Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(2): e0281587, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36758031

RESUMO

Legionella organisms are ubiquitous environmental bacteria that are responsible for human Legionnaires' disease, a fatal form of severe pneumonia. These bacteria replicate intracellularly in a wide spectrum of host cells within a distinct compartment termed the Legionella-containing vacuole (LCV). Effector proteins translocated by the Dot/Icm apparatus extensively modulate host cellular functions to aid in the biogenesis of the LCV and intracellular proliferation. RavZ is an L. pneumophila effector that functions as a cysteine protease to hydrolyze lipidated LC3, thereby compromising the host autophagic response to bacterial infection. In this study, we characterized the RavZ (RavZLP) ortholog in L. longbeachae (RavZLLO), the second leading cause of Legionella infections in the world. RavZLLO and RavZLP share approximately 60% sequence identity and a conserved His-Asp-Cys catalytic triad. RavZLLO is recognized by the Dot/Icm systems of both L. pneumophila and L. longbeachae. Upon translocation into the host, it suppresses autophagy signaling in cells challenged with both species, indicating the functional redundancy of RavZLLO and RavZLP. Additionally, ectopic expression of RavZLLO but not RavZLP in mammalian cells reduces the levels of cellular polyubiquitinated and polyneddylated proteins. Consistent with this process, RavZLLO regulates the accumulation of polyubiquitinated species on the LCV during L. longbeachae infection.


Assuntos
Legionella longbeachae , Legionella pneumophila , Legionella , Doença dos Legionários , Animais , Humanos , Legionella longbeachae/metabolismo , Proteínas de Bactérias/genética , Doença dos Legionários/microbiologia , Vacúolos/metabolismo , Ubiquitinação , Fagossomos/metabolismo , Autofagia , Mamíferos/metabolismo
2.
Nat Chem Biol ; 13(7): 730-736, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28481346

RESUMO

Although tetracyclines are an important class of antibiotics for use in agriculture and the clinic, their efficacy is threatened by increasing resistance. Resistance to tetracyclines can occur through efflux, ribosomal protection, or enzymatic inactivation. Surprisingly, tetracycline enzymatic inactivation has remained largely unexplored, despite providing the distinct advantage of antibiotic clearance. The tetracycline destructases are a recently discovered family of tetracycline-inactivating flavoenzymes from pathogens and soil metagenomes that have a high potential for broad dissemination. Here, we show that tetracycline destructases accommodate tetracycline-class antibiotics in diverse and novel orientations for catalysis, and antibiotic binding drives unprecedented structural dynamics facilitating tetracycline inactivation. We identify a key inhibitor binding mode that locks the flavin adenine dinucleotide cofactor in an inactive state, functionally rescuing tetracycline activity. Our results reveal the potential of a new tetracycline and tetracycline destructase inhibitor combination therapy strategy to overcome resistance by enzymatic inactivation and restore the use of an important class of antibiotics.


Assuntos
Antibacterianos/metabolismo , Inibidores Enzimáticos/farmacologia , Legionella longbeachae/efeitos dos fármacos , Legionella longbeachae/enzimologia , Resistência a Tetraciclina/efeitos dos fármacos , Tetraciclina/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Flavina-Adenina Dinucleotídeo/metabolismo , Legionella longbeachae/metabolismo , Modelos Moleculares , Conformação Molecular , Relação Estrutura-Atividade , Tetraciclina/química , Tetraciclina/farmacologia
3.
Infect Immun ; 83(10): 4081-92, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26216429

RESUMO

Legionella organisms are environmental bacteria and accidental human pathogens that can cause severe pneumonia, termed Legionnaires' disease. These bacteria replicate within a pathogen-derived vacuole termed the Legionella-containing vacuole (LCV). Our understanding of the development and dynamics of this vacuole is based on extensive analysis of Legionella pneumophila. Here, we have characterized the Legionella longbeachae replicative vacuole (longbeachae-LCV) and demonstrated that, despite important genomic differences, key features of the replicative LCV are comparable to those of the LCV of L. pneumophila (pneumophila-LCV). We constructed a Dot/Icm-deficient strain by deleting dotB and demonstrated the inability of this mutant to replicate inside THP-1 cells. L. longbeachae does not enter THP-1 cells as efficiently as L. pneumophila, and this is reflected in the observation that translocation of BlaM-RalFLLO (where RalFLLO is the L. longbeachae homologue of RalF) into THP-1 cells by the L. longbeachae Dot/Icm system is less efficient than that by L. pneumophila. This difference is negated in A549 cells where L. longbeachae and L. pneumophila infect with similar entry dynamics. A ß-lactamase assay was employed to demonstrate the translocation of a novel family of proteins, the Rab-like effector (Rle) proteins. Immunofluorescence analysis confirmed that these proteins enter the host cell during infection and display distinct subcellular localizations, with RleA and RleC present on the longbeachae-LCV. We observed that the host Rab GTPase, Rab1, and the v-SNARE Sec22b are also recruited to the longbeachae-LCV during the early stages of infection, coinciding with the LCV avoiding endocytic maturation. These studies further our understanding of the L. longbeachae replicative vacuole, highlighting phenotypic similarities to the vacuole of L. pneumophila as well as unique aspects of LCV biology.


Assuntos
Proteínas de Bactérias/metabolismo , Legionella longbeachae/metabolismo , Legionella pneumophila/metabolismo , Doença dos Legionários/microbiologia , Sistemas de Secreção Tipo IV/metabolismo , Vacúolos/microbiologia , Proteínas de Bactérias/genética , Linhagem Celular , Humanos , Legionella longbeachae/genética , Legionella pneumophila/genética , Transporte Proteico , Sistemas de Secreção Tipo IV/genética
4.
Infect Immun ; 82(10): 4021-33, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25024371

RESUMO

Legionella spp. cause the severe pneumonia Legionnaires' disease. The environmental bacteria replicate intracellularly in free-living amoebae and human alveolar macrophages within a distinct, endoplasmic reticulum (ER)-derived compartment termed the Legionella-containing vacuole (LCV). LCV formation requires the bacterial Icm/Dot type IV secretion system (T4SS) that translocates into host cells a plethora of different "effector" proteins, some of which anchor to the pathogen vacuole by binding to phosphoinositide (PI) lipids. Here, we identified by unbiased pulldown assays in Legionella longbeachae lysates a 111-kDa SidC homologue as the major phosphatidylinositol 4-phosphate [PtdIns(4)P]-binding protein. The PI-binding domain was mapped to a 20-kDa P4C [PtdIns(4)P binding of SidC] fragment. Isothermal titration calorimetry revealed that SidC of L. longbeachae (SidC(Llo)) binds PtdIns(4)P with a K(d) (dissociation constant) of 71 nM, which is 3 to 4 times lower than that of the SidC orthologue of Legionella pneumophila (SidC(Lpn)). Upon infection of RAW 264.7 macrophages with L. longbeachae, endogenous SidC(Llo) or ectopically produced SidC(Lpn) localized in an Icm/Dot-dependent manner to the PtdIns(4)P-positive LCVs. An L. longbeachae ΔsidC deletion mutant was impaired for calnexin recruitment to LCVs in Dictyostelium discoideum amoebae and outcompeted by wild-type bacteria in Acanthamoeba castellanii. Calnexin recruitment was restored by SidC(Llo) or its orthologues SidC(Lpn) and SdcA(Lpn). Conversely, calnexin recruitment was restored by SidC(Llo) in L. pneumophila lacking sidC and sdcA. Together, biochemical, genetic, and cell biological data indicate that SidC(Llo) is an L. longbeachae effector that binds through a P4C domain with high affinity to PtdIns(4)P on LCVs, promotes ER recruitment to the LCV, and thus plays a role in pathogen-host interactions.


Assuntos
Proteínas de Bactérias/metabolismo , Retículo Endoplasmático/microbiologia , Interações Hospedeiro-Patógeno , Legionella longbeachae/fisiologia , Fosfatos de Fosfatidilinositol/metabolismo , Vacúolos/microbiologia , Acanthamoeba castellanii/microbiologia , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Calnexina/metabolismo , Calorimetria , Linhagem Celular , Mapeamento Cromossômico , Dictyostelium/microbiologia , Deleção de Genes , Cinética , Legionella longbeachae/genética , Legionella longbeachae/metabolismo , Macrófagos/microbiologia , Camundongos , Peso Molecular , Ligação Proteica
5.
Microbiology (Reading) ; 158(Pt 3): 721-735, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22160401

RESUMO

The Gram-negative bacterium Legionella pneumophila elaborates the siderophore legiobactin. We previously showed that cytoplasmic LbtA helps mediate legiobactin synthesis, inner-membrane LbtB promotes export of legiobactin, and outer-membrane LbtU acts as the ferrisiderophore receptor. RT-PCR analyses now identified lbtC as an iron-repressed gene that is the final gene in an operon containing lbtA and lbtB. In silico analysis predicted that LbtC is an inner-membrane protein that belongs to the major facilitator superfamily (MFS). Although capable of normal growth in standard media, lbtC mutants were defective for growth on iron-depleted agar media. While producing normal levels of legiobactin, lbtC mutants were unable to utilize supplied legiobactin to stimulate growth on iron-depleted media and displayed an impaired ability to take up radiolabelled iron. All lbtC mutant phenotypes were complemented by reintroduction of an intact copy of lbtC. When a cloned copy of both lbtC and lbtU was introduced into a heterologous bacterium (Legionella longbeachae), the organism acquired the ability to utilize legiobactin to grow better on low-iron media. Together, these data indicate that LbtC is involved in the uptake of legiobactin, and based upon its predicted location is most likely the mediator of ferrilegiobactin transport across the inner membrane. The data are also a unique documentation of how an MFS protein can promote bacterial iron-siderophore import, standing in contrast to the vast majority of studies which have defined ABC-type permeases as the mediators of siderophore import across the Gram-negative inner membrane or the Gram-positive cytoplasmic membrane.


Assuntos
Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Legionella pneumophila/metabolismo , Proteínas de Membrana/metabolismo , Meios de Cultura/química , Deleção de Genes , Teste de Complementação Genética , Legionella longbeachae/crescimento & desenvolvimento , Legionella longbeachae/metabolismo , Legionella pneumophila/crescimento & desenvolvimento , Proteínas de Membrana/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Cell Microbiol ; 9(6): 1571-87, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17309675

RESUMO

Legionella pneumophila is the predominant cause of Legionnaires' disease in the USA and Europe in contrast to Legionella longbeachaea, which is the leading cause of the disease in Western Australia. The ability of L. pneumophila to replicate intracellularly is triggered at the post-exponential phase along with expression of other virulence traits, such as motility. We show that while motility of L. longbeachaea is triggered upon growth transition into post-exponential phase, its ability to proliferate intracellularly is totally independent of the bacterial growth phase. Within macrophages, L. pneumophila replicates in a phagosome that excludes early and late endocytic markers and is surrounded by the rough endoplasmic reticulum (RER). In contrast, the L. longbeachaea phagosome colocalizes with the early endosomal marker early endosomal antigen 1 (EEA1) and the late endosomal markers lysosomal associated membrane glycoprotein 2 (LAMP-2) and mannose 6-phosphate receptor (M6PR), and is surrounded by the RER. The L. longbeachaea phagosome does not colocalize with the vacuolar ATPase (vATPase) proton pump, and the lysosomal luminal protease Cathepsin D, or the lysosomal tracer Texas red Ovalbumin (TROV). Intracellular proliferation of L. longbeachaea occurs in LAMP-2-positive phagosomes that are remodelled by the RER. Despite their distinct trafficking, both L. longbeachaea and L. pneumophila can replicate in communal phagosomes whose biogenesis is predominantly modulated by L. longbeachaea into LAMP-2-positive phagosomes. In addition, the L. pneumophila dotA mutant is rescued for intracellular replication if it co-inhabits the phagosome with L. longbeachaea. During late stages of infection, L. longbeachaea escape into the cytoplasm, prior to lysis of the macrophage, similar to L. pneumophila. We conclude that the L. longbeachaea phagosome matures to a non-acidified late endosome-like stage that is remodelled by the RER, indicating an idiosyncratic trafficking of L. longbeachaea compared with other intracellular pathogens, and a divergence in its intracellular lifestyle from L. pneumophila. In addition, re-routing biogenesis of the L. pneumophila phagosome into a late endosome controlled by L. longbeachaea has no effect on intracellular replication.


Assuntos
Legionella longbeachae/fisiologia , Fagossomos/microbiologia , Proteínas de Bactérias/metabolismo , Catepsina D/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Interferon gama/metabolismo , Legionella longbeachae/metabolismo , Legionella longbeachae/patogenicidade , Proteína 2 de Membrana Associada ao Lisossomo , Proteínas de Membrana Lisossomal/metabolismo , Macrófagos/microbiologia , Proteínas de Membrana/metabolismo , Ovalbumina/metabolismo , Receptor IGF Tipo 2/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Xantenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...