Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 912
Filtrar
1.
Mar Drugs ; 22(6)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38921591

RESUMO

This study aimed to improve the conventional procedure of alginate isolation from the brown seaweed (Laminaria digitata L.) biomass and investigate the possibility of further valorization of the ethanolic fraction representing the byproduct after the degreasing and depigmentation of biomass. The acid treatment of biomass supported by ultrasound was modeled and optimized regarding the alginate yield using a response surface methodology based on the Box-Behnken design. A treatment time of 30 min, a liquid-to-solid ratio of 30 mL/g, and a treatment temperature of 47 °C were proposed as optimal conditions under which the alginate yield related to the mass of dry biomass was 30.9%. The use of ultrasonic radiation significantly reduced the time required for the acid treatment of biomass by about 4 to 24 times compared to other available conventional procedures. The isolated alginate had an M/G ratio of 1.08, which indicates a greater presence of M-blocks in its structure and the possibility of forming a soft and elastic hydrogel with its use. The chemical composition of the ethanolic fraction including total antioxidant content (293 mg gallic acid equivalent/g dry weight), total flavonoid content (14.9 mg rutin equivalent/g dry weight), contents of macroelements (the highest content of sodium, 106.59 mg/g dry weight), and microelement content (the highest content of boron, 198.84 mg/g dry weight) was determined, and the identification of bioactive compounds was carried out. The results of ultra high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry analysis confirmed the presence of 48 compounds, of which 41 compounds were identified as sugar alcohol, phenolic compounds, and lipids. According to the 2,2-diphenyl-1-picrylhydrazyl assay, the radical scavenging activity of the ethanolic fraction (the half-maximal inhibitory concentration of 42.84 ± 0.81 µg/mL) indicated its strong activity, which was almost the same as in the case of the positive control, synthetic antioxidant butylhydroxytoluene (the half-maximal inhibitory concentration of 36.61 ± 0.79 µg/mL). Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis, and Bacillus cereus) were more sensitive to the ethanolic fraction compared to Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, and Shigella sonnei). The obtained results indicated the possibility of the further use of the ethanolic fraction as a fertilizer for plant growth in different species and antifouling agents, applicable in aquaculture.


Assuntos
Alginatos , Antioxidantes , Etanol , Laminaria , Alga Marinha , Alginatos/química , Laminaria/química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Etanol/química , Alga Marinha/química , Biomassa , Flavonoides/química , Flavonoides/isolamento & purificação , Algas Comestíveis
2.
Rapid Commun Mass Spectrom ; 38(17): e9843, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38924168

RESUMO

RATIONALE: 1,2-Diacyl-sn-glycero-3-phospho-O-[N-(2-hydroxyethyl)glycines] (PHEGs) are a class of rare aminophospholipids found specifically in brown algae, including kombu seaweed. Despite their potential importance in algal physiology, a comprehensive mass spectrometry (MS) characterization, useful to understand their biological behaviour, is still lacking. METHODS: To establish the structural regiochemical features of PHEGs, we employed hydrophilic interaction liquid chromatography (HILIC). Following separation, the isolated band of PHEGs was analyzed using MS techniques. This included multistage tandem MS experiments, performed in both positive and negative electrospray ionization modes at low and high resolution. RESULTS: By comparing MS/MS and MS3 spectra acquired in negative ion mode, the regiochemical rules for PHEG identification were established. The most abundant PHEG species in kombu seaweed, from both Laminaria ochroleuca (European Atlantic) and Laminaria longissima (Japan), was identified as PHEG 20:4/20:4. Less abundant species included PHEG 20:4/20:5 and hydroxylated forms of both PHEG 20:4/20:4 (i.e. 40:8;O) and 20:4/20:5 (40:9;O). The presence of a lyso PHEG 20:4 was consistently detected but at very low levels. CONCLUSIONS: This study employed MS analysis to elucidate the regiochemical patterns of PHEGs in kombu seaweed. We identified PHEG 20:4/20:4 as the dominant species, along with several less abundant variants, including hydroxylated forms. These findings provide valuable insights into the potential roles and metabolism of PHEGs in brown algae, paving the way for further investigation into their biological functions.


Assuntos
Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Alga Marinha/química , Fosfolipídeos/química , Fosfolipídeos/análise , Glicina/análogos & derivados , Glicina/química , Glicina/análise , Phaeophyceae/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Laminaria/química , Cromatografia Líquida/métodos , Algas Comestíveis
3.
Animal ; 18(6): 101189, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38850575

RESUMO

Laminaria digitata is a brown seaweed rich in prebiotic polysaccharides, mainly laminarin, but its alginate-rich cell wall could compromise nutrient access. Carbohydrase supplementation, such as individual alginate lyase and carbohydrases mixture (Rovabio® Excel AP), could enhance nutrient digestibility and prebiotic potential. This study aimed to evaluate the effect of these enzymes on nutrient digestibility and gut health of weaned piglets fed with 10% L. digitata. Diets did not affect growth performance (P > 0.05). The majority of the feed fractions had similar digestibility across all diets, but the supplementation of alginate lyase increased hemicellulose digestibility by 3.3% compared to the control group (P = 0.047). Additionally, we observed that algal zinc was more readily available compared to the control group, even without enzymatic supplementation (P < 0.001). However, the increased digestibility of some minerals, such as potassium, raises concerns about potential mineral imbalance. Seaweed groups had a higher abundance of beneficial bacteria in colon contents, such as Prevotella, Oscillospira and Catenisphaera. Furthermore, the addition of alginate lyase led to a lower pH in the colon (P < 0.001) and caecum (P < 0.001) of piglets, which is possibly a result of released fermentable laminarin, and is consistent with the higher proportion of butyric acid found in these intestinal compartments. L. digitata is a putative supplement to enhance piglet gut health due to its prebiotic polysaccharides. Alginate lyase supplementation further improves nutrient digestibility and prebiotic potential. These results suggest the potential use of L. digitata and these enzymatic supplements in commercial piglet-feeding practices.


Assuntos
Ração Animal , Dieta , Suplementos Nutricionais , Digestão , Glicosídeo Hidrolases , Laminaria , Polissacarídeo-Liases , Animais , Laminaria/química , Polissacarídeo-Liases/metabolismo , Ração Animal/análise , Dieta/veterinária , Digestão/efeitos dos fármacos , Glicosídeo Hidrolases/metabolismo , Suplementos Nutricionais/análise , Suínos , Prebióticos , Nutrientes/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Desmame , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Algas Comestíveis
4.
Food Funct ; 15(12): 6684-6691, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38819217

RESUMO

We previously demonstrated the beneficial effects of U.S.-grown sugar kelp (Saccharina latissima), a brown seaweed, on reducing serum triglycerides (TG) and total cholesterol (TC) and protecting against inflammation and fibrosis in the adipose tissue of diet-induced obesity mice. In this current study, we aimed to explore whether the dietary consumption of sugar kelp can prevent atherosclerosis using low-density lipoprotein receptor knockout (Ldlr KO) mice fed an atherogenic diet. Eight-week-old male Ldlr KO mice were fed either an atherogenic high-fat/high-cholesterol control (HF/HC) diet or a HF/HC diet supplemented with 6% (w/w) sugar kelp (HF/HC-SK) for 16 weeks. Consumption of sugar kelp significantly increased the body weight gain without altering fat mass and lean mass. Also, there were no significant differences in energy expenditure and physical activities between the groups. The two groups did not show significant differences in serum and hepatic TG and TC levels or the hepatic expression of genes involved in cholesterol and lipid metabolism. Although serum alanine aminotransferase (ALT) activity did not differ significantly between the two groups, there were significant increases in the expression of macrophage markers, including adhesion G protein-coupled receptor E1 and cluster of differentiation 68, as well as tumor necrosis factor alpha in the HF/HC-SK group compared to the HF/HC mice. The consumption of sugar kelp did not elicit a significant effect on the development of aortic lesions. Moreover, lipopolysaccharide-stimulated splenocytes isolated from HF/HC-SK-fed mice showed no significant changes in the mRNA levels of pro-inflammatory genes compared with those from the HF/HC mice. In summary, the consumption of dietary sugar kelp did not elicit anti-atherogenic and hepatoprotective effects in Ldlr KO mice.


Assuntos
Aterosclerose , Camundongos Knockout , Receptores de LDL , Animais , Receptores de LDL/genética , Receptores de LDL/metabolismo , Camundongos , Masculino , Aterosclerose/prevenção & controle , Aterosclerose/genética , Aterosclerose/metabolismo , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Kelp , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Colesterol/sangue , Colesterol/metabolismo , Humanos , Metabolismo dos Lipídeos , Algas Comestíveis , Laminaria
5.
Food Funct ; 15(11): 5955-5971, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38738998

RESUMO

The structural characteristics of fucoidans exhibit species and regional diversity. Previous studies have demonstrated that Laminaria japonica- and Ascophyllum nodosum-derived fucoidans have type I and type II fucosyl chains, respectively. These chemical differences may contribute to distinct hypolipidemic effects and mechanisms of action. Chemical analysis demonstrated that the percentage contents of sulfate, glucuronic acid, and galactose were higher in L. japonica-derived fucoidans than those of A. nodosum-derived fucoidans. In hyperlipidemic apolipoprotein E-deficient mice, both A. nodosum- and L. japonica-derived fucoidans significantly decreased the plasma and hepatic levels of total cholesterol and triglyceride, leading to the reduction of atherosclerotic plaques. Western blotting experiments demonstrated that these fucoidans significantly enhanced the expression and levels of scavenger receptor B type 1, cholesterol 7 alpha-hydroxylase A1, and peroxisome proliferator-activated receptor (PPAR)-α, contributing to circulating lipoprotein clearance and fatty acid degradation, respectively. Differentially, L. japonica-derived fucoidan significantly increased the LXR/ATP-binding cassette G8 signaling pathway in the small intestine, as revealed by real-time quantitative PCR, which may lead to further cholesterol and other lipid excretion. Collectively, these data are useful for understanding the hypolipidemic mechanisms of action of seaweed-derived fucoidans, and their potential application for the prevention and/or treatment of atherosclerotic cardiovascular diseases.


Assuntos
Apolipoproteínas E , Ascophyllum , Hipolipemiantes , Laminaria , Polissacarídeos , Animais , Laminaria/química , Ascophyllum/química , Camundongos , Polissacarídeos/farmacologia , Polissacarídeos/química , Hipolipemiantes/farmacologia , Apolipoproteínas E/genética , Masculino , Camundongos Endogâmicos C57BL , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Colesterol/sangue , Colesterol/metabolismo , Camundongos Knockout , PPAR alfa/metabolismo , PPAR alfa/genética , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Fígado/metabolismo , Fígado/efeitos dos fármacos , Humanos , Algas Comestíveis
6.
Environ Sci Pollut Res Int ; 31(25): 37245-37255, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38767795

RESUMO

In mid-November 2021, there were large areas of white rot disease on cultivated Saccharina japonica in Rongcheng City, China, and diseases were undetected on Sargassum horneri and Porphyra yezoensis. The disturbance direction of bacterial community in the phycosphere after disease outbreak and the relationship with seawater nutrients remain unclear. Here, in situ studies of bacterial community in the non-diseased and diseased areas (Shawo and Dongchu islands) and seawater nutrient levels were carried out. 16S rRNA sequencing showed that the bacterial richness of the studied seaweeds increased in the diseased area. Only in S. japonica, Algitalea outcompeted abundant primary bacteria with probiotic relationships to the host of the non-diseased area, and dominated in the diseased area (17.6% of the total abundance). Nitrogen and phosphorus levels in seawater were 57.8% and 19.6% higher in the non-diseased area than those in the diseased area, respectively, and were strongly correlated with the phycosphere bacteria at the family level of S. japonica. There was no difference in potential pathogenicity between the two areas, while positive signal communications decreased, and nitrogen cycle, chemoheterotrophy, and cellulolysis increased in the diseased area compared to the non-diseased area. Overall, white rot disease caused a structural disturbance in phycosphere bacterial community of S. japonica that related to seawater nutrient levels. Enriched degraders and altered bacterial community functions may exacerbate the disease. This evaluation will provide information for white rot disease management to prevent and mitigate the occurrence of S. japonica outbreaks.


Assuntos
Água do Mar , Água do Mar/microbiologia , China , RNA Ribossômico 16S , Bactérias , Fósforo , Nitrogênio , Alga Marinha/microbiologia , Nutrientes , Algas Comestíveis , Laminaria
7.
J Immunol Res ; 2024: 8121284, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799117

RESUMO

Macroalgae are considered healthy food ingredients due to their content in numerous bioactive compounds, and the traditional use of whole macroalgae in Asian cuisine suggests a contribution to longevity. Although much information is available about the bioactivity of pure algal compounds, such as different polyphenols and polysaccharides, documentation of potential effects of whole macroalgae as part of Western diets is limited. Lifestyle- and age-related diseases, which have a high impact on population health, are closely connected to underlying chronic inflammation. Therefore, we have studied crude extracts of green (Ulva fenestrata) and brown (Saccharina latissima) macroalgae, as two of the most promising food macroalgae in the Nordic countries for their effect on inflammation in vitro. Human macrophage-like reporter THP-1 cells were treated with macroalgae extracts and stimulated with lipopolysaccharide (LPS) to induce inflammatory signalling. Effects of the macroalgae extracts were assessed on transcription factor activity of NF-κB and IRF as well as secretion and/or expression of the cytokines TNF-α and IFN-ß and chemokines IL-8 and CXCL10. The crude macroalgae extracts were further separated into polyphenol-enriched and polysaccharide-enriched fractions, which were also tested for their effect on transcription factor activity. Interestingly, we observed a selective activation of NF-κB, when cells were treated with macroalgae extracts. On the other hand, pretreatment with macroalgae extracts selectively repressed IRF activation when inflammatory signaling was subsequently induced by LPS. This effect was consistent for both tested species as well as for polyphenol- and polysaccharide-enriched fractions, of which the latter had more pronounced effects. Overall, this is the first indication of how macroalgae could modulate inflammatory signaling by selective activation and subsequent repression of different pathways. Further in vitro and in vivo studies of this mechanism would be needed to understand how macroalgae consumption could influence the prevention of noncommunicable, lifestyle- and age-related diseases that are highly related to unbalanced inflammatory processes.


Assuntos
Inflamação , Macrófagos , NF-kappa B , Phaeophyceae , Alga Marinha , Transdução de Sinais , Humanos , NF-kappa B/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/imunologia , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Citocinas/metabolismo , Células THP-1 , Extratos Vegetais/farmacologia , Lipopolissacarídeos , Algas Comestíveis , Laminaria
8.
J Phycol ; 60(3): 741-754, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38578201

RESUMO

Environmental changes associated with rapid climate change in the Arctic, such as the increased rates of sedimentation from climatic or anthropogenic sources, can enhance the impact of abiotic stressors on coastal ecosystems. High sedimentation rates can be detrimental to nearshore kelp abundance and distribution, possibly due to increased mortality at the spore settlement stage. Spore settlement and viability of the Arctic kelp Laminaria solidungula were examined through a series of lab-based sedimentation experiments. Spores were exposed to increasing sediment loads in three experimental designs simulating different sedimentation scenarios: sediment deposition above settled spores, settlement of spores on sediment-covered substrate, and simultaneous suspension of spores and sediments during settlement. Spore settlement was recorded upon completion of each experiment, and gametophyte abundance was assessed following a growth period with sediments removed to examine short-term spore viability via a gametophyte-to-settled-spore ratio. In all three types of sediment exposure, the addition of sediments caused a 30%-40% reduction in spore settlement relative to a no-sediment control. Spore settlement decreased significantly between the low and high sediment treatments when spores were settled onto sediment-covered substrates. In all experiments, increasing amounts of sediment had no significant effect on spore viability, indicating that spores that had settled under different short-term sediment conditions were viable. Our results indicate that depending on spore-sediment interaction type, higher rates of sedimentation resulting from increased sediment loading could affect L. solidungula spore settlement success with potential impacts on the long-term persistence of a diverse and productive benthic habitat.


Assuntos
Sedimentos Geológicos , Laminaria , Esporos , Laminaria/fisiologia , Esporos/fisiologia , Regiões Árticas , Kelp/fisiologia
9.
Mar Environ Res ; 198: 106518, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38648698

RESUMO

Kelp forests occur on more than a quarter of the world's coastlines, serving as foundation species supporting high levels of biodiversity. They are also a major source of organic matter in coastal ecosystems, with the majority of primary production released and exported as detritus. Kelp detritus also provides food and shelter for macroinvertebrates, which comprise important components of inshore food-webs. Hitherto, research on kelp detritus-associated macroinvertebrate assemblages remains relatively limited. We quantified spatiotemporal variability in the structure of detritus-associated macroinvertebrate assemblages within Laminaria hyperborea forests and evaluated the influence of putative drivers of the observed variability in assemblages across eight study sites within four regions of the United Kingdom in May and September 2015. We documented 5167 individuals from 106 taxa with Malacostraca, Gastropoda, Isopoda and Bivalvia the most abundant groups sampled. Assemblage structure varied across months, sites, and regions, with highest richness in September compared to May. Many taxa were unique to individual regions, with few documented in all regions. Finally, key drivers of assemblage structure included detritus tissue nitrogen content, depth, sea surface temperature, light intensity, as well as L. hyperborea canopy density and canopy biomass. Despite their dynamic composition and transient existence, accumulations of L. hyperborea detritus represent valuable repositories of biodiversity and represent an additional kelp forest component which influences secondary productivity, and potentially kelp forest food-web dynamics.


Assuntos
Biodiversidade , Invertebrados , Laminaria , Animais , Laminaria/fisiologia , Invertebrados/fisiologia , Ecossistema , Monitoramento Ambiental , Cadeia Alimentar , Oceano Atlântico , Reino Unido , Biomassa , Alga Marinha
10.
Int J Biol Macromol ; 268(Pt 2): 131776, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38657938

RESUMO

Fucoidan from Laminaria japonica became sterilized with an autoclave and ultraviolet (UV) radiation. Potential prebiotic and antibacterial activities of sterilized fucoidans (SF) were the subject of investigation. Molecular weight, monosaccharide composition, FTIR, and NMR spectra of SF underwent evaluations to elucidate the relationship between the structure and activities of SF. The growth of Lactobacillus rhamnosus GG and L. acidophilus with autoclave sterilized fucoidan (ASF) and the growth of L. plantarum, L. gasseri, L. paracasei, and L. reuteri with UV sterilized fucoidan (USF) increased significantly. Also, fucoidan was vastly more effective than fructooligosaccharides in improving the growth of L. gasseri, L. reuteri, and L. paracasei. The growth of Escherichia coli and Bacillus cereus decreased at each SF concentration. ASF was more effective against E. coli, B. cereus, and Staphylococcus aureus than the USF efficiency. However, USF exhibited more inhibitory effects on the growth of Enterobacteriaceae compared to the ASF efficiency. When comparing the ASF and USF, autoclave caused a considerable decrease in molecular weight and uronic acid content, increased fucose and galactose, and made no significant changes in NMR spectra. Fucoidan effectively promoted probiotic bacterial growth and reduced pathogenic outbreaks in the medium. Therefore, it can occur as a new algal prebiotic and antibacterial agent.


Assuntos
Antibacterianos , Laminaria , Polissacarídeos , Prebióticos , Polissacarídeos/química , Polissacarídeos/farmacologia , Laminaria/química , Antibacterianos/farmacologia , Antibacterianos/química , Peso Molecular , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Algas Comestíveis
11.
Mar Drugs ; 22(4)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38667805

RESUMO

Three Laminaria japonica polysaccharides (LJPs) extracted via water extraction (LJP-W), acid extraction (LJP-A), and enzymatic extraction (LJP-E) were used as raw materials to be cross-linked with chitosan and polyvinyl alcohol to prepare hydrogels. Compared with conventional hydrogel systems, all three types of LJP-based polysaccharide hydrogels exhibited better swelling properties (14 times their original weight) and the absorption ability of simulated body fluid (first 2 h: 6-10%). They also demonstrated better rigidity and mechanical strength. Young's modulus of LJP-E was 4 times that of the blank. In terms of hemostatic properties, all three polysaccharide hydrogels did not show significant cytotoxic and hemolytic properties. The enzyme- and acid-extracted hydrogels (LJP-Gel-A and LJP-Gel-E) demonstrated better whole-blood coagulant ability compared with the water-extracted hydrogel (LJP-Gel-W), as evidenced by the whole blood coagulation index being half that of LJP-Gel-W. Additionally, the lactate dehydrogenase viabilities of LJP-Gel-A and LJP-Gel-E were significantly higher, at about four and three times those of water extraction, respectively. The above results suggested that LJP-Gel-A and LJP-Gel-E exhibited better blood coagulation capabilities than LJP-Gel-W, due to their enhanced platelet enrichment and adhesion properties. Consequently, these hydrogels are more conducive to promoting coagulation and have good potential for wound hemostasis.


Assuntos
Coagulação Sanguínea , Algas Comestíveis , Hemostáticos , Hidrogéis , Laminaria , Polissacarídeos , Hidrogéis/química , Hidrogéis/farmacologia , Laminaria/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Coagulação Sanguínea/efeitos dos fármacos , Hemostáticos/farmacologia , Hemostáticos/química , Hemostáticos/isolamento & purificação , Humanos , Animais , Quitosana/química , Quitosana/farmacologia , Álcool de Polivinil/química , Hemostasia/efeitos dos fármacos , Hemólise/efeitos dos fármacos
12.
Mar Pollut Bull ; 202: 116289, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564822

RESUMO

Seaweeds are ecosystem engineers that can serve as habitat, sequester carbon, buffer ecosystems against acidification, and, in an aquaculture setting, represent an important food source. One health issue regarding the consumption of seaweeds and specifically, kelp, is the accumulation of some trace elements of concern within tissues. As atmospheric CO2 concentrations rise, and global oceans acidify, the concentrations of elements in seawater and kelp may change. Here, we cultivated the sugar kelp, Saccharina latissima under ambient (~400 µatm) and elevated pCO2 (600-2400 µatm) conditions and examined the accumulation of trace elements using x-ray powder diffraction, sub-micron resolution x-ray imaging, and inductively coupled plasma mass spectrometry. Exposure of S. latissima to higher concentrations of pCO2 and lower pH caused a significant increase (p < 0.05) in the iodine and arsenic content of kelp along with increased subcellular heterogeneity of these two elements as well as bromine. The iodine-to­calcium and bromine-to­calcium ratios of kelp also increased significantly under high CO2/low pH (p < 0.05). In contrast, high CO2/low pH significantly reduced levels of copper and cadmium in kelp tissue (p < 0.05) and there were significant inverse correlations between concentrations of pCO2 and concentrations of cadmium and copper in kelp (p < 0.05). Changes in copper and cadmium levels in kelp were counter to expected changes in their free ionic concentrations in seawater, suggesting that the influence of low pH on algal physiology was an important control on the elemental content of kelp. Collectively, these findings reveal the complex effects of ocean acidification on the elemental composition of seaweeds and indicate that the elemental content of seaweeds used as food must be carefully monitored as climate change accelerates this century.


Assuntos
Dióxido de Carbono , Algas Comestíveis , Kelp , Laminaria , Água do Mar , Oligoelementos , Kelp/química , Oligoelementos/análise , Água do Mar/química , Concentração de Íons de Hidrogênio , Dióxido de Carbono/análise , Oceanos e Mares , Poluentes Químicos da Água/análise , Acidificação dos Oceanos
13.
Int J Biol Macromol ; 267(Pt 1): 131214, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580029

RESUMO

This study aimed to investigate the physicochemical properties of soluble dietary fiber (SDF) and cellulose enriched in Saccharina japonica by-products and to evaluate their anti-colitis effects. The water-holding capacity (WHC), swelling capacity (SC), cation exchange capacity (CEC), and antioxidant properties of SDF were superior to cellulose. The ΔH of SDF and cellulose was 340.73 J/g and 134.56 J/g, and the average particle size of them was 43.858 µm and 97.350 µm. The viscosity of SDF was positively correlated with the content. SEM revealed that the microstructure of SDF was porous, whereas cellulose was folded. SDF contained seven monosaccharides such as mannuronic acid and mannose, while cellulose had a single glucose composition. It was also shown that both SDF and cellulose reversed the pathological process of colitis by inhibiting weight loss, preventing colon injury, balancing oxidative stress, and regulating the level of inflammation, with the optimal dose being 1.5 g/kg. The difference was that SDF inhibited the expression of NF-кB and TNF-α, while cellulose up-regulated the expression of PPAR-γ and IL-10. Additionally, SDF could more positively control the expression of ZO-1, whereas cellulose was superior in improving the expression of Occludin. Interestingly, SDF could restore the structure of norank_f_Muribaculaceae and Lachnospiraceae_NK4A136_group to ameliorate ulcerative colitis (UC), whereas cellulose mainly regulated the abundance of norank_f_Muribaculaceae, Faecalibaculum, Bacteroides and unclassified_f__Lachnospiraceae. The production of short-chain fatty acids (SCFAs) was also found to be restored by SDF and cellulose. Overall, SDF and cellulose can be considered important dietary components for treating and preventing UC.


Assuntos
Celulose , Colite , Fibras na Dieta , Algas Comestíveis , Microbioma Gastrointestinal , Laminaria , Celulose/farmacologia , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Fibras na Dieta/farmacologia , Colite/metabolismo , Colite/induzido quimicamente , Ácidos Graxos Voláteis/metabolismo , Masculino , Solubilidade , Inflamação/metabolismo , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Modelos Animais de Doenças
14.
Chembiochem ; 25(8): e202400010, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38439711

RESUMO

A plethora of di- and oligosaccharides isolated from the natural sources are used in food and pharmaceutical industry. An enzymatic hydrolysis of fungal cell wall ß-glucans is a good alternative to produce the desired oligosaccharides with different functionalities, such as the flavour enhancer gentiobiose. We have previously identified PsGly30A as a potential yeast cell wall degrading ß-1,6-glycosidase. The aim of this study is to characterise the PsGly30A enzyme, a member of the GH30 family, and to evaluate its suitability for the production of gentiobiose from ß-1,6-glucans. An endo-ß-1,6-glucanase PsGly30A encoding gene from Paenibacillus sp. GKG has been cloned and overexpressed in Escherichia coli. The recombinant enzyme has been active towards pustulan and yeast ß-glucan, but not on laminarin from the Laminaria digitata, confirming the endo-ß-1,6-glucanase mode of action. The PsGly30A shows the highest activity at pH 5.5 and 50 °C. The specific activity of PsGly30A on pustulan (1262±82 U/mg) is among the highest reported for GH30 ß-1,6-glycosidases. Moreover, gentiobiose is the major reaction product when pustulan, yeast ß-glucan or yeast cell walls have been used as a substrate. Therefore, PsGly30A is a promising catalyst for valorisation of the yeast-related by-products.


Assuntos
Dissacarídeos , Algas Comestíveis , Laminaria , Paenibacillus , beta-Glucanas , Saccharomyces cerevisiae/metabolismo , Concentração de Íons de Hidrogênio , Glucanos , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Oligossacarídeos , Especificidade por Substrato
15.
Environ Sci Technol ; 58(13): 5796-5810, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38507562

RESUMO

Globally kelp farming is gaining attention to mitigate land-use pressures and achieve carbon neutrality. However, the influence of environmental perturbations on kelp farming remains largely unknown. Recently, a severe disease outbreak caused extensive kelp mortality in Sanggou Bay, China, one of the world's largest high-density kelp farming areas. Here, through in situ investigations and simulation experiments, we find indications that an anomalously dramatic increase in elevated coastal seawater light penetration may have contributed to dysbiosis in the kelp Saccharina japonica's microbiome. This dysbiosis promoted the proliferation of opportunistic pathogenic Enterobacterales, mainly including the genera Colwellia and Pseudoalteromonas. Using transcriptomic analyses, we revealed that high-light conditions likely induced oxidative stress in kelp, potentially facilitating opportunistic bacterial Enterobacterales attack that activates a terrestrial plant-like pattern recognition receptor system in kelp. Furthermore, we uncover crucial genotypic determinants of Enterobacterales dominance and pathogenicity within kelp tissue, including pathogen-associated molecular patterns, potential membrane-damaging toxins, and alginate and mannitol lysis capability. Finally, through analysis of kelp-associated microbiome data sets under the influence of ocean warming and acidification, we conclude that such Enterobacterales favoring microbiome shifts are likely to become more prevalent in future environmental conditions. Our study highlights the need for understanding complex environmental influences on kelp health and associated microbiomes for the sustainable development of seaweed farming.


Assuntos
Algas Comestíveis , Kelp , Laminaria , Humanos , Kelp/microbiologia , Disbiose , Agricultura , Ecossistema
16.
Science ; 383(6689): eadk5466, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38513029

RESUMO

In many eukaryotes, genetic sex determination is not governed by XX/XY or ZW/ZZ systems but by a specialized region on the poorly studied U (female) or V (male) sex chromosomes. Previous studies have hinted at the existence of a dominant male-sex factor on the V chromosome in brown algae, a group of multicellular eukaryotes distantly related to animals and plants. The nature of this factor has remained elusive. Here, we demonstrate that an HMG-box gene acts as the male-determining factor in brown algae, mirroring the role HMG-box genes play in sex determination in animals. Over a billion-year evolutionary timeline, these lineages have independently co-opted the HMG box for male determination, representing a paradigm for evolution's ability to recurrently use the same genetic "toolkit" to accomplish similar tasks.


Assuntos
Algas Comestíveis , Proteínas HMGB , Laminaria , Phaeophyceae , Cromossomos Sexuais , Processos de Determinação Sexual , Animais , Evolução Biológica , Phaeophyceae/genética , Cromossomos Sexuais/genética , Processos de Determinação Sexual/genética , Cromossomo Y , Proteínas HMGB/genética , Cromossomos de Plantas/genética , Domínios HMG-Box , Algas Comestíveis/genética , Laminaria/genética , Pólen/genética
17.
Int J Biol Macromol ; 263(Pt 2): 130506, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423426

RESUMO

Carbonic anhydrase (CA) is a crucial component of CO2-concentrating mechanism (CCM) in macroalgae. In Saccharina japonica, an important brown seaweed, 11 CAs, including 5 α-, 3 ß-, and 3 γ-CAs, have been documented. Among them, one α-CA and one ß-CA were localized in the periplasmic space, one α-CA was found in the chloroplast, and one γ-CA was situated in mitochondria. Notably, the known γ-CAs have predominantly been identified in mitochondria. In this study, we identified a chloroplastic γ-type CA, Sjγ-CA2, in S. japonica. Based on the reported amino acid sequence of Sjγ-CA2, the epitope peptide for monoclonal antibody production was selected as 165 Pro-305. After purification and specificity identification, anti-SjγCA2 monoclonal antibody was employed in immunogold electron microscopy. The results illustrated that Sjγ-CA2 was localized in the chloroplasts of both gametophytes and sporophytes of S. japonica. Subsequently, immunoprecipitation coupled with LC-MS/MS analysis revealed that Sjγ-CA2 mainly interacted with photosynthesis-related proteins. Moreover, the first 65 amino acids at N-terminal of Sjγ-CA2 was identified as the chloroplast transit peptide by the transient expression of GFP-SjγCA2 fused protein in tabacco. Real-time PCR results demonstrated an up-regulation of the transcription of Sjγ-CA2 gene in response to high CO2 concentration. These findings implied that Sjγ-CA2 might contribute to minimizing the leakage of CO2 from chloroplasts and help maintaining a high concentration of CO2 around Rubisco.


Assuntos
Anidrases Carbônicas , Algas Comestíveis , Laminaria , Alga Marinha , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Alga Marinha/metabolismo , Carbono , Dióxido de Carbono/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Fotossíntese
18.
Int J Biol Macromol ; 263(Pt 2): 130343, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401582

RESUMO

The aim of this study was to investigate the effects of Laminaria japonica polysaccharide (LJP) and coumaric acid (CA) on pasting, rheological, retrogradation and structural properties of corn starch (CS). Rapid viscosity analysis (RVA) revealed that LJP significantly increased the peak viscosity, trough viscosity, final viscosity, and setback viscosity of CS gel (p < 0.05) in a concentration-dependent manner. The addition of LJP and CA simultaneously caused the pasting of CS to need a greater temperature (from 75.53 °C to 78.75 °C), suggesting that LJP and CA made CS pasting more difficult. Dynamic viscoelasticity measurements found that all gels exhibited typical characteristics of weak gel. When compared to CS gel, 4 % LJP increased the viscosity and fluidity of gel and the simultaneous addition of LJP and CA reduced the elasticity. The steady shear results showed that the all gels were pseudoplastic fluids with shear-thinning behavior. In the meanwhile, the addition of LJP and CA enhanced the pseudoplasticity of CS-LJP-CA gel and improved its shear thinning. Furthermore, thermodynamic results showed that 8 % LJP promoted the retrogradation of CS gel and 2.0 % CA delayed the retrogradation of CS gel. Notably, on the 7th day of retrogradation, 2.0 % CA significantly decreased the retrogradation rate of CS-LJP by 19.31 % as compared to CS + 8 % LJP. Microstructure observation revealed that LJP made the honeycomb network structure of CS gel partially collapsed, and the surface of CS-LJP gel developed venation. Nevertheless, the structure of CS-LJP gel was clearly enhanced by adding CA. FT-IR spectra demonstrated that the addition of LJP or CA to CS did not result in the formation of a new distinctive peak in the system, suggesting the absence of a new group. Moreover, LF-NMR findings showed that LJP and CA strengthened the gel structure of CS and enhanced its capacity to retain water. This study not only provided a new insight into using LJP and CA to regulate the gel properties of CS, but also provided scientific strategy for developing starchy foods.


Assuntos
Algas Comestíveis , Laminaria , Amido , Zea mays , Amido/química , Zea mays/química , Ácidos Cumáricos , Espectroscopia de Infravermelho com Transformada de Fourier , Polissacarídeos/farmacologia , Reologia , Viscosidade , Géis/química
19.
Microbiome ; 12(1): 27, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38350953

RESUMO

BACKGROUND: Seagrasses offer various ecosystem services and possess high levels of primary productivity. However, the development of mariculture has affected the homeostasis of seagrass meadow ecosystems. Plant-microbiome associations are essential for seagrasses health, but little is known about the role of environmental microbiomes and how they affect seagrass in a mariculture environment. In this study, we investigated the influence of mariculture on the rhizosphere and seawater microbiome surrounding Zostera marina and focused on the bacterial, eukaryotic, and fungal components in the composition, diversity, metabolism, and responses to mariculture-related environmental factors. RESULTS: Significant differences in the composition, richness, diversity, and internal relations of the bacterial community between the seawater and rhizosphere sediment surrounding Z. marina were observed, while differences in the eukaryotic and fungal communities were less significant. More complex bacterial and fungal co-occurrence networks were found in the seawater and rhizosphere sediment of the Saccharina japonica (SJ) and sea cucumber (SC) culture zones. The seawater in the SJ zone had higher levels of dissimilatory and assimilatory nitrate reduction, denitrification, and nitrogen fixation processes than the other three zones. The assimilatory sulfate reduction enzymes were higher in the rhizosphere sediments of the SJ zone than in the other three zones. Tetracycline, sulfonamide, and diaminopyrimidine resistance genes were enriched in the mariculture SJ and SC zones. CONCLUSIONS: Our findings might contribute to a better understanding of the effects of mariculture on the seagrass and the meadow ecosystems and thus revealing their potential operating mechanisms. These insights may serve to raise awareness of the effects of human activities on natural ecosystems, regulation of antibiotic usage, and environmental restoration. Video Abstract.


Assuntos
Algas Comestíveis , Laminaria , Microbiota , Zosteraceae , Humanos , Rizosfera , Zosteraceae/microbiologia , Zosteraceae/fisiologia , Água do Mar/microbiologia , Microbiota/genética , Bactérias/genética
20.
Cardiovasc Ther ; 2024: 8649365, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375358

RESUMO

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide, and hyperlipidemia is one major inducing factor of CVD. It is worthy to note that fucoidans are reported to have hypolipidemic activity with species specificity; however, the underlying mechanisms of action are far from clarification. This study is aimed at investigating the plasma lipid-lowering mechanisms of the fucoidan from L. japonica Aresch by detecting the levels of hepatic genes that are involved in lipid metabolism. Our results demonstrated that the fucoidan F3 significantly lowered total cholesterol and triglyceride in C57BL/6J mice fed a high-fat diet. In the mouse liver, fucoidan F3 intervention significantly increased the gene expression of peroxisome proliferator-activated receptor (PPAR) α, liver X receptor (LXR) α and ß, and ATP-binding cassette transporter (ABC) G1 and G8 and decreased the expression of proprotein convertase subtilisin/kexin type 9 (PCSK9), low-density lipoprotein receptor, cholesterol 7 alpha-hydroxylase A1, and sterol regulatory element-binding protein (SREBP) 1c and SREBP-2. These results demonstrated that the antihyperlipidemic effects of fucoidan F3 are related to its activation of PPARα and LXR/ABC signaling pathways and inactivation of SREBPs. In conclusion, fucoidan F3 may be explored as a potential compound for prevention or treatment of lipid disorders.


Assuntos
Doenças Cardiovasculares , Algas Comestíveis , Hiperlipidemias , Laminaria , Polissacarídeos , Camundongos , Animais , Pró-Proteína Convertase 9/metabolismo , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/farmacologia , Camundongos Endogâmicos C57BL , Fígado , Colesterol/metabolismo , Colesterol/farmacologia , Doenças Cardiovasculares/metabolismo , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...