Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 22(10): 1765-1768, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33523590

RESUMO

The use of nicotinamide cytosine dinucleotide (NCD), a biocompatible nicotinamide adenosine dinucleotide (NAD) analogue, is of great scientific and biotechnological interest. Several redox enzymes have been devised to favor NCD, and have been successfully applied in creating NCD-dependent redox systems. However, molecular interactions between cofactor and protein have still to be disclosed in order to guide further engineering efforts. Here we report the structural analysis of an NCD-favoring malic enzyme (ME) variant derived from Escherichia coli. The X-ray crystal structure data revealed that the residues located at position 346 and 401 in ME acted as the "gatekeepers" of the adenine moiety binding cavity. When Arg346 was substituted with either acidic or aromatic residues, the corresponding mutants showed substantially reduced NCD preference. Inspired by these observations, we generated Lactobacillus helveticus derived d-lactate dehydrogenase variants at Ile177, the counterpart to Arg346 in ME, and found a similar trend in terms of cofactor preference changes. As many NAD-dependent oxidoreductases share key structural features, our results provide guidance for protein engineering to obtain more NCD-favoring variants.


Assuntos
Proteínas de Bactérias/metabolismo , Malato Desidrogenase/metabolismo , NAD/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli/enzimologia , L-Lactato Desidrogenase/química , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Lactobacillus helveticus/enzimologia , Malato Desidrogenase/química , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , NAD/metabolismo , Oxirredução
2.
Food Microbiol ; 94: 103651, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33279076

RESUMO

Lactobacillus (L.) helveticus is widely used in food industry due to its high proteolytic activity. However, such activity varies greatly between isolates, and the determining factors regulating the strength of proteolytic activity in L. helveticus are unclear. This study sequenced the genomes of 60 fermented food-originated L. helveticus and systemically examined the proteolytic activity-determining factors. Our analyses found that the strength of proteolytic activity in L. helveticus was independent of the isolation source, geographic location, phylogenetic closeness between isolates, and distribution of cell envelope proteinases (CEPs). Genome-wide association study (GWAS) identified two genes, the acetate kinase (ackA) and a hypothetical protein, and 15 single nucleotide polymorphisms (SNPs) that were associated with the strength of the proteolytic activity. Further investigating the functions of these gene components revealed that ackA and two cysteine peptidases coding genes (pepC and srtA) rather than the highly heterogeneous and intraspecific CEPs were linked to the level of proteolytic activity. Moreover, the sequence type (ST) defined by SNP analysis revealed a total of ten STs, and significantly weaker proteolytic activity was observed among isolates of ST2. This study provides practical information for future selection of L. helveticus of strong proteolytic activity.


Assuntos
Acetato Quinase/metabolismo , Proteínas de Bactérias/metabolismo , Laticínios/microbiologia , Grão Comestível/microbiologia , Alimentos Fermentados/microbiologia , Lactobacillus helveticus/enzimologia , Peptídeo Hidrolases/metabolismo , Acetato Quinase/química , Acetato Quinase/genética , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bovinos , Genoma Bacteriano , Estudo de Associação Genômica Ampla , Lactobacillus helveticus/genética , Lactobacillus helveticus/isolamento & purificação , Lactobacillus helveticus/metabolismo , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Filogenia , Proteólise
3.
FEMS Microbiol Lett ; 367(8)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32267927

RESUMO

For the present study, we collected 22 Lactobacillus helveticus strains from different dairy (n = 10) and cereal (n  = 12) fermentations to investigate their biodiversity and to uncover habitat-specific traits. Biodiversity was assessed by comparison of genetic fingerprints, low-molecular-weight subproteomes, metabolic and enzymatic activities, growth characteristics and acidification kinetics in food matrices. A clear distinction between the dairy and cereal strains was observed in almost all examined features suggesting that the different habitats are domiciled by different L. helveticus biotypes that are adapted to the specific environmental conditions. Analysis of the low-molecular-weight subproteome divided the cereal isolates into two clusters, while the dairy isolates formed a separate homogeneous cluster. Differences regarding carbohydrate utilization were observed for lactose, galactose, sucrose and cellobiose as well as for plant-derived glucosides. Enzymatic differences were observed mainly for ß-galactosidase and ß-glucosidase activities. Further, growth temperature was optimal in the range from 33 to 37°C for the cereal strains, whereas the dairy strains showed optimal growth at 40°C. Taken together, adaptation of the various biotypes results in a growth benefit in the particular environment. Acidification and growth tests using either sterile skim milk or a wheat flour extract confirmed these results. Differentiation of these biotypes and their physiological characteristics enables knowledge-based starter culture development for cereal versus dairy products within one species.


Assuntos
Biodiversidade , Produtos Fermentados do Leite/microbiologia , Ecossistema , Grão Comestível/metabolismo , Grão Comestível/microbiologia , Microbiologia de Alimentos , Lactobacillus helveticus/fisiologia , Fermentação , Alimentos Fermentados/microbiologia , Lactobacillus helveticus/classificação , Lactobacillus helveticus/enzimologia , Lactobacillus helveticus/genética
4.
J Agric Food Chem ; 68(15): 4437-4446, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32196339

RESUMO

The LacLM-type ß-galactosidase from Lactobacillus helveticus DSM 20075 expressed in both Escherichia coli (EcoliBL21Lhß-gal) and Lactobacillus plantarum (Lp609Lhß-gal) was tested for their potential to form galacto-oligosaccharides (GOS) from lactose. The Lh-GOS mixture formed by ß-galactosidase from L. helveticus, together with three GOS mixtures produced using ß-galactosidases of both the LacLM and the LacZ type from other lactic acid bacteria, namely, L. reuteri (Lr-GOS), L. bulgaricus (Lb-GOS), and Streptococcus thermophilus (St-GOS), as well as two GOS mixtures (Br-GOS1 and Br-GOS2) produced using ß-galactosidases (ß-gal I and ß-gal II) from Bifidobacterium breve, was analyzed and structurally compared with commercial GOS mixtures analyzed in previous work (Vivinal GOS, GOS I, GOS III, and GOS V) using high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD), high-performance size-exclusion chromatography with a refractive index (RI) detector (HPSEC-RI), and one-dimensional 1H NMR spectroscopy. ß-Galactosidases from lactic acid bacteria and B. breve displayed a preference to form ß-(1→6)- and ß-(1→3)-linked GOS. The GOS mixtures produced by these enzymes consisted of mainly DP2 and DP3 oligosaccharides, accounting for ∼90% of all GOS components. GOS mixtures obtained with ß-galactosidases from lactic acid bacteria and B. breve were quite similar to the commercial GOS III mixture in terms of product spectrum and showed a broader product spectrum than the commercial GOS V mixture. These GOS mixtures also contained a number of GOS components that were absent in the commercial Vivinal GOS (V-GOS).


Assuntos
Proteínas de Bactérias/metabolismo , Bifidobacterium/metabolismo , Lactobacillales/metabolismo , Lactobacillus helveticus/enzimologia , Oligossacarídeos/química , beta-Galactosidase/metabolismo , Proteínas de Bactérias/genética , Bifidobacterium/química , Bifidobacterium/genética , Configuração de Carboidratos , Lactobacillales/química , Lactobacillales/genética , Lactobacillus helveticus/química , Lactobacillus helveticus/genética , Lactose/metabolismo , Oligossacarídeos/metabolismo , beta-Galactosidase/genética
5.
Chembiochem ; 21(14): 1972-1975, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32175634

RESUMO

Synthetic nicotinamide adenine dinucleotide (NAD) analogues are of great scientific and biotechnological interest. One such analogue, nicotinamide cytosine dinucleotide (NCD), has been successfully applied to creating bioorthogonal redox systems. Yet, only a few redox enzymes have been devised to favor NCD. We have engineered Lactobacillus helveticus-derived NAD-dependent d-lactate dehydrogenase (LhDLDH) to favor NCD by semirational design. Sequence alignment and structural analysis revealed that amino acid residues I177 and N213 form a "gate" guarding the NAD adenine moiety binding cavity. Saturated mutagenesis libraries were constructed by using the mutant LhDLDH-V152R as the parental sequence. Mutants were obtained with good catalytic efficiency, and NCD preference increased by up to 940-fold. Experiments showed that Escherichia coli cells expressing mutants with higher NCD preference afforded much less d-lactate, thus suggesting the potential to construct NCD-mediated orthogonal metabolism.


Assuntos
Lactato Desidrogenases/metabolismo , NAD/biossíntese , Engenharia de Proteínas , Sequência de Aminoácidos , Lactato Desidrogenases/química , Lactato Desidrogenases/genética , Lactobacillus helveticus/enzimologia , Modelos Moleculares , Conformação Molecular , Mutação , NAD/química , Alinhamento de Sequência
6.
Food Chem ; 304: 125415, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31479995

RESUMO

The aim of our study was to characterize the proteolytic activity of 170 Lactobacillus strains isolated from traditional Mongolian dairy products (yogurt and fermented milk), and to investigate their capacity to generate bioactive peptides during milk fermentation. All isolates were screened for proteolytic activity using skim milk agar-well diffusion test. Fifteen strains (9 Lactobacillus helveticus and 6 Lactobacillus delbrueckii subsp. bulgaricus) were then selected and further evaluated using an original strategy based on multiparametric analysis, taking into account growth rate, acidification capacity, proteolytic activity, cell envelope associated peptidase (CEP) profile and LC-MS/MS analysis of peptides. All parameters were analyzed using principal component analysis (PCA). Results showed that strain growth and acidification correlate with peptide production and that Mongolian L. helveticus strains differ from Western strains in terms of CEP distribution. The PCA revealed that CEP profiles are major determinants of ß-casein hydrolysis patterns. Strains with distinctive proteolytic activities were identified.


Assuntos
Caseínas/metabolismo , Produtos Fermentados do Leite/análise , Lactobacillus delbrueckii/metabolismo , Lactobacillus helveticus/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeos/análise , Animais , Cromatografia Líquida , Fermentação , Lactobacillus delbrueckii/enzimologia , Lactobacillus helveticus/enzimologia , Peptídeos/metabolismo , Proteólise , Espectrometria de Massas em Tandem , Iogurte/análise
7.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 10): 625-633, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31584010

RESUMO

Prolyl aminodipeptidase (PepX) is an enzyme that hydrolyzes peptide bonds from the N-terminus of substrates when the penultimate amino-acid residue is a proline. Prolyl peptidases are of particular interest owing to their ability to hydrolyze food allergens that contain a high percentage of proline residues. PepX from Lactobacillus helveticus was cloned and expressed in Escherichia coli as an N-terminally His-tagged recombinant construct and was crystallized by hanging-drop vapor diffusion in a phosphate buffer using PEG 3350 as a precipitant. The structure was determined at 2.0 Šresolution by molecular replacement using the structure of PepX from Lactococcus lactis (PDB entry 1lns) as the starting model. Notable differences between the L. helveticus PepX structure and PDB entry 1lns include a cysteine instead of a phenylalanine at the substrate-binding site in the position which confers exopeptidase activity and the presence of a calcium ion coordinated by a calcium-binding motif with the consensus sequence DX(DN)XDG.


Assuntos
Aminopeptidases/química , Aminopeptidases/metabolismo , Lactobacillus helveticus/enzimologia , Aminopeptidases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Cisteína , Escherichia coli/genética , Glutens/metabolismo , Modelos Moleculares , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
Int J Mol Sci ; 20(4)2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30813223

RESUMO

ß-Galactosidase encoding genes lacLM from Lactobacillus helveticus DSM 20075 were cloned and successfully overexpressed in Escherichia coli and Lactobacillus plantarum using different expression systems. The highest recombinant ß-galactosidase activity of ∼26 kU per L of medium was obtained when using an expression system based on the T7 RNA polymerase promoter in E. coli, which is more than 1000-fold or 28-fold higher than the production of native ß-galactosidase from L. helveticus DSM 20075 when grown on glucose or lactose, respectively. The overexpression in L. plantarum using lactobacillal food-grade gene expression system resulted in ∼2.3 kU per L of medium, which is approximately 10-fold lower compared to the expression in E. coli. The recombinant ß-galactosidase from L. helveticus overexpressed in E. coli was purified to apparent homogeneity and subsequently characterized. The Km and vmax values for lactose and o-nitrophenyl-ß-d-galactopyranoside (oNPG) were 15.7 ± 1.3 mM, 11.1 ± 0.2 µmol D-glucose released per min per mg protein, and 1.4 ± 0.3 mM, 476 ± 66 µmol o-nitrophenol released per min per mg protein, respectively. The enzyme was inhibited by high concentrations of oNPG with Ki,s = 3.6 ± 0.8 mM. The optimum pH for hydrolysis of both substrates, lactose and oNPG, is pH 6.5 and optimum temperatures for these reactions are 60 and 55 °C, respectively. The formation of galacto-oligosaccharides (GOS) in discontinuous mode using both crude recombinant enzyme from L. plantarum and purified recombinant enzyme from E. coli revealed high transgalactosylation activity of ß-galactosidases from L. helveticus; hence, this enzyme is an interesting candidate for applications in lactose conversion and GOS formation processes.


Assuntos
Indústria de Laticínios , Lactobacillus helveticus/enzimologia , Proteínas Recombinantes/metabolismo , Biocatálise , Estabilidade Enzimática , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Lactobacillus helveticus/crescimento & desenvolvimento , Temperatura , Fatores de Tempo , Trissacarídeos/metabolismo
9.
J Agric Food Chem ; 67(10): 2946-2953, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30807132

RESUMO

Phenylglyoxylic acid (PGA) are key building blocks and widely used to synthesize pharmaceutical intermediates or food additives. However, the existing synthetic methods for PGA generally involve toxic cyanide and complex processes. To explore an alternative method for PGA biosynthesis, we envisaged cascade biocatalysis for the one-pot synthesis of PGA from racemic mandelic acid. A novel mandelate racemase named ArMR showing higher expression level (216.9 U·mL-1 fermentation liquor) was cloned from Agrobacterium radiobacter and identified, and six recombinant Escherichia coli strains were engineered to coexpress three enzymes of mandelate racemase, d-mandelate dehydrogenase and l-lactate dehydrogenase, and transform racemic mandelic acid to PGA. Among them, the recombinant E. coli TCD 04, engineered to coexpress three enzymes of ArMR, LhDMDH, and LhLDH, can transform racemic mandelic acid (100 mM) to PGA with 98% conversion. Taken together, we provide a green approach for one-pot biosynthesis of PGA from racemic mandelic acid.


Assuntos
Escherichia coli/metabolismo , Glioxilatos/metabolismo , Ácidos Mandélicos/metabolismo , Agrobacterium tumefaciens/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Cinética , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Lactobacillus helveticus/enzimologia , Lactobacillus helveticus/genética , Ácidos Mandélicos/química , Engenharia Metabólica , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo
10.
J Dairy Sci ; 102(2): 961-975, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30594363

RESUMO

Lactobacillus helveticus LB 10 proteinases immobilized with sodium alginate were used to hydrolyze whey protein to produce angiotensin-I-converting enzyme (ACE)-inhibitory peptides. The generated hydrolysates were tested for ACE-inhibitory activity and for their ability to be transported across Caco-2 cell monolayers. Using a response surface method, we determined that a proteinase concentration of 7.55 mg/mL, sodium alginate concentration of 2.03 g/100 mL, and glutaraldehyde concentration of 0.39% were found to be the optimal immobilization conditions. Compared with free proteinase, the immobilized proteinase had significantly higher pH, thermal and storage stability, and reusability. Whey protein hydrolysates were fractionated by gel filtration chromatography and ACE-inhibitory peptide mixtures were transported across Caco-2 cell monolayers in a human intestinal-absorption model. The di- and tripeptides KA, EN, DIS, EVD, LF, AIV, and VFK (half-maximal inhibitory concentrations (mean ± standard deviation) of 1.24 ± 0.01, 1.43 ± 0.04, 1.59 ± 0.27, 1.32 ± 0.05, 1.60 ± 0.39, 2.66 ± 0.02, and 1.76 ± 0.09 mmol/L, respectively) were detected on the basolateral side of the Caco-2 cell monolayer using ultra-performance liquid chromatography-tandem mass spectrometry. These results highlight that ACE-inhibitory peptides are present on the basolateral side of the Caco-2 cell model after transportation of whey protein hydrolysate across the Caco-2 cell membrane.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/metabolismo , Enzimas Imobilizadas/metabolismo , Lactobacillus helveticus/enzimologia , Peptídeo Hidrolases/metabolismo , Proteínas do Soro do Leite/metabolismo , Animais , Transporte Biológico , Células CACO-2 , Membrana Celular/metabolismo , Humanos , Hidrólise , Peptidil Dipeptidase A/metabolismo , Proteólise
11.
Pol J Microbiol ; 67(2): 203-211, 2018 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-30015458

RESUMO

Most of the lactic acid bacteria (LAB) are able to grow in milk mainly due to the activity of a complex and well-developed proteolytic system. Cell envelope-associated proteinases (CEPs) begin casein hydrolysis and allow for releasing the peptides, enclosed in the structure of native milk proteins that are essential for growth of Lactobacillus helveticus. The biodiversity of genes encoding CEPs among L. helveticus strains can have an effect on some technological parameters such as acid production, bacterial growth rate in milk as well as liberation of biologically active peptides. The study reveals significant differences in the presence of various variants of CEPs encoding genes among ten novel Polish strains and indicates the intraspecific diversity exhibited by L. helveticus. In terms of distribution of CEPs genes, four different genetic profiles were found among the microorganisms analyzed. Furthermore, the strains exhibited also various levels of proteolytic activity. Molecular analysis revealed that prtH3 is the most abundant CEPs-encoding gene among the strains investigated. The results indicate also that ecological niche and environmental conditions might affect proteolytic properties of L. helveticus strains. The greatest variety in terms of quantity of the detected CEP encoding genes was noticed in L. helveticus 141, T105 and T104 strains. In these strains, the combination of three nucleotide gene sequences (prtH/prtH2/prtH3) was identified. Interestingly, T104 and T105 exhibited the highest proteolytic activity and also the fastest dynamic of milk acidification among the tested strains of L. helveticus.


Assuntos
Parede Celular/genética , Lactobacillus helveticus/enzimologia , Lactobacillus helveticus/genética , Peptídeo Hidrolases/genética , Animais , Proteínas de Bactérias/genética , Caseínas/metabolismo , Parede Celular/enzimologia , Hidrólise , Leite/microbiologia , Polônia , Análise de Sequência de DNA
12.
Food Res Int ; 109: 426-432, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29803467

RESUMO

Hydroxycinnamic acids are a major group of phenolic compounds widely distributed in plants. Among them, chlorogenic acids and caffeic acid have been in the focus of interest due to their impact on food quality and their putative health benefits. Numerous microorganisms like lactic acid bacteria are able to hydrolyze chlorogenic acids by cinnamoyl esterase enzymes. Data on the specificity of theses enzymes regarding the cleavage of distinct isomers of mono- or dichlorogenic acids is lacking. Lactobacillus reuteri, Lactobacillus helveticus, and Lactobacillus fermentum were screened for their ability to hydrolyze chlorogenic acid isomers in culture medium. Concentrations of chlorogenic acids and the released caffeic acid were determined by UHPLC-ESI-MS. The highest hydrolysis rate (100%) was observed for the hydrolysis of 5-CQA by Lactobacillus helveticus. A so far unknown metabolic pathway for the cleavage of 4-CQA is proposed including isomerization to 5-CQA and 3-CQA followed by hydrolysis.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos Cafeicos/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Ácido Clorogênico/metabolismo , Lactobacillus helveticus/enzimologia , Limosilactobacillus fermentum/enzimologia , Limosilactobacillus reuteri/enzimologia , Ácidos Cafeicos/química , Ácido Clorogênico/química , Cromatografia Líquida de Alta Pressão , Hidrólise , Isomerismo , Cinética , Espectrometria de Massas por Ionização por Electrospray , Especificidade por Substrato
13.
Appl Microbiol Biotechnol ; 101(20): 7621-7633, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28695230

RESUMO

In a screening for proteolytically active lactic acid bacteria, three strains, Lactobacillus delbrueckii ssp. lactis 92202, Lactobacillus helveticus 92201, and Lactobacillus delbrueckii ssp. bulgaricus 92059, showed the highest activities following growth in milk. All three strains degraded α- and ß-casein, but did not hydrolyse κ-casein. HPLC analysis of skim milk fermentation revealed increasing amounts of peptides after 5 and 10 h with Lb. d. ssp. bulgaricus 92059. Hydrolysates obtained with Lb. d. ssp. lactis 92202 and Lb. d. ssp. bulgaricus 92059 revealed the highest angiotensin-converting enzyme-inhibitory effect. The effect was dose dependent. Almost no effect (<10%) was seen for Lb. helveticus 92201. For Lb. d. ssp. bulgaricus 92059, maximal inhibition of approx. 65% was reached after 25 h of fermentation. In an in vitro assay measuring potential immunomodulation, hydrolysates of the three strains yielded anti-inflammatory activities in the presence of TNF-α. However, the effects were more pronounced at lower hydrolysate concentrations. In the absence of TNF-α, slight pro-inflammatory effects were observed. The hydrolysate of Lb. d. ssp. bulgaricus 92059, when purified by means of solid-phase extraction, exhibited pro-inflammatory activity. Sour whey containing Lb. d. ssp. bulgaricus 92059 cells showed pro-inflammatory activity while cell-free sour whey was clearly anti-inflammatory. In the purified hydrolysate, 20 different α- and ß-casein (CN)-derived peptides could be identified by LC-MS. Most peptides originated from the central and C-terminal regions of ß-casein. Peptide length was between 9 (ß-CN(f 59-67)) and 22 amino acids (ß-CN(f 117-138)).


Assuntos
Fatores Biológicos/metabolismo , Lactobacillus delbrueckii/isolamento & purificação , Lactobacillus helveticus/isolamento & purificação , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Proteólise , Animais , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/metabolismo , Fatores Imunológicos/isolamento & purificação , Fatores Imunológicos/metabolismo , Lactobacillus delbrueckii/enzimologia , Lactobacillus delbrueckii/crescimento & desenvolvimento , Lactobacillus delbrueckii/metabolismo , Lactobacillus helveticus/enzimologia , Lactobacillus helveticus/crescimento & desenvolvimento , Lactobacillus helveticus/metabolismo , Programas de Rastreamento , Leite/microbiologia , Peptidil Dipeptidase A/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores
14.
Prep Biochem Biotechnol ; 47(5): 496-504, 2017 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-28045590

RESUMO

A gene encoding cinnamoyl esterase (CE), which breaks down chlorogenic acid (ChA) into caffeic and quinic acids, was cloned from Lactobacillus helveticus KCCM 11223. The gene with an open reading frame of 759 nucleotides was expressed in Escherichia coli, which resulted in a 51.6-fold increase in specific activity compared to L. helveticus KCCM 11223. The recombinant CE exists as a monomeric enzyme having a molecular weight of 27.4 kDa. Although the highest activity was observed at pH 7, the enzyme showed stable activity at pH 4.0-10.0. Its optimum temperature was 65°C, and it also possessed a thermophilic activity: the half-life of CE was 24.4 min at 65°C. The half-life of CE was 145.5, 80.5, and 24.4 min at 60, 62, and 65°C, respectively. The Km and Vmax values for ChA were 0.153 mM and 559.6 µM/min, respectively. Moreover, the CE showed the highest substrate specificity with methyl caffeate among other methyl esters of hydroxycinnamic acids such as methyl ferulate, methyl sinapinate, methyl p-coumarate, and methyl caffeate. Ca2+, Cu2+, and Fe2+ significantly reduced the relative activity on ChA up to 70%. This is the first report on a thermostable CE from lactic acid bacteria that can be useful to hydrolyze ChA from plant cell walls.


Assuntos
Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Clonagem Molecular , Lactobacillus helveticus/enzimologia , Sequência de Aminoácidos , Ácidos Cafeicos/metabolismo , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/isolamento & purificação , Cinamatos/metabolismo , Clonagem Molecular/métodos , Ácidos Cumáricos/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Lactobacillus helveticus/química , Lactobacillus helveticus/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Temperatura
15.
J Microbiol Methods ; 128: 58-60, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27401189

RESUMO

Although methods for measuring ß-galactosidase activity in intact gram-negative bacterial cells have been reported, the methods may not be applicable to measuring ß-galactosidase activity in gram-positive bacterial cells. This report focuses on the development of a fluorometric cell-based assay for measuring ß-galactosidase activity in gram-positive cells.


Assuntos
Fluorometria , Lactobacillus helveticus/enzimologia , Probióticos , beta-Galactosidase/metabolismo
16.
Appl Microbiol Biotechnol ; 100(17): 7499-515, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27037692

RESUMO

Nowadays, general and specific aminopeptidases are of great interest, especially for protein hydrolysis in the food industry. As shown previously, it is confirmed that the general aminopeptidase N (PepN; EC 3.4.11.2) and the proline-specific peptidase PepX (EC 3.4.14.11) from Lactobacillus helveticus ATCC 12046 show a synergistic effect during protein hydrolysis which results in high degrees of hydrolysis and reduced bitterness. To combine both activities, the enzymes were linked and a fusion protein called PepN-L1-PepX (FUS-PepN-PepX) was created. After production and purification, the fusion protein was characterized. Some of its biochemical characteristics were altered in favor for an application compared to the single enzymes. As an example, the optimum temperature for the PepN activity increased from 30 °C for the single enzyme to 35 °C for FUS-PepN. In addition, the temperature stability of PepX was higher for FUS-PepX than for the single enzyme (50 % compared to 40 % residual activity at 50 °C after 14 days, respectively). In addition, the disulfide bridge-reducing reagent ß-mercaptoethanol did not longer inactivate the FUS-PepN activity. Furthermore, the K M values decreased for both enzyme activities in the fusion protein. Finally, it was found that the synergistic hydrolysis performance in a casein hydrolysis was not reduced for the fusion protein. The increase of the relative degree of hydrolysis of a prehydrolyzed casein solution was the same as it was for the single enzymes. As a benefit, the resulting hydrolysate showed a strong antioxidative capacity (ABTS-IC50 value: 5.81 µg mL(-1)).


Assuntos
Aminopeptidases/genética , Proteínas de Bactérias/genética , Caseínas/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Lactobacillus helveticus/enzimologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Aminopeptidases/metabolismo , Antioxidantes/metabolismo , Proteínas de Bactérias/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Indústria Alimentícia , Hidrólise , Lactobacillus helveticus/genética , Lactobacillus helveticus/metabolismo , Mercaptoetanol/química
17.
Sci Rep ; 6: 21585, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26902345

RESUMO

Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resulted in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to "green" chemicals and fuels.


Assuntos
Proteínas de Bactérias/metabolismo , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/biossíntese , Lactobacillus helveticus/genética , Metano/metabolismo , Methylococcaceae/metabolismo , Proteínas de Bactérias/genética , Biocatálise , Reatores Biológicos , Fermentação , Expressão Gênica , Cinética , L-Lactato Desidrogenase/genética , Lactobacillus helveticus/enzimologia , Engenharia Metabólica , Methylococcaceae/genética , Plasmídeos/química , Plasmídeos/metabolismo , Transformação Bacteriana , Transgenes
18.
Int J Food Microbiol ; 197: 65-71, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25557185

RESUMO

Airag is a traditional fermented milk of Mongolia that is usually made from raw mare's milk. Lactobacillus helveticus is one of the lactic acid bacteria most frequently isolated from airag. In this study, we investigated the genetic and physiological characteristics of L. helveticus strains isolated from airag and clarified their significance in airag by comparing them with strains from different sources. Six strains of L. helveticus were isolated from five home-made airag samples collected from different regions of Mongolia. The optimal temperature for acidification in skim milk was 30 to 35°C for all the Mongolian strains, which is lower than those for the reference strains (JCM 1554 and JCM 1120(T)) isolated from European cheeses. All of the strains had a prtH1-like gene encoding a variant type of cell envelope proteinase (CEP). The CEP amino acid sequence in Snow Brand Typeculture (SBT) 11087 isolated from airag shared 71% identity with PrtH of L. helveticus CNRZ32 (AAD50643.1) but 98% identity with PrtH of Lactobacillus kefiranofaciens ZW3 (AEG40278.1) isolated from a traditional fermented milk in Tibet. The proteolytic activities of the CEP from SBT11087 on artificial substrate (N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide) and pure casein were measured using an intact-cell degradation assay. The activity of the CEP from SBT11087 was observed to be weak and exhibited a lower optimal temperature (40°C) than those from the reference strains (45-50°C). The specificity of the SBT11087 CEP for αS1-casein was typical of the CEPs previously reported in L. helveticus, as determined through the degradation profiles obtained through gel electrophoresis and mass spectrometry analyses. In contrast, the degradation profile of ß-casein revealed that the CEP of SBT11087 primarily hydrolyzes its C-terminal domain and hydrolyzed nine of the 16 cleavage sites shared among the CEPs of other L. helveticus strains. Thus, the CEP of SBT11087 is distinct from those from previously reported L. helveticus strains in terms of its optimal temperature and its degradation of ß-casein. Therefore, the Mongolian L. helveticus strains differ from other strains of the species in different collections and are specifically suited for the natural lactic acid bacterial population in airag.


Assuntos
Membrana Celular/metabolismo , Laticínios/microbiologia , Endopeptidases/metabolismo , Lactobacillus helveticus/enzimologia , Lactobacillus helveticus/isolamento & purificação , Leite/microbiologia , Sequência de Aminoácidos , Animais , Caseínas/metabolismo , Endopeptidases/química , Endopeptidases/genética , Fermentação , Cavalos , Mongólia , Proteólise , Homologia de Sequência de Aminoácidos
19.
Microb Cell Fact ; 13: 82, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24902482

RESUMO

BACKGROUND: From fundamental studies to industrial processes, synthesis of heterologous protein by micro-organisms is widely employed. The secretion of soluble heterologous proteins in the extracellular medium facilitates their recovery, while their attachment to the cell surface permits the use of the recombinant host cells as protein or peptide supports. One of the key points to carry out heterologous expression is to choose the appropriate host. We propose to enlarge the panel of heterologous secretion hosts by using Streptococcus thermophilus LMD-9. This lactic acid bacterium has a generally recognised as safe status, is widely used in the manufacture of yogurts, fermented milks and cheeses, and is easy to transform by natural competence. This study demonstrates the feasibility of secretion of a heterologous protein anchored to the cell surface by S. thermophilus. For this, we used the cell envelope proteinase (CEP) PrtH of Lactobacillus helveticus CNRZ32 CIRM-BIA 103. RESULTS: Using S. thermophilus LMD-9 as the background host, three recombinant strains were constructed: i) a negative control corresponding to S. thermophilus PrtS- mutant where the prtS gene encoding its CEP was partially deleted; ii) a PrtH+ mutant expressing the L. helveticus PrtH pro-protein with its own motif (S-layer type) of cell-wall attachment and iii) a PrtH+WANS mutant expressing PrtH pro-protein with the LPXTG anchoring motif from PrtS. The PrtH+ and PrtH+WANS genes expression levels were measured by RT-qPCR in the corresponding mutants and compared to that of prtS gene in the strain LMD-9. The expression levels of both fused prtH CEPs genes, regardless of the anchoring motif, reached up-to more than 76% of the wild-type prtS expression level. CEPs were sought and identified on the cell surface of LMD-9 wild-type strain, PrtH+ and PrtH+WANS mutants using shaving technique followed by peptide identification with tandem mass spectrometry, demonstrating that the heterologous secretion and anchoring of a protein of more than 200 kDa was efficient. The anchoring to the cell-wall seems to be more efficient when the LPXTG motif of PrtS was used instead of the S-layer motif of PrtH. CONCLUSIONS: We demonstrated S. thermophilus LMD-9 could heterologously secrete a high molecular weight protein and probably covalently anchor it to the cell-wall.


Assuntos
Proteínas de Bactérias/metabolismo , Endopeptidases/metabolismo , Streptococcus thermophilus/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Endopeptidases/genética , Lactobacillus helveticus/enzimologia , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
20.
PLoS One ; 8(7): e70055, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894590

RESUMO

The proline-specific X-prolyl dipeptidyl aminopeptidase (PepX; EC 3.4.14.11) and the general aminopeptidase N (PepN; EC 3.4.11.2) from Lactobacillus helveticus ATCC 12046 were produced recombinantly in E. coli BL21(DE3) via bioreactor cultivation. The maximum enzymatic activity obtained for PepX was 800 µkat(H-Ala-Pro-pNA) L(-1), which is approx. 195-fold higher than values published previously. To the best of our knowledge, PepN was expressed in E. coli at high levels for the first time. The PepN activity reached 1,000 µkat(H-Ala-pNA) L(-1). After an automated chromatographic purification, both peptidases were biochemically and kinetically characterized in detail. Substrate inhibition of PepN and product inhibition of both PepX and PepN were discovered for the first time. An apo-enzyme of the Zn(2+)-dependent PepN was generated, which could be reactivated by several metal ions in the order of Co(2+)>Zn(2+)>Mn(2+)>Ca(2+)>Mg(2+). PepX and PepN exhibited a clear synergistic effect in casein hydrolysis studies. Here, the relative degree of hydrolysis (rDH) was increased by approx. 132%. Due to the remarkable temperature stability at 50°C and the complementary substrate specificities of both peptidases, a future application in food protein hydrolysis might be possible.


Assuntos
Aminopeptidases/metabolismo , Proteínas de Bactérias/metabolismo , Caseínas/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Lactobacillus helveticus/enzimologia , Proteínas Recombinantes/metabolismo , Aminopeptidases/química , Aminopeptidases/genética , Aminopeptidases/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/isolamento & purificação , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Concentração de Íons de Hidrogênio , Hidrólise , Lactobacillus helveticus/genética , Dados de Sequência Molecular , Peso Molecular , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Análise de Sequência de DNA , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...