Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Open Biol ; 11(9): 210131, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34465213

RESUMO

Expansion microscopy (ExM) has become a powerful super-resolution method in cell biology. It is a simple, yet robust approach, which does not require any instrumentation or reagents beyond those present in a standard microscopy facility. In this study, we used kinetoplastid parasites Trypanosoma brucei and Leishmania major, which possess a complex, yet well-defined microtubule-based cytoskeleton, to demonstrate that this method recapitulates faithfully morphology of structures as previously revealed by a combination of sophisticated electron microscopy (EM) approaches. Importantly, we also show that due to the rapidness of image acquisition and three-dimensional reconstruction of cellular volumes ExM is capable of complementing EM approaches by providing more quantitative data. This is demonstrated on examples of less well-appreciated microtubule structures, such as the neck microtubule of T. brucei or the pocket, cytosolic and multivesicular tubule-associated microtubules of L. major. We further demonstrate that ExM enables identifying cell types rare in a population, such as cells in mitosis and cytokinesis. Three-dimensional reconstruction of an entire volume of these cells provided details on the morphology of the mitotic spindle and the cleavage furrow. Finally, we show that established antibody markers of major cytoskeletal structures function well in ExM, which together with the ability to visualize proteins tagged with small epitope tags will facilitate studies of the kinetoplastid cytoskeleton.


Assuntos
Cinetocoros/metabolismo , Kinetoplastida/metabolismo , Leishmania major/metabolismo , Microscopia Eletrônica/métodos , Microtúbulos/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Cinetocoros/ultraestrutura , Kinetoplastida/ultraestrutura , Leishmania major/ultraestrutura , Microtúbulos/ultraestrutura , Trypanosoma brucei brucei/ultraestrutura
2.
Biomed Pharmacother ; 137: 111294, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33571836

RESUMO

The drugs used to treat cutaneous leishmaniasis (CL) cannot effectively penetrate lesions. Nanogold and nanosilver have been used for treating or enhancing drug delivery in CL. The present study used Commiphora molmol (myrrh) to synthesize silver nanoparticles (MSNPs). The MSNPs were characterized using transmission electron microscopy and energy-dispersive spectroscopy. In addition, antiparasitic effect of myrrh silver nanoparticles (MSNPs) was assessed on Leishmania major both in vitro and in vivo. Five concentrations of MSNPs (10, 50, 80, 100, and 150 µl/100 µL) were used to study their effect on L. major cultures in vitro, and MSNPs were also applied topically to subcutaneous lesions in mice in vivo. The results showed that the MSNPs were 49.09 nm in size. MSNPs, showed a marked and significant (p ≤ 0.05) growth inhibition of L. major promastigotes which was concentration dependent. Overall, the higher concentrations (100, 150 µl/100 µL had a significantly greater inhibitory effect for the MSNPs in comparison to the chemical nanoparticles (CNPs) and pentostam at the same concentrations. Lesions healed completely in 21 d after MSNP treatment in vivo, while pentostam, a commercial drug, and CNPs showed a moderate healing effect on the lesions. Thus, MSNPs were more effective than pentostam and CNPs both in the in vivo and in vitro studies. MSNPs can therefore be promising candidates for various nanomedicine applications.


Assuntos
Commiphora/química , Excipientes/química , Química Verde , Leishmania major/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Nanopartículas Metálicas , Substâncias Redutoras/química , Compostos de Prata/farmacologia , Tripanossomicidas/farmacologia , Animais , Modelos Animais de Doenças , Composição de Medicamentos , Leishmania major/crescimento & desenvolvimento , Leishmania major/ultraestrutura , Leishmaniose Cutânea/parasitologia , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Parasitária , Compostos de Prata/síntese química , Tripanossomicidas/síntese química
3.
J Struct Biol ; 211(2): 107536, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32473201

RESUMO

Complete genome sequencing of the kinetoplastid protozoans Trypanosoma cruzi, Trypanosoma brucei and Leishmania major (Tritryp), published in 2005, opened up new perspectives for drug development targeting Chagas disease, African sleeping sickness and Leishmaniasis, neglected diseases affecting millions of most economically disadvantaged people. Still, half of the Tritryp genes code for proteins of unknown function. Moreover, almost 50% of conserved eukaryotic protein domains are missing in the Tritryp genomes. This suggests that functional and structural characterization of proteins of unknown function could reveal novel protein folds used by the trypanosomes for common cellular processes. Furthermore, proteins without homologous counterparts in humans may provide potential targets for therapeutic intervention. Here we describe the crystal structure of the T. cruzi protein Q4D6Q6, a conserved and kinetoplastid-specific protein essential for cell viability. Q4D6Q6 is a representative of a family of 20 orthologs, all annotated as proteins of unknown function. Q4D6Q6 monomers adopt a ßßαßßαßß topology and form a propeller-like tetramer. Oligomerization was verified in solution using NMR, SAXS, analytical ultra-centrifugation and gel filtration chromatography. A rigorous search for similar structures using the DALI server revealed similarities with propeller-like structures of several different functions. Although a Q4D6Q6 function could not be inferred from such structural comparisons, the presence of an oxidized cysteine at position 69, part of a cluster with phosphorylated serines and hydrophobic residues, identifies a highly reactive site and suggests a role of this cysteine as a nucleophile in a post-translational modification reaction.


Assuntos
Proteínas de Protozoários/ultraestrutura , Trypanosoma cruzi/ultraestrutura , Animais , Humanos , Leishmania major/ultraestrutura , Modelos Moleculares , Proteínas de Protozoários/genética , Espalhamento a Baixo Ângulo , Trypanosoma brucei brucei/ultraestrutura , Trypanosoma cruzi/genética , Difração de Raios X
4.
Exp Parasitol ; 209: 107823, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31862270

RESUMO

Typically, antimicrobial peptides (AMPs) are short positive charged peptides serving a key role in innate immunity as well as antimicrobial activity. Discovering novel therapeutic agents is considered as an undeniable demand due to increasing microbial species with antibiotic resistance. In this direction, the unique ability of AMPs to modulate immune responses highlighted them as novel drug candidates in the field of microbiology. Patients affected by leishmaniasis; a neglected tropical disease, confront serious problems for their treatment including resistance to common drugs as well as toxicity and high cost of therapy. So, there is a need for development of new drug candidates to control the diseases. Jellein, a peptide derived from royal jelly of honeybee has been shown to have promising effect against several bacterial and fungal species. In current study, anti-leishmanial effect of Jellein and its lauric acid conjugated form was investigated against two forms of Leishmania major (L. major) parasite. Moreover, cytotoxic effect of these peptides was studied in THP1 cell line and human Red Blood Cells (RBCs). Furthermore, the mechanism of action of peptides on L. major promastigotes was assessed through different methods. The results demonstrated that, conjugation of lauric acid to Jellein not only had no effect on the elevation of antimicrobial activity but also halted it completely. Moreover, Jellein caused a limitation in the number of L. major promastigotes by pore formation as well as changing the membrane potential rather than induction of apoptosis or activation of caspases.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Antiprotozoários/farmacologia , Leishmania major/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Oligopeptídeos/química , Antígenos de Diferenciação de Linfócitos B/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/toxicidade , Antiprotozoários/uso terapêutico , Antiprotozoários/toxicidade , Caspases/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Ácidos Graxos/química , Citometria de Fluxo , Hemólise , Antígenos de Histocompatibilidade Classe II/farmacologia , Humanos , Ácidos Láuricos/farmacologia , Ácidos Láuricos/uso terapêutico , Ácidos Láuricos/toxicidade , Leishmania major/ultraestrutura , Potenciais da Membrana/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Doenças Negligenciadas/tratamento farmacológico , Doenças Negligenciadas/parasitologia , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Oligopeptídeos/toxicidade
5.
Exp Parasitol ; 205: 107747, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31442454

RESUMO

Development of new chemotherapeutic agents is an essential issue in the treatment and control of a disease. This study aimed to evaluate the anti-leishmanial activity of amiodarone, an antiarrhythmic class III drug, against Leishmania major, the most prevalent etiological agent of cutaneous leishmaniasis in the old world. The proliferation of promastigotes and intracellular amastigotes in the absence or presence of amiodarone was estimated, in an in vitro study. For in vivo study, five weeks after infection of BALB/c mice with L. major, when the lesions appeared at the injection site, the mice were divided into four groups (n = 6 each); treatment was conducted for 28 consecutive days with vehicle, amiodarone at 40 mg/kg orally and glucantime at 60 mg/kg intraperitoneally. Therapy with amiodarone reduced the size of lesions compared to the untreated group after 12 days. Amiodarone decreased the parasite load and inflammatory responses, particularly the macrophages containing amastigotes, and enhanced granulation tissue formation in the dermis and subcutaneous area. The Tumor necrosis factor-α and Interleukin-6 levels were significantly lower in the cell culture supernatants of the inguinal lymph node in the amiodarone treated group compared to the vehicle and untreated groups. Amiodarone significantly increased the activity of glutathione peroxidase in comparison to the vehicle and untreated groups but did not affect the plasma levels of superoxide dismutase, malondialdehyde, adiponectin, and ferric reducing ability of plasma. Therefore, the anti- L. major activity and immunomodulatory effects of amiodarone reduced the parasitic load and enhanced wound healing in cutaneous leishmaniasis in BALB/c mice. Amiodarone reduced the lesion surface area, but it did not cure it completely.


Assuntos
Amiodarona/uso terapêutico , Antiprotozoários/uso terapêutico , Leishmania major/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Adiponectina/sangue , Amiodarona/farmacologia , Animais , Antiarrítmicos/farmacologia , Antiarrítmicos/uso terapêutico , Antiprotozoários/farmacologia , Linhagem Celular , Feminino , Glutationa Peroxidase/metabolismo , Concentração Inibidora 50 , Interleucina-6/análise , Leishmania major/ultraestrutura , Leishmaniose Cutânea/parasitologia , Linfonodos/química , Linfonodos/imunologia , Macrófagos/parasitologia , Malondialdeído/sangue , Antimoniato de Meglumina/farmacologia , Antimoniato de Meglumina/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Carga Parasitária , Distribuição Aleatória , Pele/parasitologia , Pele/patologia , Pele/ultraestrutura , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/análise
6.
Recent Pat Antiinfect Drug Discov ; 13(3): 246-255, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30227826

RESUMO

AIM AND BACKGROUND: Azoles as antifungal drugs have been used to treat leishmaniasis for many years. Several evidences suggesting that the primary target of azoles is the heme protein, which co-catalyzes cytochrome P-450-dependent 14α-demethylation of lanosterol. Little is known about the structural changes caused by azoles with atomic force microscopy (AFM) or scanning electron microscopy (SEM). In the current work, several patented antileishmanial agents reviewed (US8809555) (US 0269803 A1) (TW201802093 A). The present study aimed to determine ultrastructural damage in Leishmania major (L.major) induced by the newly synthesized azole. METHODS: In this study, we investigated the morphological alterations of the parasite treated with our new synthesized azole namely trans-2-(4-chlorophenyl)-2,3-dihydro-3-(1Himidazol- 1-yl)-4H-1-benzopyran-4-one (IF-2) against L.major promastigotes stage using two high-resolution microscopic techniques: atomic force microscopy and scanning electron microscopy. RESULTS: The results showed remarkable topographical and morphological alterations in the cell membrane at promastigote stage of L. major treated with the potent investigated azole (IF-2) ( IC50 values ≤8.9 µg/mL). Both techniques revealed membrane damage and also losing the flagellum in the observed cells. CONCLUSION: Our results strongly confirm the Leishmania cell wall as a potent target for the new synthesized azole (IF-2). Accordingly, focus on membrane integrity and glycoconjugates of Leishmania parasite to design new therapeutic agents is recommended.


Assuntos
Antiprotozoários/farmacologia , Azóis/farmacologia , Membrana Celular/ultraestrutura , Leishmania major/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Animais , Antiprotozoários/síntese química , Antiprotozoários/uso terapêutico , Azóis/síntese química , Azóis/uso terapêutico , Membrana Celular/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Leishmania major/citologia , Leishmania major/ultraestrutura , Leishmaniose/parasitologia , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Patentes como Assunto
7.
Mem Inst Oswaldo Cruz ; 113(4): e170345, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29412342

RESUMO

BACKGROUND: Leishmaniasis, one of the most neglected diseases, is a serious public health problem in many countries, including Brazil. Currently available treatments require long-term use and have serious side effects, necessitating the development of new therapeutic interventions. Because translocator protein (TSPO) levels are reduced in Leishmania amazonensis-infected cells and because this protein participates in apoptosis and immunomodulation, TSPO represents a potential target for Leishmania chemotherapy. The present study evaluated PK11195, a ligand of this protein, as an anti-leishmanial agent. OBJECTIVE: To evaluate the leishmanicidal activity of PK11195 against L. amazonensis in infected CBA mouse macrophages in vitro. METHODS: The viability of axenic L. amazonensis, Leishmania major, and Leishmania braziliensis promastigotes was assessed after 48 h treatment with PK11195 (0.2-400 µM). Additionally, intracellular parasite viability was evaluated to determine IC50 values and the number of viable parasites in infected macrophages treated with PK11195 (50-100 µM). Infected macrophages were then treated with PK11195 (25-100 µM) to determine the percentage of L. amazonensis-infected cells and the number of parasites per infected cell. Electron microscopy was used to investigate morphological changes caused by PK11195. The production of free oxygen radicals, nitric oxide, and pro-inflammatory cytokines was also evaluated in infected macrophages treated with PK11195 and primed or not primed with IFN-γ. FINDINGS: Median IC50 values for PK11195 were 14.2 µM for L. amazonensis, 8.2 µM for L. major, and 3.5 µM for L. braziliensis. The selective index value for L. amazonensis was 13.7, indicating the safety of PK11195 for future testing in mammals. Time- and dose-dependent reductions in the percentage of infected macrophages, the number of parasites per infected macrophage, and the number of viable intracellular parasites were observed. Electron microscopy revealed some morphological alterations suggestive of autophagy. Interestingly, MCP-1 and superoxide levels were reduced in L. amazonensis-infected macrophages treated with PK11195. MAIN CONCLUSIONS: PK11195 causes the killing of amastigotes in vitro by mechanisms independent of inflammatory mediators and causes morphological alterations within Leishmania parasites, suggestive of autophagy, at doses that are non-toxic to macrophages. Thus, this molecule has demonstrated potential as an anti-leishmanial agent.


Assuntos
Isoquinolinas/farmacologia , Leishmania braziliensis/efeitos dos fármacos , Leishmania major/efeitos dos fármacos , Leishmania mexicana/efeitos dos fármacos , Macrófagos/parasitologia , Animais , Leishmania braziliensis/ultraestrutura , Leishmania major/ultraestrutura , Leishmania mexicana/ultraestrutura , Dose Letal Mediana , Camundongos , Camundongos Endogâmicos CBA , Microscopia Eletrônica de Transmissão , Testes de Sensibilidade Parasitária , Fatores de Tempo
8.
Infect Genet Evol ; 63: 391-403, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29339220

RESUMO

Trypanosomiases and leishmaniases, caused by a group of related protist parasites, are Neglected Tropical Diseases currently threatening >500 million people worldwide. Reporter proteins have revolutionised the research on infectious diseases and have opened up new advances in the understanding of trypanosomatid-borne diseases in terms of both biology, pathogenesis and drug development. Here, we describe the generation and some applications of a new chimeric triple reporter fusion protein combining the red-shifted firefly luciferase PpyREH9 and the tdTomato red fluorescent protein, fused by the TY1 tag. Expressed in both Trypanosoma brucei brucei and Leishmania major transgenic parasites, this construct was successfully assessed on different state-of-the-art imaging technologies, at different scales ranging from whole organism to cellular level, both in vitro and in vivo in murine models. For T. b. brucei, the usefulness of this triple marker to monitor the entire parasite cycle in both tsetse flies and mice was further demonstrated. This stable reporter allows to qualitatively and quantitatively scrutinize in real-time several crucial aspects of the parasite's development, including the development of African trypanosomes in the dermis of the mammalian host. We briefly discuss developments in bio-imaging technologies and highlight how we could improve our understanding of parasitism by combining the genetic engineering of parasites to the one of the hosting organisms in which they complete their developmental program.


Assuntos
Leishmania major/genética , Leishmaniose Cutânea/diagnóstico por imagem , Imagem Óptica/métodos , Proteínas Recombinantes de Fusão/genética , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/diagnóstico por imagem , Animais , Modelos Animais de Doenças , Expressão Gênica , Genes Reporter , Engenharia Genética/métodos , Humanos , Leishmania major/crescimento & desenvolvimento , Leishmania major/metabolismo , Leishmania major/ultraestrutura , Leishmaniose Cutânea/parasitologia , Luciferases/genética , Luciferases/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Organismos Geneticamente Modificados , Proteínas Recombinantes de Fusão/metabolismo , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/ultraestrutura , Tripanossomíase Africana/parasitologia , Moscas Tsé-Tsé/parasitologia , Proteína Vermelha Fluorescente
9.
J Biol Chem ; 289(21): 14583-99, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24706753

RESUMO

Vasoactive intestinal peptide (VIP) is an anti-inflammatory neuropeptide recently identified as a potential antimicrobial peptide. To overcome the metabolic limitations of VIP, we modified the native peptide sequence and generated two stable synthetic analogues (VIP51 and VIP51(6-30)) with better antimicrobial profiles. Herein we investigate the effects of both VIP analogues on cell viability, membrane integrity, and ultrastructure of various bacterial strains and Leishmania species. We found that the two VIP derivatives kill various non-pathogenic and pathogenic Gram-positive and Gram-negative bacteria as well as the parasite Leishmania major through a mechanism that depends on the interaction with certain components of the microbial surface, the formation of pores, and the disruption of the surface membrane. The cytotoxicity of the VIP derivatives is specific for pathogens, because they do not affect the viability of mammalian cells. Docking simulations indicate that the chemical changes made in the analogues are critical to increase their antimicrobial activities. Consequently, we found that the native VIP is less potent as an antibacterial and fails as a leishmanicidal. Noteworthy from a therapeutic point of view is that treatment with both derivatives increases the survival and reduces bacterial load and inflammation in mice with polymicrobial sepsis. Moreover, treatment with VIP51(6-30) is very effective at reducing lesion size and parasite burden in a model of cutaneous leishmaniasis. These results indicate that the VIP analogues emerge as attractive alternatives for treating drug-resistant infectious diseases and provide key insights into a rational design of novel agents against these pathogens.


Assuntos
Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Leishmania major/efeitos dos fármacos , Peptídeo Intestinal Vasoativo/farmacologia , Sequência de Aminoácidos , Animais , Endotoxemia/tratamento farmacológico , Endotoxemia/microbiologia , Feminino , Bactérias Gram-Negativas/genética , Bactérias Gram-Positivas/genética , Ligação de Hidrogênio , Leishmania major/genética , Leishmania major/ultraestrutura , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Eletrônica , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica , Sepse/tratamento farmacológico , Sepse/microbiologia , Análise de Sobrevida , Resultado do Tratamento , Peptídeo Intestinal Vasoativo/análogos & derivados , Peptídeo Intestinal Vasoativo/química
10.
Methods Mol Biol ; 961: 389-402, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23325659

RESUMO

Using cutaneous leishmaniasis of mice, the existence of so-called T helper (Th) cells type 1 and type 2 had been identified more than 20 years ago. Nowadays, it is well accepted that additional T cell populations as well as B cell-mediated immunity is required for immunity against Leishmania major. Finally, using inbred mouse strains, the relevance of genetical factors that influence anti-pathogen immunity as well as elements of the skin-immune system have been identified. This protocol describes a model for murine experimental leishmaniasis that tries to mimic natural parasite transmission by several means: (1) utilization of only infectious-stage parasites that are found in sand fly saliva, (2) intradermal inoculation, and (3) infection with only 1,000 parasites similar to the numbers inoculated by an infected sand fly.


Assuntos
Leishmania major/fisiologia , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/transmissão , Modelos Animais , Pele/patologia , Pele/parasitologia , Animais , Imunidade , Leishmania major/ultraestrutura , Leishmaniose Cutânea/patologia , Camundongos , Psychodidae/parasitologia , Baço/parasitologia , Baço/patologia
11.
J Biol Chem ; 288(5): 3678-90, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23166325

RESUMO

Macroautophagy in Leishmania, which is important for the cellular remodeling required during differentiation, relies upon the hydrolytic activity of two ATG4 cysteine peptidases (ATG4.1 and ATG4.2). We have investigated the individual contributions of each ATG4 to Leishmania major by generating individual gene deletion mutants (Δatg4.1 and Δatg4.2); double mutants could not be generated, indicating that ATG4 activity is required for parasite viability. Both mutants were viable as promastigotes and infected macrophages in vitro and mice, but Δatg4.2 survived poorly irrespective of infection with promastigotes or amastigotes, whereas this was the case only when promastigotes of Δatg4.1 were used. Promastigotes of Δatg4.2 but not Δatg4.1 were more susceptible than wild type promastigotes to starvation and oxidative stresses, which correlated with increased reactive oxygen species levels and oxidatively damaged proteins in the cells as well as impaired mitochondrial function. The antioxidant N-acetylcysteine reversed this phenotype, reducing both basal and induced autophagy and restoring mitochondrial function, indicating a relationship between reactive oxygen species levels and autophagy. Deletion of ATG4.2 had a more dramatic effect upon autophagy than did deletion of ATG4.1. This phenotype is consistent with a reduced efficiency in the autophagic process in Δatg4.2, possibly due to ATG4.2 having a key role in removal of ATG8 from mature autophagosomes and thus facilitating delivery to the lysosomal network. These findings show that there is a level of functional redundancy between the two ATG4s, and that ATG4.2 appears to be the more important. Moreover, the low infectivity of Δatg4.2 demonstrates that autophagy is important for the virulence of the parasite.


Assuntos
Autofagia , Cisteína Endopeptidases/metabolismo , Leishmania major/citologia , Leishmania major/patogenicidade , Proteínas de Protozoários/metabolismo , Animais , Cisteína Endopeptidases/genética , Deleção de Genes , Marcação de Genes , Genes de Protozoários/genética , Proteínas de Fluorescência Verde/metabolismo , Leishmania major/enzimologia , Leishmania major/ultraestrutura , Estágios do Ciclo de Vida , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Oxirredução , Estresse Oxidativo , Fagossomos/metabolismo , Proteínas de Protozoários/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes de Fusão/metabolismo
12.
Cell Microbiol ; 14(8): 1271-86, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22486816

RESUMO

Leishmania ISPs are ecotin-like natural peptide inhibitors of trypsin-family serine peptidases, enzymes that are absent from the Leishmania genome. This led to the proposal that ISPs inhibit host serine peptidases and we have recently shown that ISP2 inhibits neutrophil elastase, thereby enhancing parasite survival in murine macrophages. In this study we show that ISP1 has less serine peptidase inhibitory activity than ISP2, and in promastigotes both are generally located in the cytosol and along the flagellum. However, in haptomonad promastigotes there is a prominent accumulation of ISP1 and ISP2 in the hemidesmosome and for ISP2 on the cell surface. An L. major mutant deficient in all three ISP genes (Δisp1/2/3) was generated and compared with Δisp2/3 mutants to elucidate the physiological role of ISP1. In in vitro cultures, the Δisp1/2/3 mutant contained more haptomonad, nectomonad and leptomonad promastigotes with elongated flagella and reduced motility compared with Δisp2/3 populations, moreover it was characterized by very high levels of release of exosome-like vesicles from the flagellar pocket. These data suggest that ISP1 has a primary role in flagellar homeostasis, disruption of which affects differentiation and flagellar pocket dynamics.


Assuntos
Leishmania major/fisiologia , Inibidores de Proteases/metabolismo , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Células Cultivadas , Flagelos/metabolismo , Flagelos/ultraestrutura , Técnicas de Inativação de Genes , Interações Hospedeiro-Parasita , Leishmania major/genética , Leishmania major/metabolismo , Leishmania major/ultraestrutura , Macrófagos Peritoneais/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Inibidores de Proteases/química , Transporte Proteico , Proteínas Secretadas Inibidoras de Proteinases/química , Proteínas Secretadas Inibidoras de Proteinases/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Vesículas Secretórias/metabolismo , Vesículas Secretórias/ultraestrutura , Serina Proteases/química
13.
Antimicrob Agents Chemother ; 54(12): 5028-41, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20855728

RESUMO

The papain-like cysteine cathepsins expressed by Leishmania play a key role in the life cycle of these parasites, turning them into attractive targets for the development of new drugs. We previously demonstrated that two compounds of a series of peptidomimetic aziridine-2,3-dicarboxylate [Azi(OBn)(2)]-based inhibitors, Boc-(S)-Leu-(R)-Pro-(S,S)-Azi(OBn)(2) (compound 13b) and Boc-(R)-Leu-(S)-Pro-(S,S)-Azi(OBn)(2) (compound 13e), reduced the growth and viability of Leishmania major and the infection rate of macrophages while not showing cytotoxicity against host cells. In the present study, we characterized the mode of action of inhibitors 13b and 13e in L. major. Both compounds targeted leishmanial cathepsin B-like cysteine cathepsin cysteine proteinase C, as shown by fluorescence proteinase activity assays and active-site labeling with biotin-tagged inhibitors. Furthermore, compounds 13b and 13e were potent inducers of cell death in promastigotes, characterized by cell shrinkage, reduction of mitochondrial transmembrane potential, and increased DNA fragmentation. Transmission electron microscopic studies revealed the enrichment of undigested debris in lysosome-like organelles participating in micro- and macroautophagy-like processes. The release of digestive enzymes into the cytoplasm after rupture of membranes of lysosome-like vacuoles resulted in the significant digestion of intracellular compartments. However, the plasma membrane integrity of compound-treated promastigotes was maintained for several hours. Taken together, our results suggest that the induction of cell death in Leishmania by cysteine cathepsin inhibitors 13b and 13e is different from mammalian apoptosis and is caused by incomplete digestion in autophagy-related lysosome-like vacuoles.


Assuntos
Autofagia , Aziridinas/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Leishmania major/efeitos dos fármacos , Lisossomos/metabolismo , Vacúolos/efeitos dos fármacos , Animais , Leishmania major/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Vacúolos/ultraestrutura
14.
Exp Parasitol ; 126(2): 135-45, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20417202

RESUMO

Leishmania major (L. major) signal peptidase type I (SPase I) is an endopeptidase encoded by a single-copy gene. In all organisms, SPase I is responsible for removing the signal peptide from secretory pre-proteins and releasing mature proteins to cellular or extra-cellular space. In this study, the role of SPase I in L. major is investigated by gene deletion using homologous recombination (HR). The null mutant of SPase I was not possible to create, suggesting that SPase I is an essential gene for parasite survival. The obtained heterozygote mutant by disrupting one allele of SPase I in L. major showed significantly reduced level of infectivity in bone marrow-derived macrophages. In addition, the heterozygote mutants are unable to cause cutaneous lesion in susceptible BALB/c mice. This is the first report showing that SPase I may have an important role in Leishmania infectivity, e.g. in differentiation and survival of amastigotes. Apparently, the SPase I expression is not essential for in vitro growth of the parasite.


Assuntos
Leishmania major/enzimologia , Leishmaniose Cutânea/parasitologia , Proteínas de Membrana/fisiologia , Serina Endopeptidases/fisiologia , Animais , Western Blotting , Células Cultivadas , Regulação Enzimológica da Expressão Gênica , Vetores Genéticos , Genótipo , Leishmania major/efeitos dos fármacos , Leishmania major/fisiologia , Leishmania major/ultraestrutura , Macrófagos/parasitologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Plasmídeos/genética , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serina Endopeptidases/genética , Transfecção
15.
J Cell Sci ; 123(Pt 4): 544-54, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20086045

RESUMO

Eukaryotic flagella and cilia are surrounded by a membrane that is continuous with, but distinct from, the rest of the plasma membrane. In Leishmania parasites, the inner leaflet of the flagellar membrane is coated with the acylated membrane protein, SMP-1. Here, we provide evidence that SMP-1 stabilizes the flagellar membrane and is required for flagella elongation and function. The expression and flagella targeting of SMP-1 is tightly associated with flagella elongation during amastigote to promastigote differentiation. Deletion of the genes encoding SMP-1 and the flagellar pocket protein SMP-2, led to the production of short flagella and defects in motility. Alterations in the physical properties of the smp-1/smp-2(-/-) flagellar membrane were suggested by: (1) the accumulation of membrane vesicles in the flagellar matrix, and (2) further retraction of flagella following partial inhibition of sterol and sphingolipid biosynthesis. The flagella phenotype of the smp-1/smp-2(-/-) null mutant was reversed by re-expression of SMP-1, but not SMP-2. SMP-1 contains a jelly-roll beta-sheet structure that is probably conserved in all SMP proteins, and forms stable homo-oligomers in vivo. We propose that the SMP-1 coat generates and/or stabilizes sterol- and sphingolipid-rich domains in the flagellar membrane.


Assuntos
Flagelos/fisiologia , Leishmania major/fisiologia , Proteínas de Membrana/fisiologia , Proteínas de Protozoários/fisiologia , Sequência de Bases , Primers do DNA/genética , DNA de Protozoário/genética , Flagelos/ultraestrutura , Deleção de Genes , Genes de Protozoários , Leishmania major/genética , Leishmania major/crescimento & desenvolvimento , Leishmania major/ultraestrutura , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Microscopia Eletrônica de Transmissão , Movimento/fisiologia , Mutação , Ressonância Magnética Nuclear Biomolecular , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
16.
J Med Microbiol ; 59(Pt 1): 69-75, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19745035

RESUMO

Naphthylisoquinoline alkaloids equipped with a N,C-hetero-'biaryl' axis, and, in particular, simplified synthetic analogues thereof, kill intracellular Leishmania major at concentrations in the low submicromolar range, while being significantly less toxic to their major host cell, the macrophage, at the same concentrations. To further investigate their mechanism of action we evaluated the morphological and ultrastructural changes induced by specific N-arylisoquinolines in L. major, and the correlation of these changes with compound accumulation and disposition by the parasite. After 24 h of treatment with the synthetic arylisoquinolinium salts 3 or 4, dramatic structural changes and cell death were observed. Furthermore, the auto-fluorescent derivative salt 3 accumulates continually in intracellular compartments. Our results thus suggest that the leishmanicidal effect of arylisoquinolinium salts may involve their ability to accumulate and precipitate in intracellular organelles, form a huge vacuole and eventually promote cell lysis.


Assuntos
Isoquinolinas/farmacologia , Leishmania major/efeitos dos fármacos , Leishmania major/ultraestrutura , Isoquinolinas/metabolismo , Leishmania major/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade
17.
Cell Tissue Res ; 337(2): 313-25, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19471970

RESUMO

Light microscopy of native preparations, histology, and electron microscopy have revealed that Phlebotomus duboscqi belongs to a class of sand fly species with prompt development of the peritrophic matrix (PM). Secretion of electron-lucent fibrils, presumably chitin, starts immediately after the ingestion of a blood meal and, about 6 h later, is followed by secretion of amorphous electron-dense components, presumably proteins and glycoproteins. The PM matures in less than 12 h and consists of a thin laminar outer layer and a thick amorphous inner layer. No differences have been found in the timing of the disintegration of the PM in females infected with Leishmania major. In both groups of females (infected and uninfected), the disintegration of the PM is initiated at the posterior end. Although parasites are present at high densities in the anterior part of the blood meal bolus, they escape from the PM at the posterior end only. These results suggest that L. major chitinase does not have an important role in parasite escape from the PM. Promastigotes remain in the intraperitrophic space until the PM is broken down by sand-fly-derived chitinases and only then migrate anteriorly. Disintegration of the PM occurs simultaneously with the morphological transformation of parasites from procyclic forms to long nectomonads. A novel role is ascribed to the anterior plug, a component of the PM secreted by the thoracic midgut; this plug functions as a temporary barrier to stop the forward migration of nectomonads to the thoracic midgut.


Assuntos
Quitina/fisiologia , Leishmania major/crescimento & desenvolvimento , Phlebotomus/parasitologia , Animais , Feminino , Leishmania major/ultraestrutura , Microscopia Eletrônica de Transmissão , Phlebotomus/ultraestrutura
18.
Exp Parasitol ; 121(4): 331-7, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19135995

RESUMO

A source of chemotherapeutic failure in anti-infective therapies is the active movement of drugs across membranes, through ATP-binding cassette (ABC) transporters. In fact, simultaneous administration of therapeutic drugs with ABC transporter blockers has been invoked to be the way to actively prevent the emergence of drug resistance. Herein, we demonstrate that glucantime's efficacy in decreasing the infection rate of Leishmania-infected macrophages is strongly enhanced when used in combination with glibenclamide, a specific blocker of ABC transporters. Intracellular ABC transporters mediate glucantime sequestration in intracellular organelles. Their selective inhibition may effectively increase the cytoplasmic concentration of glucantime and its leishmanicidal activity. Our results reveal for the first time that glibenclamide targets in Leishmania major a compartment associated with a multivesicular system that is simultaneously labeled by the acidic marker LysoTracker-red and may represent the organelle where antimonials are sequestered. These results constitute a proof of concept that conclusively demonstrates the potential value that combination therapy with an ABC transporter blocker may have for leishmaniasis therapy.


Assuntos
Antiprotozoários/farmacologia , Glibureto/farmacologia , Leishmania major/efeitos dos fármacos , Meglumina/farmacologia , Compostos Organometálicos/farmacologia , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Anfotericina B/farmacologia , Animais , Antiprotozoários/metabolismo , Células Cultivadas , Sinergismo Farmacológico , Glibureto/metabolismo , Leishmania major/metabolismo , Leishmania major/ultraestrutura , Macrófagos Peritoneais/parasitologia , Meglumina/metabolismo , Antimoniato de Meglumina , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica , Compostos Organometálicos/metabolismo
19.
Mol Biochem Parasitol ; 160(1): 52-9, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18485498

RESUMO

Trypanosomatids contain predominantly ergostane-based sterols, which differ from cholesterol, the main sterol in mammalian cells, in the presence of a methyl group in the 24 position. The methylation is initiated by S-adenosyl-L-methionine:Delta(24 (25))-sterol methenyltransferase, an enzyme present in protozoa, but absent in mammals. The importance of this enzyme is underscored by its potential as a drug target in the treatment of the leishmaniases. Here, we report studies concerning the intracellular distribution of sterol methenyltransferase in Leishmania major promastigotes and overexpressing cells using a specific antibody raised against highly purified recombinant protein. It was found by immunofluorescence and electron microscopy studies that in L. major wild-type cells sterol methenyltransferase was primarily associated to the endoplasmic reticulum. In addition to this location, the protein was incorporated into translucent vesicles presumably of the endocytic pathway. We also found in this study that cells overproducing the enzyme do not have increased resistance to the sterol methenyltransferase inhibitor 22, 26 azasterol.


Assuntos
Colestanol/análogos & derivados , Resistência a Medicamentos , Leishmania major/efeitos dos fármacos , Leishmania major/enzimologia , Metiltransferases/isolamento & purificação , Animais , Colestanol/farmacologia , Retículo Endoplasmático/enzimologia , Escherichia coli/enzimologia , Leishmania major/ultraestrutura , Microscopia Eletrônica , Microscopia de Fluorescência , Proteínas Recombinantes/isolamento & purificação , Transfecção , Vesículas Transportadoras/enzimologia , Tripanossomicidas/farmacologia
20.
Cell Death Differ ; 15(1): 113-22, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17901875

RESUMO

Metacaspases (MCAs) are distant orthologues of caspases and have been proposed to play a role in programmed cell death in yeast and plants, but little is known about their function in parasitic protozoa. The MCA gene of Leishmania major (LmjMCA) is expressed in actively replicating amastigotes and procyclic promastigotes, but at a lower level in metacyclic promastigotes. LmjMCA has a punctate distribution throughout the cell in interphase cells, but becomes concentrated in the kinetoplast (mitochondrial DNA) at the time of the organelle's segregation. LmjMCA also translocates to the nucleus during mitosis, where it associates with the mitotic spindle. Overexpression of LmjMCA in promastigotes leads to a severe growth retardation and changes in ploidy, due to defects in kinetoplast segregation and nuclear division and an impairment of cytokinesis. LmjMCA null mutants could not be generated and following genetic manipulation to express LmjMCA from an episome, the only mutants that were viable were those expressing LmjMCA at physiological levels. Together these data suggest that in L. major active LmjMCA is essential for the correct segregation of the nucleus and kinetoplast, functions that could be independent of programmed cell death, and that the amount of LmjMCA is crucial. The absence of MCAs from mammals makes the enzyme a potential drug target against protozoan parasites.


Assuntos
Caspases/metabolismo , Ciclo Celular/fisiologia , Núcleo Celular/metabolismo , DNA de Cinetoplasto/metabolismo , Leishmania major/citologia , Proteínas de Protozoários/metabolismo , Animais , Apoptose/fisiologia , Linhagem Celular , Núcleo Celular/ultraestrutura , DNA de Cinetoplasto/ultraestrutura , Leishmania major/enzimologia , Leishmania major/ultraestrutura , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...