in the major organs. Probiotics primarily produce biologically active compounds targeting discommodious pathogens. This review demonstrates the implications of using probiotics from different genres to prevent and alleviate ailments in the primary human organs. The findings reveal that probiotics immediately activate anti-inflammatory mechanisms by producing anti-inflammatory cytokines such as interleukin (IL)-4, IL-10, IL-11, and IL-13, and hindering pro-inflammatory cytokines such as IL-1, IL-6, and TNF-α by involving regulatory T cells (Tregs) and T helper cells (Th cells). Several strains of Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus reuteri, Bifidobacterium longum, and Bifidobacterium breve have been listed among the probiotics that are excellent in alleviating various simple to complex ailments. Therefore, the importance of probiotics necessitates robust research to unveil the implications of probiotics, including the potency of strains, the optimal dosages, the combination of probiotics, their habitat in the host, the host response, and other pertinent factors.


Assuntos
Lacticaseibacillus casei , Probióticos , Humanos , Lactobacillus/fisiologia , Citocinas , Probióticos/uso terapêutico , Anti-Inflamatórios/farmacologia
11.
Methods Mol Biol ; 2763: 353-358, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347425

RESUMO

The ability of Lactobacillus to adhere to mucin is a parameter for evaluating the effectiveness of probiotics. In particular, a competitive inhibition assay of pathogenic bacteria using mucin-adherent lactobacilli is useful for identifying Lactobacillus strains capable of preventing mucus from being colonized by pathogens. Here, we describe an adhesion inhibition assay method for Helicobacter pylori to porcine gastric mucin by Limosilactobacillus reuteri.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Probióticos , Animais , Suínos , Lactobacillus/fisiologia , Mucinas , Aderência Bacteriana/fisiologia
12.
Br J Pharmacol ; 181(1): 162-179, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37594378

RESUMO

BACKGROUND AND PURPOSE: Membranous nephropathy (MN) is an immune-mediated glomerular disease in adults. Antibody- and antigen-bonding mechanisms have been largely clarified, but the subepithelium immune complex deposition-mediated downstream molecular mechanisms are currently unresolved. Increasing evidence has suggested that gut microbiota contribute to MN pathogenesis. EXPERIMENTAL APPROACH: In this study, we identified alterations in faecal gut microbiota and serum metabolites that mediate an aryl hydrocarbon receptor (AhR) mechanism in cationic bovine serum albumin (CBSA)-induced MN rats and in patients with idiopathic MN (IMN). KEY RESULTS: Impaired renal function correlated with the relative abundance of reduced faecal probiotics, Lactobacillus and Bifidobacterium, and altered serum levels of tryptophan-produced indole derivatives (TPIDs) in MN rats. Further results showed that reduced relative abundance of five probiotics, namely Lactobacillus johnsonii, Lactobacillus murinus, Lactobacillus vaginalis, Lactobacillus reuteri and Bifidobacterium animalis, positively correlated with decreased levels of indole-3-pyruvic acid, indole-3-aldehyde and tryptamine and negatively correlated with increased levels of indole-3-lactic acid and indole-3-acetic acid in serum of MN rats. Altered five probiotics and five TPIDs also were observed in patients with IMN. Further studies showed that MN rats exhibited a significant increase in intrarenal mRNA expression of AhR and its target genes CYP1A1, CYP1A2 and CYP1B1, which were accompanied by protein expression of down-regulated cytoplasmic AhR, but up-regulated nuclear AhR, in MN rats and IMN patients. CONCLUSION AND IMPLICATIONS: Activation of the intrarenal AhR signalling pathway may involve five TPIDs. These data suggest that gut microbiota could influence MN through TPIDs that engage host receptors.


Assuntos
Microbioma Gastrointestinal , Glomerulonefrite Membranosa , Indóis , Lactobacillus , Receptores de Hidrocarboneto Arílico , Lactobacillus/fisiologia , Glomerulonefrite Membranosa/microbiologia , Triptofano/farmacologia , Indóis/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Humanos , Animais , Ratos , Masculino , Ratos Sprague-Dawley , Transdução de Sinais
13.
Cells ; 12(21)2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37947616

RESUMO

Probiotic bacteria belonging to Lactobacillus spp. are important producers of bioactive molecules, known as postbiotics, that play essential roles in the immunological support of the intestinal mucosa. In this study, the system of co-culture of intestinal epithelial cells with macrophage cells in vitro was used to study the potential effect of postbiotic fractions of L. rhamonosus and L. plantarum on the modulation of the immune response induced by pro-inflammatory stimuli. This study's results revealed that the presence of probiotic bacterial components on the mucosal surface in the early and late stage of inflammatory conditions is based on cellular interactions that control inflammation and consequent damage to the intestinal epithelium. In our studies, heat killed fractions of probiotic bacteria and their extracted proteins showed a beneficial effect on controlling inflammation, regardless of the strain tested, consequently protecting intestinal barrier damage. In conclusion, the presented results emphasize that the fractions of probiotic bacteria of L. plantarum and L. rhamnosus may play a significant role in the regulation of LPS-mediated cytotoxic activity in intestinal epithelial cells. The fractions of probiotic strains of L. rhamnosus and L. plantarum showed the potential to suppress inflammation, effectively activating the anti-inflammatory cytokine IL-10 and modulating the IL-18-related response.


Assuntos
Lacticaseibacillus rhamnosus , Lactobacillus plantarum , Probióticos , Humanos , Lactobacillus plantarum/fisiologia , Lactobacillus/fisiologia , Probióticos/farmacologia , Inflamação
14.
Am J Reprod Immunol ; 90(6): e13797, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38009054

RESUMO

The vaginal microbiome includes diverse microbiota dominated by Lactobacillus [L.] spp. that protect against infections, modulate inflammation, and regulate vaginal homeostasis. Because it is challenging to incorporate vaginal microbiota into in vitro models, including organ-on-a-chip systems, we assessed microbial metabolites as reliable proxies in addition to traditional vaginal epithelial cultures (VECs). Human immortalized VECs cultured on transwells with an air-liquid interface generated stratified cell layers colonized by transplanted healthy microbiomes (L. jensenii- or L. crispatus-dominant) or a community representing bacterial vaginosis (BV). After 48-h, a qPCR array confirmed the expected donor community profiles. Pooled apical and basal supernatants were subjected to metabolomic analysis (untargeted mass spectrometry) followed by ingenuity pathways analysis (IPA). To determine the bacterial metabolites' ability to recreate the vaginal microenvironment in vitro, pooled bacteria-free metabolites were added to traditional VEC cultures. Cell morphology, viability, and cytokine production were assessed. IPA analysis of metabolites from colonized samples contained fatty acids, nucleic acids, and sugar acids that were associated with signaling networks that contribute to secondary metabolism, anti-fungal, and anti-inflammatory functions indicative of a healthy vaginal microbiome compared to sterile VEC transwell metabolites. Pooled metabolites did not affect cell morphology or induce cell death (∼5.5%) of VEC cultures (n = 3) after 72-h. However, metabolites created an anti-inflammatory milieu by increasing IL-10 production (p = .06, T-test) and significantly suppressing pro-inflammatory IL-6 (p = .0001), IL-8 (p = .009), and TNFα (p = .0007) compared to naïve VEC cultures. BV VEC conditioned-medium did not affect cell morphology nor viability; however, it induced a pro-inflammatory environment by elevating levels of IL-6 (p = .023), IL-8 (p = .031), and TNFα (p = .021) when compared to L.-dominate microbiome-conditioned medium. VEC transwells provide a suitable ex vivo system to support the production of bacterial metabolites consistent with the vaginal milieu allowing subsequent in vitro studies with enhanced accuracy and utility.


Assuntos
Microbiota , Vaginose Bacteriana , Feminino , Humanos , Lactobacillus/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Vagina/microbiologia , Vaginose Bacteriana/microbiologia , Bactérias , Anti-Inflamatórios
15.
Arch Razi Inst ; 78(3): 1115-1130, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-38028837

RESUMO

Typhoid fever is one of the most commonly disseminated diseases and is considered to be linked to poor sanitation. It is responsible for 2-5% of all deaths, and its causative agent is Salmonella typhi. The current study aimed to investigate the antibacterial activity of prebiotics (inulin and starch) and probiotics against multidrug resistance of S. typhi bacterial isolates. Determination of the inhibitory effect of probiotics and prebiotics against S. typhi isolates was performed by agar well diffusion method and minimal inhibitory concentration. Body samples of all eligible patients were collected and cultured. Finally, 50 (25%) out of the total cultured samples were S. Typhi bacteria isolated from different samples. The bacteria were mainly found in blood, followed by stool and fluid (74%, 24%, and 2%, respectively). On differential medium, xylose lysine deoxycholate agar, the colonies appear red with black centers, while on MacConkey agar, the colonies appear smooth, pale, transparent, colorless, and raised. Regarding the inhibition zone values of bacteriocins of Lactobacillus from Yogurt against S. typhi in plate, significant differences were identified between the ones with and without prebiotic addition. Accordingly, the value of the inhibition zone for those without prebiotic addition (13.18±7.403) was significantly lower than that of cutoff values of 20 with a significant difference of -6.820 (t= -6.514, df 49, P=0.000). Moreover, the inhibition effect of prebiotics (inulin and starch) against S. typhi at 37 °C for 24 h in part dish glucose as control, only the mean of inulin was found to be significantly lower than that of the cutoff value of 18 with the mean difference of -3.900 (t=-4.115, df 49, P=0.000). Other prebiotics of glucose and starch in 24 h showed negative inhibition. Probiotics are live microorganisms that have beneficial host effects by enhancing microbial balance in the intestine, whereas prebiotics are indigestible food components having beneficial effects by enhancing the activity and growth of one or more colonic bacteria. Lactobacillus filtrates had considerable effects against the test S. typhi isolates.


Assuntos
Probióticos , Febre Tifoide , Humanos , Prebióticos , Febre Tifoide/prevenção & controle , Inulina , Ágar , Probióticos/farmacologia , Lactobacillus/fisiologia , Glucose
16.
Arch Razi Inst ; 78(3): 831-841, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-38028859

RESUMO

Probiotics have been used for over a century to prevent and treat diseases. They can reduce the effects of gastroenteritis and are now used to treat acute diarrhea. This study aimed to evaluate the co-aggregative effects of probiotics bacteria against diarrheal causative bacteria. For this purpose, 11 isolates of probiotic bacteria were used in the current study, including three Lactobacillus plantarum, one Lactobacillus gasseri, two Lactobacillus fermentum, three Lactobacillus acidophilus, and two Lactococcus garvieae isolates. All isolates were tested for antibiotic susceptibility, autoaggregation ability, adhesion ability, antibacterial activity, acid tolerance, and bile salts tolerance. The results showed that most of them had the ability to autoaggregate after 4 h, with the highest percentage of 57.14% for L. fermentum. For the antibiotic susceptibility test, all the isolates showed resistance against trimethoprim/sulfamethoxazole, except one isolate. Moreover, all the isolates, except one, were susceptible to both vancomycin and tetracycline. All tested isolates had adhesion ability with different survival rates, which reached 34.57% for L. plantarum in acidic conditions. Besides, the highest survival rate was 85.17%, which belonged to L. garvieae, for bile salt tolerance. Probiotic isolates had an antibacterial effect against diarrhea-causative bacteria with an inhibition diameter of 17-49 mm for different Lactobacillus spp. and Lactococcus spp. isolates. Furthermore, the co-aggregation ability of probiotic isolates against diarrhea-causative bacteria was studied, and results showed that probiotic isolates had a co-aggregative effect against diarrhea-causative bacteria, Escherichia coli, Shigella sonnei, and Providencia alcalifaciens, after 24 h of incubation. The highest co-aggregative effect of probiotics isolates belonged to L. fermentum and L. acidophilus against P. alcalifaciens with a co-aggregation percentage of 100%, while the lowest co-aggregation rate was 14.29% against E. coli. The findings revealed the probiotic properties and co-aggregative effects of probiotic bacteria against diarrhea-causative bacteria.


Assuntos
Escherichia coli , Probióticos , Animais , Lactobacillus/fisiologia , Antibacterianos/farmacologia , Ácidos e Sais Biliares/farmacologia , Diarreia , Probióticos/farmacologia
17.
Poult Sci ; 102(12): 103102, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37783191

RESUMO

Hydrogen sulfide (H2S) is one of the most irritant gases present in rearing stalls that suppress broilers' healthy growth, which is seriously required an effective alleviation method. In this study, Lactobacillus was supplemented to investigate the alleviative effects on broilers reared under consecutive H2S exposure. A total of 180 healthy 1-day-old male AA broilers with similar body weight (40.8 ± 1.0 g) were randomly allotted into the control treatment (CON), the hydrogen sulfide treatment (H2S), and the Lactobacillus supplement under H2S exposure treatment (LAC) for a 42-d-long feeding process. Growth and carcass performances, immunity-related parameters, intestinal development and cecal microbial communities, and blood metabolites were measured. Results showed that Lactobacillus supplement significantly increased the body weight gain (BWG) while reduced the mortality rate, abdominal fat and bursa of fabricius weight during the whole rearing time compared with H2S treatment (P < 0.05). Serum LPS, IL-1ß, IL-2, and IL-6 contents were observed significantly increased after H2S treatment while remarkably decreased after Lactobacillus supplementation(P < 0.05). Intestinal morphology results showed a significant higher in the development of ileum villus height (P < 0.05). Cecal microbiota results showed the bacterial composition was significantly altered after Lactobacillus supplement (P < 0.05). Specifically, Lactobacillus supplement significantly decreased the relative abundance of Faecalibacterium, while significantly proliferated the relative abundance of Lactobacillus, Bifidobacterium, Clostridium, and Campylobacter (P<0.05). Metabolic results indicated that Lactobacillus supplement may alleviate the harmful effects caused by H2S through regulating the pyrimidine metabolism, starch and sucrose metabolism, fructose and mannose degradation, and beta-alanine metabolism. In summary, Lactobacillus supplement effectively increased BWG and decreased mortality rate of broilers under H2S exposure by enhancing the body's immune capacity, proliferating beneficial microbes (e.g., Lactobacillus and Bifidobacterium), and regulating the physiological pyrimidine metabolism, starch and sucrose metabolism, and beta-alanine metabolism.


Assuntos
Dieta , Sulfeto de Hidrogênio , Masculino , Animais , Dieta/veterinária , Sulfeto de Hidrogênio/metabolismo , Galinhas/fisiologia , Lactobacillus/fisiologia , Suplementos Nutricionais , Amido/metabolismo , beta-Alanina/metabolismo , Peso Corporal , Pirimidinas , Sacarose , Ração Animal/análise
18.
PLoS One ; 18(10): e0292585, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37824485

RESUMO

Lactobacilli and Acetobacter sp. are commercially important bacteria that often form communities in natural fermentations, including food preparations, spoilage, and in the digestive tract of the fruit fly Drosophila melanogaster. Communities of these bacteria are widespread and prolific, despite numerous strain-specific auxotrophies, suggesting they have evolved nutrient interdependencies that regulate their growth. The use of a chemically-defined medium (CDM) supporting the growth of both groups of bacteria would facilitate the identification of the molecular mechanisms for the metabolic interactions between them. While numerous CDMs have been developed that support specific strains of lactobacilli or Acetobacter, there has not been a medium formulated to support both genera. We developed such a medium, based on a previous CDM designed for growth of lactobacilli, by modifying the nutrient abundances to improve growth yield. We further simplified the medium by substituting casamino acids in place of individual amino acids and the standard Wolfe's vitamins and mineral stocks in place of individual vitamins and minerals, resulting in a reduction from 40 to 8 stock solutions. These stock solutions can be used to prepare several CDM formulations that support robust growth of numerous lactobacilli and Acetobacters. Here, we provide the composition and several examples of its use, which is important for tractability in dissecting the genetic and metabolic basis of natural bacterial species interactions.


Assuntos
Acetobacter , Animais , Acetobacter/genética , Lactobacillus/fisiologia , Drosophila melanogaster , Bactérias , Vitaminas/metabolismo
19.
Nutrients ; 15(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37892533

RESUMO

This study investigated whether Lactobacillus paragasseri SBT2055 (LG2055) activates plasmacytoid dendritic cells (pDCs) and suppresses common cold symptoms in healthy adults. Cell-based experiments showed that a LG2055 treatment upregulated CD86 and HLA-DR expression in pDCs, indicating that LG2055 activates pDCs in vitro. In a subsequent randomized, double-blind, placebo-controlled, parallel-group comparative trial, 200 participants were randomly divided into two groups and consumed three capsules with or without LG2055 once daily for 12 weeks. The primary outcome was the score on a daily physical health questionnaire survey of common cold symptoms. Three participants discontinued the trial and six participants were excluded from the analysis, thus 191 participants (95 in the LG2055 group and 96 in the placebo group) were analyzed. The LG2055 group showed a significantly higher ratio of "without symptoms" responses for runny nose, plugged nose, sneezing, sore throat, hoarseness, and chill than the placebo group. Furthermore, a stratified analysis revealed that LG2055 intake enhanced CD86 and HLA-DR expression in the pDCs of the participants with low secretion rates of salivary secretory immunoglobulin A. These data suggest that LG2055 suppresses the subjective symptoms of the common cold by activating pDCs and improving the host's immune system in healthy adults, especially in immune-weakened individuals (UMIN000049183).


Assuntos
Resfriado Comum , Humanos , Adulto , Lactobacillus/fisiologia , Método Duplo-Cego , Células Dendríticas , Antígenos HLA-DR
20.
Front Immunol ; 14: 1125239, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575226

RESUMO

Bacterial vaginosis (BV) is a common infection of the lower genital tract with a vaginal microbiome dysbiosis caused by decreasing of lactobacilli. Previous studies suggested that supplementation with live Lactobacillus may benefit the recovery of BV, however, the outcomes vary in people from different regions. Herein, we aim to evaluate the effectiveness of oral Chinese-origin Lactobacillus with adjuvant metronidazole (MET) on treating Chinese BV patients. In total, 67 Chinese women with BV were enrolled in this parallel controlled trial and randomly assigned to two study groups: a control group treated with MET vaginal suppositories for 7 days and a probiotic group treated with oral Lactobacillus gasseri TM13 and Lactobacillus crispatus LG55 as an adjuvant to MET for 30 days. By comparing the participants with Nugent Scores ≥ 7 and < 7 on days 14, 30, and 90, we found that oral administration of probiotics did not improve BV cure rates (72.73% and 84.00% at day 14, 57.14% and 60.00% at day 30, 32.14% and 48.39% at day 90 for probiotic and control group respectively). However, the probiotics were effective in restoring vaginal health after cure by showing higher proportion of participants with Nugent Scores < 4 in the probiotic group compared to the control group (87.50% and 71.43% on day 14, 93.75% and 88.89% on day 30, and 77.78% and 66.67% on day 90). The relative abundance of the probiotic strains was significantly increased in the intestinal microbiome of the probiotic group compared to the control group at day 14, but no significance was detected after 30 and 90 days. Also, the probiotics were not detected in vaginal microbiome, suggesting that L. gasseri TM13 and L. crispatus LG55 mainly acted through the intestine. A higher abundance of Prevotella timonensis at baseline was significantly associated with long-term cure failure of BV and greatly contributed to the enrichment of the lipid IVA synthesis pathway, which could aggravate inflammation response. To sum up, L. gasseri TM13 and L. crispatus LG55 can restore the vaginal health of patients recovering from BV, and individualized intervention mode should be developed to restore the vaginal health of patients recovering from BV. Clinical trial registration: https://classic.clinicaltrials.gov/ct2/show/, identifier NCT04771728.


Assuntos
Lactobacillus crispatus , Lactobacillus gasseri , Vaginose Bacteriana , Feminino , Humanos , Adjuvantes Imunológicos/uso terapêutico , Adjuvantes Farmacêuticos , Lactobacillus/fisiologia , Metronidazol/uso terapêutico , Resultado do Tratamento , Vagina/microbiologia , Vaginose Bacteriana/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...