Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 502, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840053

RESUMO

BACKGROUND: Lentil is a significant legume that are consumed as a staple food and have a significant economic impact around the world. The purpose of the present research on lentil was to assess the hydrothermal time model's capacity to explain the dynamics of Lens culinaris L. var. Markaz-09 seed germination, as well as to ascertain the germination responses at various sub-optimal temperatures (T) and water potentials (Ψ). In order to study lentil seed germination (SG) behavior at variable water potentials (Ψs) and temperatures (Ts). A lab experiment employing the hydrothermal time model was created. Seeds were germinated at six distinct temperatures: 15 0С, 20 0С, 25 0С, 30 0С, 35 0С, and 40 0С, with five Ψs of 0, -0.3, -0.6, -0.9, and - 1.2 MPa in a PEG-6000 (Polyethylene glycol 6000) solution. RESULTS: The results indicated that the agronomic parameters like Germination index (GI), Germination energy (GE), Timson germination index (TGI), were maximum in 25 0C at (-0.9 MPa) and lowest at 40 0C in 0 MPa. On other hand, mean germination time (MGT) value was highest at 15 0C in -1.2 MPa and minimum at 40 0C in (-0.6 MPa) while Mean germination rate (MGR) was maximum at 40 0C in (0 MPa) and minimum at 15 0C in (-0.6 MPa). CONCLUSIONS: The HTT model eventually defined the germination response of Lens culinaris L. var. Markaz-09 (Lentil) for all Ts and Ψs, allowing it to be employed as a predictive tool in Lens culinaris L. var. Markaz-09 (Lentil) seed germination simulation models.


Assuntos
Germinação , Lens (Planta) , Sementes , Temperatura , Germinação/fisiologia , Sementes/fisiologia , Sementes/crescimento & desenvolvimento , Lens (Planta)/fisiologia , Lens (Planta)/crescimento & desenvolvimento , Água/metabolismo , Modelos Biológicos , Pressão Osmótica
2.
Physiol Plant ; 176(3): e14298, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38685770

RESUMO

Aluminium (Al) toxicity causes major plant distress, affecting root growth, nutrient uptake and, ultimately, agricultural productivity. Lentil, which is a cheap source of vegetarian protein, is recognized to be sensitive to Al toxicity. Therefore, it is important to dissect the physiological and molecular mechanisms of Al tolerance in lentil. To understand the physiological system and proteome composition underlying Al tolerance, two genotypes [L-4602 (Al-tolerant) and BM-4 (Al-sensitive)] were studied at the seedling stage. L-4602 maintained a significantly higher root tolerance index and malate secretion with reduced Al accumulation than BM-4. Also, label-free proteomic analysis using ultra-performance liquid chromatography-tandem mass spectrometer exhibited significant regulation of Al-responsive proteins associated with antioxidants, signal transduction, calcium homeostasis, and regulation of glycolysis in L-4602 as compared to BM-4. Functional annotation suggested that transporter proteins (transmembrane protein, adenosine triphosphate-binding cassette transport-related protein and multi drug resistance protein), antioxidants associated proteins (nicotinamide adenine dinucleotide dependent oxidoreductase, oxidoreductase molybdopterin binding protein & peroxidases), kinases (calmodulin-domain kinase & protein kinase), and carbohydrate metabolism associated proteins (dihydrolipoamide acetyltransferase) were found to be abundant in tolerant genotype providing protection against Al toxicity. Overall, the root proteome uncovered in this study at seedling stage, along with the physiological parameters measured, allow a greater understanding of Al tolerance mechanism in lentil, thereby assisting in future crop improvement programmes.


Assuntos
Alumínio , Lens (Planta) , Proteínas de Plantas , Raízes de Plantas , Proteômica , Lens (Planta)/efeitos dos fármacos , Lens (Planta)/fisiologia , Lens (Planta)/genética , Lens (Planta)/metabolismo , Alumínio/toxicidade , Proteômica/métodos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Genótipo , Plântula/efeitos dos fármacos , Plântula/fisiologia , Plântula/genética , Plântula/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteoma/metabolismo , Antioxidantes/metabolismo
3.
Braz. j. biol ; 83: 1-7, 2023. tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468883

RESUMO

The low Brazilian productive index and the high demand have aroused interest in the cultivation of lentils, however the legume is little known and needs further studies. The objective of this study was to analyze and identify the effects of treatments with insecticides and fungicides on the physiological quality of lentil seeds, CA-1512 strain. The experiments were conducted in the seed laboratory in a completely randomized design with seven treatments and four replicates. Seed treatment with Thiophanate-methyl; Fluazinam® (180 ml) + Pyraclostrobin; Thiophanate-methyl; Fipronil® (150 ml) promoted higher levels of germination under accelerated aging, lower number of abnormal seedlings and longer lengths of shoot and radicle for the emergence in paper. Treatment with Carboxin; Thiram® (250 ml) + Imidacloprid® (150 ml) allowed a higher value in the first count of germination in sand, lower number of dead seeds under accelerated aging and longer root length, in the emergence in sand. Shoot length in the emergence in sand increased after seed treatment with Metalaxyl-M; Fludioxonil® (75 ml) + Pyraclostrobin; Thiophanate-methyl; Fipronil® (150 ml). Treatments with fungicides and insecticides considerably improved the physiological properties of the seeds, thus being able to guarantee greater phytosanitary qualities in the field, generating healthier seedlings and with protection against possible pests and diseases, and consequently guaranteeing greater productivity.


O baixo índice produtivo brasileiro e a alta demanda têm despertado o interesse no cultivo da lentilha, porém a leguminosa é pouco conhecida e necessita maiores estudos. Objetivou-se neste trabalho analisar e identificar tratamentos com inseticidas e fungicidas na qualidade fisiológica das sementes de lentilha, linhagem CA-1512. Os experimentos foram conduzidos no laboratório de sementes em delineamento inteiramente casualizado com sete tratamentos e quatro repetições. O tratamento de semente com Tiofanato-metílico; Fluazinam® (180 ml) + Piraclosrobina; Tiofanato-metílico; Fipronil® (150 ml) proporcionou índices mais elevados de germinação no envelhecimento acelerado, menor número de plântulas anormais e maior comprimento de parte aérea e radícula, na emergência em papel. O tratamento com Carboxina; Tiram® (250 ml) + Imidacloprido® (150 ml) possibilitou maior índice na primeira contagem de germinação em areia, menor número de sementes mortas no envelhecimento acelerado e maior comprimento de raiz, na emergência em areia. Já o comprimento da parte aérea, na emergência em areia, aumentou com o tratamento de semente Metalaxil-M; Fludioxonil® (75 ml) + Piraclosrobina; Tiofanato-metílico; Fipronil® (150 ml). Os tratamentos com fungicidas e inseticidas melhoraram consideravelmente as propriedades fisiológicas das sementes, podendo assim, garantir maiores qualidades fitossanitárias à campo, gerando plântulas mais sadias e com proteção para possíveis pragas e doenças, e consequentemente garantindo maiores produtividades.


Assuntos
Fungicidas Industriais/administração & dosagem , Inseticidas/administração & dosagem , Lens (Planta)/efeitos dos fármacos , Lens (Planta)/fisiologia , Sementes/crescimento & desenvolvimento
4.
Int J Mol Sci ; 22(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072403

RESUMO

Gradually increasing temperatures at global and local scales are causing heat stress for cool and summer-season food legumes, such as lentil (Lens culinaris Medik.), which is highly susceptible to heat stress, especially during its reproductive stages of development. Hence, suitable strategies are needed to develop heat tolerance in this legume. In the present study, we tested the effectiveness of heat priming (HPr; 6 h at 35 °C) the lentil seeds and a foliar treatment of γ-aminobutyric acid (GABA; 1 mM; applied twice at different times), singly or in combination (HPr+GABA), under heat stress (32/20 °C) in two heat-tolerant (HT; IG2507, IG3263) and two heat-sensitive (HS; IG2821, IG2849) genotypes to mitigate heat stress. The three treatments significantly reduced heat injury to leaves and flowers, particularly when applied in combination, including leaf damage assessed as membrane injury, cellular oxidizing ability, leaf water status, and stomatal conductance. The combined HPr+GABA treatment significantly improved the photosynthetic function, measured as photosynthetic efficiency, chlorophyll concentration, and sucrose synthesis; and significantly reduced the oxidative damage, which was associated with a marked up-regulation in the activities of enzymatic antioxidants. The combined treatment also facilitated the synthesis of osmolytes, such as proline and glycine betaine, by upregulating the expression of their biosynthesizing enzymes (pyrroline-5-carboxylate synthase; betaine aldehyde dehydrogenase) under heat stress. The HPr+GABA treatment caused a considerable enhancement in endogenous levels of GABA in leaves, more so in the two heat-sensitive genotypes. The reproductive function, measured as germination and viability of pollen grains, receptivity of stigma, and viability of ovules, was significantly improved with combined treatment, resulting in enhanced pod number (21-23% in HT and 35-38% in HS genotypes, compared to heat stress alone) and seed yield per plant (22-24% in HT and 37-40% in HS genotypes, in comparison to heat stress alone). The combined treatment (HPr+GABA) was more effective and pronounced in heat-sensitive than heat-tolerant genotypes for all the traits tested. This study offers a potential solution for tackling and protecting heat stress injury in lentil plants.


Assuntos
Aclimatação , Resposta ao Choque Térmico , Temperatura Alta , Lens (Planta)/fisiologia , Característica Quantitativa Herdável , Sementes/fisiologia , Ácido gama-Aminobutírico/metabolismo , Lens (Planta)/efeitos dos fármacos , Oxirredução , Estresse Oxidativo , Fotossíntese , Folhas de Planta/fisiologia , Fenômenos Fisiológicos Vegetais , Reprodução , Sementes/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologia
5.
Ann Bot ; 128(4): 481-496, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34185828

RESUMO

BACKGROUND AND AIMS: Flowering time is important due to its roles in plant adaptation to different environments and subsequent formation of crop yield. Changes in light quality affect a range of developmental processes including flowering time, but little is known about light quality-induced flowering time control in lentil. This study aims to investigate the genetic basis for differences in flowering response to light quality in lentil. METHODS: We explored variation in flowering time caused by changes in red/far-red-related light quality environments of a lentil interspecific recombinant inbred line (RIL) population developed from a cross between Lens culinaris cv. Lupa and L. orientalis accession BGE 016880. A genetic linkage map was constructed and then used for identifying quantitative trait loci (QTLs) associated with flowering time regulation under different light quality environments. Differential gene expression analysis through transcriptomic study and RT-qPCR were used to identify potential candidate genes. KEY RESULTS: QTL mapping located 13 QTLs controlling flower time under different light quality environments, with phenotypic variance explained ranging from 1.7 to 62.9 %. Transcriptomic profiling and gene expression analysis for both parents of this interspecific RIL population identified flowering-related genes showing environment-specific differential expression (flowering DEGs). One of these, a member of the florigen gene family FTa1 (LcFTa1), was located close to three major QTLs. Furthermore, gene expression results suggested that two other florigen genes (LcFTb1 and LcFTb2), MADS-box transcription factors such as LcAGL6/13d, LcSVPb, LcSOC1b and LcFULb, as well as bHLH transcription factor LcPIF6 and Gibberellin 20 oxidase LcGA20oxC,G may also be involved in the light quality response. CONCLUSIONS: Our results show that a major component of flowering time sensitivity to light quality is tightly linked to LcFTa1 and associated with changes in its expression. This work provides a foundation for crop improvement of lentil with better adaptation to variable light environments.


Assuntos
Flores/fisiologia , Lens (Planta) , Luz , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Ligação Genética , Lens (Planta)/genética , Lens (Planta)/fisiologia , Fenótipo , Locos de Características Quantitativas , Transcriptoma
6.
Molecules ; 26(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925107

RESUMO

Soil salinity disrupts the physiological and biochemical processes of crop plants and ultimately leads to compromising future food security. Sodium nitroprusside (SNP), a contributor to nitric oxide (NO), holds the potential to alleviate abiotic stress effects and boost tolerance in plants, whereas less information is available on its role in salt-stressed lentils. We examined the effect of exogenously applied SNP on salt-stressed lentil plants by monitoring plant growth and yield-related attributes, biochemistry of enzymes (superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD)) amassing of leaf malondialdehyde (MDA) and hydrogen peroxide (H2O2). Salinity stress was induced by NaCl application at concentrations of 50 mM (moderate salinity) and 100 mM (severe salinity), while it was alleviated by SNP application at concentrations of 50 µM and 100 µM. Salinity stress severely inhibited the length of roots and shoots, the relative water content, and the chlorophyll content of the leaves, the number of branches, pods, seeds, seed yield, and biomass per plant. In addition, MDA, H2O2 as well as SOD, CAT, and POD activities were increased with increasing salinity levels. Plants supplemented with SNP (100 µM) showed a significant improvement in the growth- and yield-contributing parameters, especially in plants grown under moderate salinity (50 mM NaCl). Essentially, the application of 100 µM SNP remained effective to rescue lentil plants under moderate salinity by regulating plant growth and biochemical pathways. Thus, the exogenous application of SNP could be developed as a useful strategy for improving the performance of lentil plants in salinity-prone environments.


Assuntos
Lens (Planta)/efeitos dos fármacos , Lens (Planta)/fisiologia , Nitroprussiato/farmacologia , Desenvolvimento Vegetal/efeitos dos fármacos , Estresse Salino/efeitos dos fármacos , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Lens (Planta)/química , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos
7.
Genes (Basel) ; 12(3)2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668850

RESUMO

Soil salinity is a major abiotic stress, limiting lentil productivity worldwide. Understanding the genetic basis of salt tolerance is vital to develop tolerant varieties. A diversity panel consisting of 276 lentil accessions was screened in a previous study through traditional and image-based approaches to quantify growth under salt stress. Genotyping was performed using two contrasting methods, targeted (tGBS) and transcriptome (GBS-t) genotyping-by-sequencing, to evaluate the most appropriate methodology. tGBS revealed the highest number of single-base variants (SNPs) (c. 56,349), and markers were more evenly distributed across the genome compared to GBS-t. A genome-wide association study (GWAS) was conducted using a mixed linear model. Significant marker-trait associations were observed on Chromosome 2 as well as Chromosome 4, and a range of candidate genes was identified from the reference genome, the most plausible being potassium transporters, which are known to be involved in salt tolerance in related species. Detailed mineral composition performed on salt-treated and control plant tissues revealed the salt tolerance mechanism in lentil, in which tolerant accessions do not transport Na+ ions around the plant instead localize within the root tissues. The pedigree analysis identified two parental accessions that could have been the key sources of tolerance in this dataset.


Assuntos
Perfilação da Expressão Gênica/métodos , Genômica/métodos , Lens (Planta)/fisiologia , Locos de Características Quantitativas , Tolerância ao Sal , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Lens (Planta)/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
8.
J Sci Food Agric ; 101(4): 1454-1466, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32851662

RESUMO

BACKGROUND: Lentil is an important nutritionally rich pulse crop in the world. Despite having a prominent role in human health and nutrition, it is very unfortunate that global lentil production is adversely limited by drought stress, causing a huge decline in yield and productivity. Drought stress can also affect the nutritional profile of seeds. Silicon (Si) is an essential element for plants and a general component of the human diet found mainly in plant-based foods. This study investigated the effects of Si on nutritional and sensory properties of seeds obtained from lentil plants grown in an Si-supplied drought-stressed environment. RESULTS: Significant enhancements in the concentration of nutrients (protein, carbohydrate, dietary fibre, Si) and antioxidants (ascorbate, phenol, flavonoids, total antioxidants) were found in seeds. Significant reductions in antinutrients (trypsin inhibitor, phytic acid, tannin) were also recorded. A novel sensory analysis was implemented in this study to evaluate the unconscious and conscious responses of consumers. Biometrics were integrated with a traditional sensory questionnaire to gather consumers responses. Significant positive correlations (R = 0.6-1) were observed between sensory responses and nutritional properties of seeds. Seeds from Si-treated drought-stressed plants showed higher acceptability scores among consumers. CONCLUSION: The results demonstrated that Si supplementation can improve the nutritional and sensory properties of seeds. This study offers an innovative approach in sensory analysis coupled with biometrics to accurately assess a consumer's preference towards tested samples. In the future, the results of this study will help in making a predictive model for sensory traits and nutritional components in seeds using machine-learning modelling techniques. © 2020 Society of Chemical Industry.


Assuntos
Lens (Planta)/química , Lens (Planta)/efeitos dos fármacos , Silício/farmacologia , Antioxidantes/análise , Carboidratos/análise , Fibras na Dieta/análise , Secas , Humanos , Lens (Planta)/fisiologia , Valor Nutritivo , Sementes/química , Sementes/efeitos dos fármacos , Sementes/fisiologia , Estresse Fisiológico , Taninos/análise , Paladar
9.
Food Chem ; 280: 83-95, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30642511

RESUMO

In this study, volatile component changes of germinated chickpea, lentil, and yellow pea flours over the course of 6 days germination were characterized by HS-SPME-GC-MS/O. In total, 124 volatile components were identified involving 19 odor active components being recorded by GC-O exclusively. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) revealed that lentil and yellow pea flours had the similar aromatic attributes, while the decrease of beany flavor compounds along with the occurrence of unpleasant flavors was detected in chickpea flours upon germination. Six beany flavor markers, including hexanal, (E,E)-2,4-nonadienal, (E,E)-2,4-decadienal, 3-methyl-1-butanol, 1-hexanol, and 2-pentyl-furan, were employed to quantify beany flavor formation in the flours over the course of germination. The results suggested that no significant beany flavor formation or mitigation was appeared after 1 day of germination. The findings are crucial for tailing pulse germination process to enhance the macronutrients without increasing undesirable beany flavor.


Assuntos
Cicer/química , Farinha/análise , Germinação , Lens (Planta)/química , Pisum sativum/química , Biomarcadores/análise , Cicer/fisiologia , Análise por Conglomerados , Cromatografia Gasosa-Espectrometria de Massas/estatística & dados numéricos , Humanos , Lens (Planta)/fisiologia , Odorantes/análise , Olfatometria/métodos , Pisum sativum/fisiologia , Análise de Componente Principal , Microextração em Fase Sólida , Paladar , Compostos Orgânicos Voláteis/análise
10.
Plant Biol (Stuttg) ; 21(3): 480-486, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-29480957

RESUMO

Salinity is one of the most severe environmental stresses, negatively affecting productivity of salt-sensitive crop species. Given that germination is the most critical phase in the plant life cycle, the present study aimed to determine seed germination potential and associated traits under salt stress conditions as a simple approach to identify salt-tolerant lentil genotypes. The genetic material consisted of six lentil genotypes whose adaptation to various agroclimatic conditions is not well elucidated. Salinity stress was applied by addition of NaCl at three different levels of stress, while non-stressed plants were included as controls. Evaluation of tolerance was performed on the basis of germination percentage, seed water absorbance, root and shoot length, seedling water content, seedling vigour index and number of seedlings with an abnormal phenotype. Overall, our findings revealed that salinity stress substantially affects all traits associated with germination and early seedling growth, with the effect of salinity being dependent on the level of stress applied. It is noteworthy, however, that genotypes responded differently to the varying salinity levels. In this context, Samos proved the most salt-tolerant genotype, indicating its possible use for cultivation under stress conditions. In conclusion, the determination of seed germination and early growth potential may be exploited as an efficient strategy to reveal genetic variation in lentil germplasm of unknown tolerance to salinity stress. This approach allows selection of desirable genotypes at early growth stages, thus enabling more efficient application of various breeding methods to achieve stress-tolerant lentil genotypes.


Assuntos
Lens (Planta)/fisiologia , Plântula/fisiologia , Genótipo , Germinação/efeitos dos fármacos , Lens (Planta)/efeitos dos fármacos , Estresse Salino/efeitos dos fármacos , Plântula/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos
11.
Plant Genome ; 11(2)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30025017

RESUMO

Milling qualities are key traits for the red lentil ( Medik.) industry as price is largely determined by recovery yield. milling involves removal of the seed coat and splitting of the cotyledon to produce either splits or footballs (cotyledons still attached). The objectives of the study were to determine the heritability of the milling traits dehulling efficiency (DE), milling recovery (MR), and football recovery (FR) and to identify the genomic regions controlling them. We used a lentil recombinant inbred population from the cross 'CDC Robin' × '946a-46', which have contrasting seed characteristics. The mapping population consists of 127 F-derived lentil recombinant inbred lines that were phenotyped for milling quality parameters from four site-years in Saskatchewan, Canada. A total of 534 single nucleotide polymorphism markers, seven simple sequence repeat markers, and four morphological markers were used for quantitative trait locus (QTL) mapping. The broad-sense heritability was moderate for DE and MR and relatively low for FR. Milling quality traits were significantly correlated with seed shape (seed diameter and seed plumpness). Multiple QTLs for milling traits were detected in six of seven linkage groups (LGs). The most stable QTLs governing DE and MR were clustered on LGs 1, 2, 3, and 7, whereas FR QTLs were clustered on LGs 4, 5, 6, and 7. The molecular markers identified for these traits could be used for improving milling quality in lentil breeding programs.


Assuntos
Lens (Planta)/genética , Locos de Características Quantitativas , Sementes/fisiologia , Mapeamento Cromossômico , Indústria de Processamento de Alimentos/métodos , Marcadores Genéticos , Lens (Planta)/fisiologia , Repetições de Microssatélites , Fenótipo , Saskatchewan , Sementes/genética
12.
J Appl Genet ; 59(1): 9-21, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29230682

RESUMO

In the present study, a diverse panel of 96 accessions of lentil germplasm was used to study flowering time over environments and to identify simple sequence repeat markers associated with flowering time through association mapping. The study showed high broad sense heritability estimate (h 2 bs=0.93) for flowering time in lentil. Screening of 534 SSR markers resulted in an identification of 75 SSR polymorphic markers (13.9%) across studied genotypes. These markers amplified 266 loci and generated 697 alleles ranging from two to 16 alleles per locus. Model-based cluster analysis used for the determination of population structure resulted in the identification of two distinct subpopulations. Distribution of flowering time was ranged from 40 to 70 days in subpopulation I and from 54 to 69 days in subpopulation II and did not skew either late or early flowering time within a subpopulation. No admixture was observed within the subpopulations. Use of the most accepted maximum likelihood model (P3D mixed linear model with optimum compression) of MTA analysis showed significant association of 26 SSR markers with flowering time at <0.05 probability. The percent of phenotypic explained by each associated marker with flowering time ranged from 2.1 to 21.8% and identified QTLs for flowering time explaining high phenotypic variation across the environments (10.7-21.8%) or in a particular environment (10.2-21.4%). In the present study, 13 EST-SSR showed significant association with flowering time and explained large phenotypic variation (2.3-21.8%) compared to genomic SSR markers (2.1-10.2%). Hence, these markers can be used as functional markers in the lentil breeding program to develop short duration cultivars.


Assuntos
Flores/fisiologia , Lens (Planta)/genética , Locos de Características Quantitativas , Alelos , DNA de Plantas/genética , Marcadores Genéticos , Genótipo , Lens (Planta)/fisiologia , Funções Verossimilhança , Repetições de Microssatélites , Fenótipo , Melhoramento Vegetal
13.
PLoS One ; 12(5): e0177465, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542267

RESUMO

One hundred and sixty two genotypes of different Lens species were screened for salinity tolerance in hydroponics at 40, 80 and 120 mM sodium chloride (NaCl) for 30 d. The germination, seedling growth, biomass accumulation, seedling survivability, salinity scores, root and shoot anatomy, sodium ion (Na+), chloride ion (Cl-) and potassium ion (K+) concentrations, proline and antioxidant activities were measured to evaluate the performance of all the genotypes. The results were compared in respect of physiological (Na+, K+ and Cl-) and seed yield components obtained from field trials for salinity stress conducted during two years. Expression of salt tolerance in hydroponics was found to be reliable indicator for similarity in salt tolerance between genotypes and was evident in saline soil based comparisons. Impressive genotypic variation for salinity tolerance was observed among the genotypes screened under hydroponic and saline field conditions. Plant concentrations of Na+ and Cl- at 120 mM NaCl were found significantly correlated with germination, root and shoot length, fresh and dry weight of roots and shoots, seedling survivability, salinity scores and K+ under controlled conditions and ranked the genotypes along with their seed yield in the field. Root and shoot anatomy of tolerant line (PDL-1) and wild accession (ILWL-137) showed restricted uptake of Na+ and Cl- due to thick layer of their epidermis and endodermis as compared to sensitive cultigen (L-4076). All the genotypes were scanned using SSR markers for genetic diversity, which generated high polymorphism. On the basis of cluster analysis and population structure the contrasting genotypes were grouped into different classes. These markers may further be tested to explore their potential in marker-assisted selection.


Assuntos
Lens (Planta)/crescimento & desenvolvimento , Lens (Planta)/fisiologia , Tolerância ao Sal/fisiologia , Cloreto de Sódio/metabolismo , Estresse Fisiológico/fisiologia , Biomassa , Clorofila/metabolismo , Genótipo , Germinação/fisiologia , Hidroponia/métodos , Íons/metabolismo , Lens (Planta)/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Brotos de Planta/fisiologia , Potássio/metabolismo , Salinidade , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/fisiologia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sementes/fisiologia , Solo
14.
PLoS One ; 11(7): e0160073, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27467074

RESUMO

Aluminium (Al) stress was imposed on 285 lentil genotypes at seedling stage under hydroponics to study its effects on morpho-physiological traits where resistant cultigens and wilds showed minimum reduction in root and shoot length and maximum root re-growth (RRG) after staining. Molecular assortment based on 46 simple sequence repeat (SSR) markers clustered the genotypes into 11 groups, where wilds were separated from the cultigens. Genetic diversity and polymorphism information content (PIC) varied between 0.148-0.775 and 0.140-0.739, respectively. Breeding lines which were found to be most resistant (L-7903, L-4602); sensitive cultivars (BM-4, L-4147) and wilds ILWL-185 (resistant), ILWL-436 (sensitive) were grouped into different clusters. These genotypes were also separated on the basis of population structure and Jaccard's similarity index and analysed to study Al resistance mechanism through determination of different attributes like localization of Al and callose, lipid peroxidation, secretion of organic acids and production of antioxidant enzymes. In contrast to sensitive genotypes, in resistant ones most of the Al was localized in the epidermal cells, where its movement to apoplastic region was restricted due to release of citrate and malate. Under acidic field conditions, resistant genotypes produced maximum seed yield/plant as compared to sensitive genotypes at two different locations i.e. Imphal, Manipur, India and Basar, Arunanchal Pradesh, India during 2012-13, 2013-14 and 2014-15. These findings suggest that Al stress adaptation in lentil is through exclusion mechanism and hybridization between the contrasting genotypes from distinct clusters can help in development of resistant varieties.


Assuntos
Alumínio/toxicidade , Lens (Planta)/efeitos dos fármacos , Estresse Fisiológico , Análise por Conglomerados , Peróxido de Hidrogênio/química , Lens (Planta)/fisiologia , Peroxidação de Lipídeos
15.
PLoS One ; 11(1): e0147213, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26808306

RESUMO

The success of drought tolerance breeding programs can be enhanced through molecular assortment of germplasm. This study was designed to characterize molecular diversity within and between Lens species with different adaptations to drought stress conditions using SSR markers. Drought stress was applied at seedling stage to study the effects on morpho-physiological traits under controlled condition, where tolerant cultivars and wilds showed 12.8-27.6% and 9.5-23.2% reduction in seed yield per plant respectively. When juxtaposed to field conditions, the tolerant cultivars (PDL-1 and PDL-2) and wild (ILWL-314 and ILWL-436) accessions showed 10.5-26.5% and 7.5%-15.6% reduction in seed yield per plant, respectively under rain-fed conditions. The reductions in seed yield in the two tolerant cultivars and wilds under severe drought condition were 48-49% and 30.5-45.3% respectively. A set of 258 alleles were identified among 278 genotypes using 35 SSR markers. Genetic diversity and polymorphism information contents varied between 0.321-0.854 and 0.299-0.836, with mean value of 0.682 and 0.643, respectively. All the genotypes were clustered into 11 groups based on SSR markers. Tolerant genotypes were grouped in cluster 6 while sensitive ones were mainly grouped into cluster 7. Wild accessions were separated from cultivars on the basis of both population structure and cluster analysis. Cluster analysis has further grouped the wild accessions on the basis of species and sub-species into 5 clusters. Physiological and morphological characters under drought stress were significantly (P = 0.05) different among microsatellite clusters. These findings suggest that drought adaptation is variable among wild and cultivated genotypes. Also, genotypes from contrasting clusters can be selected for hybridization which could help in evolution of better segregants for improving drought tolerance in lentil.


Assuntos
Secas , Lens (Planta)/fisiologia , Adaptação Fisiológica/genética , Alelos , Clorofila/análise , Análise por Conglomerados , DNA de Plantas/genética , Variação Genética , Genoma de Planta , Genótipo , Hidroponia , Lens (Planta)/classificação , Lens (Planta)/genética , Repetições de Microssatélites , Fenótipo , Melhoramento Vegetal , Folhas de Planta/química , Polimorfismo Genético , Chuva , Plântula/fisiologia , Água/análise
16.
J Exp Bot ; 66(18): 5467-80, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25969553

RESUMO

Drought and salinity are among the major abiotic stresses which, often inter-relatedly, adversely affect plant growth and productivity. Plant stress responses depend on the type of stress, on its intensity, on the species, and also on the genotype. Different accessions of a species may have evolved different mechanisms to cope with stress and to complete their life cycles. This study is focused on lentil, an important Mediterranean legume with high quality protein for the human diet. The effects of salinity and drought on germination and early growth of Castelluccio di Norcia (CAST), Pantelleria (PAN), Ustica (UST), and Eston (EST) accessions were evaluated to identify metabolic and phenotypic traits related to drought and/or salinity stress tolerance. The results showed a relationship between imposed stresses and performance of the cultivars. According to germination frequencies, the accession ranking was as follows: NaCl resistant > susceptible, PAN > UST > CAST > EST; polyethylene glycol (PEG) resistant > susceptible, CAST > UST > EST > PAN. Seedling tolerance rankings were: NaCl resistant > susceptible, CAST ≈ UST > PAN ≈ EST; PEG resistant > susceptible, CAST > EST ≈ UST > PAN. Changes in the metabolite profiles, mainly quantitative rather than qualitative, were observed in the same cultivar in respect to the treatments, and among the cultivars under the same treatment. Metabolic differences in the stress tolerance of the different genotypes were related to a reduction in the levels of tricarboxylic acid (TCA) cycle intermediates. The relevant differences, between the most NaCl-tolerant genotype (PAN) and the most sensitive one (EST) were related to the decrease in the threonic acid level. Stress-specific metabolite indicators were also identified: ornithine and asparagine as markers of drought stress and alanine and homoserine as markers of salinity stress.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Lens (Planta)/fisiologia , Tolerância ao Sal , Cromatografia Gasosa-Espectrometria de Massas , Lens (Planta)/genética , Fenótipo , Salinidade , Estresse Fisiológico
17.
PLoS One ; 9(9): e107781, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25254552

RESUMO

Crop wild relatives (CWRs) are invaluable gene sources for various traits of interest, yet these potential resources are themselves increasingly threatened by the impact of climate change as well as other anthropogenic and socio-economic factors. The prime goal of our research was to cover all aspects of wild Lens genetic resource management like species characterization, agro-morphological evaluation, diversity assessment, and development of representative sets for its enhanced utilization in lentil base broadening and yield improvement initiatives. We characterized and evaluated extensively, the global wild annual Lens taxa, originating from twenty seven counties under two agro-climatic conditions of India consecutively for three cropping seasons. Results on various qualitative and quantitative characters including two foliar diseases showed wide variations for almost all yield attributing traits including multiple disease resistance in the wild species, L. nigricans and L. ervoides accessions. The core set developed from the entire Lens taxa had maximum representation from Turkey and Syria, indicating rich diversity in accessions originating from these regions. Diversity analysis also indicated wide geographical variations across genepool as was reflected in the core set. Potential use of core set, as an initial starting material, for genetic base broadening of cultivated lentil was also suggested.


Assuntos
Lens (Planta)/crescimento & desenvolvimento , Agricultura , Biodiversidade , Conservação dos Recursos Naturais , Internacionalidade , Lens (Planta)/microbiologia , Lens (Planta)/fisiologia , Doenças das Plantas/microbiologia , Estresse Fisiológico
18.
Theor Appl Genet ; 127(6): 1263-91, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24710822

RESUMO

KEY MESSAGE: Given recent advances in pulse molecular biology, genomics-driven breeding has emerged as a promising approach to address the issues of limited genetic gain and low productivity in various pulse crops. The global population is continuously increasing and is expected to reach nine billion by 2050. This huge population pressure will lead to severe shortage of food, natural resources and arable land. Such an alarming situation is most likely to arise in developing countries due to increase in the proportion of people suffering from protein and micronutrient malnutrition. Pulses being a primary and affordable source of proteins and minerals play a key role in alleviating the protein calorie malnutrition, micronutrient deficiencies and other undernourishment-related issues. Additionally, pulses are a vital source of livelihood generation for millions of resource-poor farmers practising agriculture in the semi-arid and sub-tropical regions. Limited success achieved through conventional breeding so far in most of the pulse crops will not be enough to feed the ever increasing population. In this context, genomics-assisted breeding (GAB) holds promise in enhancing the genetic gains. Though pulses have long been considered as orphan crops, recent advances in the area of pulse genomics are noteworthy, e.g. discovery of genome-wide genetic markers, high-throughput genotyping and sequencing platforms, high-density genetic linkage/QTL maps and, more importantly, the availability of whole-genome sequence. With genome sequence in hand, there is a great scope to apply genome-wide methods for trait mapping using association studies and to choose desirable genotypes via genomic selection. It is anticipated that GAB will speed up the progress of genetic improvement of pulses, leading to the rapid development of cultivars with higher yield, enhanced stress tolerance and wider adaptability.


Assuntos
Cruzamento/métodos , Produtos Agrícolas/genética , Países em Desenvolvimento , Mapeamento Cromossômico , Produtos Agrícolas/fisiologia , Fabaceae/genética , Fabaceae/fisiologia , Perfilação da Expressão Gênica , Marcadores Genéticos , Genoma de Planta , Genômica , Lens (Planta)/genética , Lens (Planta)/fisiologia , Pisum sativum/genética , Pisum sativum/fisiologia , Locos de Características Quantitativas , Vicia faba/genética , Vicia faba/fisiologia
19.
FEMS Microbiol Ecol ; 87(1): 64-77, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24033582

RESUMO

Lentil is the oldest of the crops that have been domesticated in the Fertile Crescent and spread to other regions during the Bronze Age, making it an ideal model to study the evolution of rhizobia associated with crop legumes. Housekeeping and nodulation genes of lentil-nodulating rhizobia from the region where lentil originated (Turkey and Syria) and regions to which lentil was introduced later (Germany and Bangladesh) were analyzed to determine their genetic diversity, population structure, and taxonomic position. There are four different lineages of rhizobia associated with lentil nodulation, of which three are new and endemic to Bangladesh, while Mediterranean and Central European lentil symbionts belong to the Rhizobium leguminosarum lineage. The endemic lentil grex pilosae may have played a significant role in the origin of these new lineages in Bangladesh. The presence of R. leguminosarum with lentil at the center of origin and in countries where lentil was introduced later suggests that R. leguminosarum is the original symbiont of lentil. Lentil seeds may have played a significant role in the initial dispersal of this Rhizobium species within the Middle East and on to other countries. Nodulation gene sequences revealed a high similarity to those of symbiovar viciae.


Assuntos
Lens (Planta)/microbiologia , Rhizobium leguminosarum/fisiologia , Simbiose , Bangladesh , Europa (Continente) , Variação Genética , Lens (Planta)/fisiologia , Oriente Médio , Dados de Sequência Molecular , Filogenia , Rhizobium/classificação , Rhizobium/genética , Rhizobium/isolamento & purificação , Rhizobium/fisiologia , Rhizobium leguminosarum/classificação , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/isolamento & purificação , Nódulos Radiculares de Plantas/microbiologia
20.
Int J Phytoremediation ; 15(10): 938-51, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23819287

RESUMO

In the framework of soil phytoremediation using local legume plants coupled with their native root-nodulating bacteria to increase forage yields and preserve contaminated soils in arid regions of Tunisia, we investigated the diversity of bacteria from root nodules of Lathyrus sativus, Lens culinaris, Medicago marina, M. truncatula, and M. minima and the symbiotic efficiency of these five legume symbiosis under Cadmium stress. Fifty bacterial strains were characterized using physiological and biochemical features such heavy metals resistant, and PCR-RFLP of 16S rDNA. Taxonomically, the isolates nodulating L. sativus, and L. culinaris are species within the genera Rhizobium and the ones associated to Medicago sp, within the genera Sinorhizobium. The results revealed also that the cadmium tolerance of the different legumes-rhizobia interaction was as follows: M. minima < M. truncatula < M. marina < L. sativus < L. culinaris indicating that the effect of Cadmium on root nodulation and biomass production is more deleterious on M. minima-S. meliloti and M. truncatula-S. meliloti than in other symbiosis. Knowledge on genetic and functional diversity of M. marina, L. sativus and L. culinaris microsymbiotes is very useful for inoculant strain selection and can be selected to develop inoculants for soil phytoremediation.


Assuntos
Cádmio/toxicidade , Fabaceae/fisiologia , Rhizobium/fisiologia , Sinorhizobium/fisiologia , Biodegradação Ambiental , DNA Bacteriano/genética , DNA Ribossômico/genética , Fabaceae/efeitos dos fármacos , Fabaceae/microbiologia , Variação Genética , Genótipo , Lathyrus/efeitos dos fármacos , Lathyrus/microbiologia , Lathyrus/fisiologia , Lens (Planta)/efeitos dos fármacos , Lens (Planta)/microbiologia , Lens (Planta)/fisiologia , Medicago/efeitos dos fármacos , Medicago/microbiologia , Medicago/fisiologia , Fenótipo , Filogenia , Nodulação/efeitos dos fármacos , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Rhizobium/classificação , Rhizobium/genética , Rhizobium/isolamento & purificação , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/fisiologia , Sinorhizobium/classificação , Sinorhizobium/genética , Sinorhizobium/isolamento & purificação , Solo/química , Simbiose/efeitos dos fármacos , Tunísia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...