Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 603
Filtrar
1.
Parasit Vectors ; 17(1): 284, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956725

RESUMO

BACKGROUND: Toxoplasma gondii infection affects a significant portion of the global population, leading to severe toxoplasmosis and, in immunocompromised patients, even death. During T. gondii infection, disruption of gut microbiota further exacerbates the damage to intestinal and brain barriers. Therefore, identifying imbalanced probiotics during infection and restoring their equilibrium can regulate the balance of gut microbiota metabolites, thereby alleviating tissue damage. METHODS: Vimentin gene knockout (vim-/-) mice were employed as an immunocompromised model to evaluate the influence of host immune responses on gut microbiota balance during T. gondii infection. Behavioral experiments were performed to assess changes in cognitive levels and depressive tendencies between chronically infected vim-/- and wild-type (WT) mice. Fecal samples were subjected to 16S ribosomal RNA (rRNA) sequencing, and serum metabolites were analyzed to identify potential gut probiotics and their metabolites for the treatment of T. gondii infection. RESULTS: Compared to the immunocompetent WT sv129 mice, the immunocompromised mice exhibited lower levels of neuronal apoptosis and fewer neurobehavioral abnormalities during chronic infection. 16S rRNA sequencing revealed a significant decrease in the abundance of probiotics, including several species of Lactobacillus, in WT mice. Restoring this balance through the administration of Lactobacillus murinus and Lactobacillus gasseri significantly suppressed the T. gondii burden in the intestine, liver, and brain. Moreover, transplantation of these two Lactobacillus spp. significantly improved intestinal barrier damage and alleviated inflammation and neuronal apoptosis in the central nervous system. Metabolite detection studies revealed that the levels of various Lactobacillus-related metabolites, including indole-3-lactic acid (ILA) in serum, decreased significantly after T. gondii infection. We confirmed that L. gasseri secreted much more ILA than L. murinus. Notably, ILA can activate the aromatic hydrocarbon receptor signaling pathway in intestinal epithelial cells, promoting the activation of CD8+ T cells and the secretion of interferon-gamma. CONCLUSION: Our study revealed that host immune responses against T. gondii infection severely disrupted the balance of gut microbiota, resulting in intestinal and brain damage. Lactobacillus spp. play a crucial role in immune regulation, and the metabolite ILA is a promising therapeutic compound for efficient and safe treatment of T. gondii infection.


Assuntos
Lesões Encefálicas , Microbioma Gastrointestinal , Camundongos Knockout , Toxoplasma , Animais , Camundongos , Toxoplasma/imunologia , Lesões Encefálicas/imunologia , Probióticos/administração & dosagem , Encéfalo/imunologia , Lactobacillus , Modelos Animais de Doenças , Hospedeiro Imunocomprometido , Toxoplasmose/imunologia , RNA Ribossômico 16S/genética , Masculino , Intestinos/imunologia
2.
Cytokine ; 180: 156651, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38761715

RESUMO

Stroke is the second leading cause of death worldwide and a leading cause of disability. The innate immune response occurs immediately after cerebral ischemia, resulting in adaptive immunity. More and more experimental evidence has proved that the immune response caused by cerebral ischemia plays an important role in early brain injury and later the recovery of brain injury. Innate immune cells and adaptive cells promote the occurrence of cerebral ischemic injury but also protect brain cells. A large number of studies have shown that cytokines and immune-related substances also have dual functions of promoting injury, reducing injury, or promoting injury recovery in the later stage of cerebral ischemia. They can be an important target for treating cerebral ischemic recovery. Therefore, this study discussed the immune cells, cytokines, and immune-related substances with dual roles in cerebral ischemia and summarized the therapeutic targets of cerebral ischemia. To explore more effective methods to treat cerebral ischemia, promote the recovery of brain function, and improve the prognosis of patients.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Citocinas , Humanos , Isquemia Encefálica/imunologia , Isquemia Encefálica/terapia , Animais , Citocinas/metabolismo , Lesões Encefálicas/imunologia , Lesões Encefálicas/terapia , Imunidade Inata , Imunidade Adaptativa
4.
Cell Death Dis ; 13(1): 33, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013119

RESUMO

Aged microglia display augmented inflammatory activity after neural injury. Although aging is a risk factor for poor outcome after brain insults, the precise impact of aging-related alterations in microglia on neural injury remains poorly understood. Microglia can be eliminated via pharmacological inhibition of the colony-stimulating factor 1 receptor (CSF1R). Upon withdrawal of CSF1R inhibitors, microglia rapidly repopulate the entire brain, leading to replacement of the microglial compartment. In this study, we investigated the impact of microglial replacement in the aged brain on neural injury using a mouse model of intracerebral hemorrhage (ICH) induced by collagenase injection. We found that replacement of microglia in the aged brain reduced neurological deficits and brain edema after ICH. Microglial replacement-induced attenuation of ICH injury was accompanied with alleviated blood-brain barrier disruption and leukocyte infiltration. Notably, newly repopulated microglia had reduced expression of IL-1ß, TNF-α and CD86, and upregulation of CD206 in response to ICH. Our findings suggest that replacement of microglia in the aged brain restricts neuroinflammation and brain injury following ICH.


Assuntos
Envelhecimento/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Hemorragia Cerebral/tratamento farmacológico , Microglia/efeitos dos fármacos , Doenças Neuroinflamatórias/tratamento farmacológico , Envelhecimento/patologia , Aminopiridinas/administração & dosagem , Aminopiridinas/farmacologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Encéfalo/imunologia , Encéfalo/patologia , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/etiologia , Lesões Encefálicas/imunologia , Lesões Encefálicas/patologia , Morte Celular/efeitos dos fármacos , Hemorragia Cerebral/complicações , Hemorragia Cerebral/imunologia , Hemorragia Cerebral/patologia , Quimiotaxia de Leucócito/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos , Microglia/imunologia , Microglia/patologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/patologia , Pirróis/administração & dosagem , Pirróis/farmacologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores
5.
Pediatr Res ; 91(2): 392-403, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34750522

RESUMO

Perinatal brain injury is the leading cause of neurological mortality and morbidity in childhood ranging from motor and cognitive impairment to behavioural and neuropsychiatric disorders. Various noxious stimuli, including perinatal inflammation, chronic and acute hypoxia, hyperoxia, stress and drug exposure contribute to the pathogenesis. Among a variety of pathological phenomena, the unique developing immune system plays an important role in the understanding of mechanisms of injury to the immature brain. Neuroinflammation following a perinatal insult largely contributes to evolution of damage to resident brain cells, but may also be beneficial for repair activities. The present review will focus on the role of peripheral immune cells and discuss processes involved in neuroinflammation under two frequent perinatal conditions, systemic infection/inflammation associated with encephalopathy of prematurity (EoP) and hypoxia/ischaemia in the context of neonatal encephalopathy (NE) and stroke at term. Different immune cell subsets in perinatal brain injury including their infiltration routes will be reviewed and critical aspects such as sex differences and maturational stage will be discussed. Interactions with existing regenerative therapies such as stem cells and also potentials to develop novel immunomodulatory targets are considered. IMPACT: Comprehensive summary of current knowledge on the role of different immune cell subsets in perinatal brain injury including discussion of critical aspects to be considered for development of immunomodulatory therapies.


Assuntos
Lesões Encefálicas/imunologia , Lesões Encefálicas/terapia , Feminino , Humanos , Imunidade Inata , Leucócitos/classificação , Leucócitos/imunologia , Subpopulações de Linfócitos , Masculino
6.
Am J Pathol ; 192(2): 295-307, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34767810

RESUMO

Peripheral monocyte-derived CX3C chemokine receptor 1 positive (CX3CR1+) cells play important roles in tissue homeostasis and gut repopulation. Increasing evidence also supports their role in immune repopulation of the brain parenchyma in response to systemic inflammation. Adoptive bone marrow transfer from CX3CR1 fluorescence reporter mice and high-resolution confocal microscopy was used to assess the time course of CX3CR1+ cell repopulation of steady-state and dextran sodium sulfate (DSS)-inflamed small intestine/colon and the brain over 4 weeks after irradiation. CX3CR1+ cell colonization and morphologic polarization into fully ramified cells occurred more rapidly in the small intestine than in the colon. For both organs, the crypt/mucosa was more densely populated than the serosa/muscularis layer, indicating preferential temporal and spatial occupancy. Repopulation of the brain was delayed compared with that of gut tissue, consistent with the immune privilege of this organ. However, DSS-induced colon injury accelerated the repopulation. Expression analyses confirmed increased chemokine levels and macrophage colonization within the small intestine/colon and the brain by DSS-induced injury. Early increases of transmembrane protein 119 and ionized calcium binding adaptor molecule 1 expression within the brain after colon injury suggest immune-priming effect of brain resident microglia in response to systemic inflammation. These findings identify temporal differences in immune repopulation of the gut and brain in response to inflammation and show that gut inflammation can impact immune responses within the brain.


Assuntos
Lesões Encefálicas/imunologia , Encéfalo/imunologia , Receptor 1 de Quimiocina CX3C/imunologia , Colite/imunologia , Mucosa Intestinal/imunologia , Monócitos/imunologia , Lesões Experimentais por Radiação/metabolismo , Animais , Encéfalo/patologia , Lesões Encefálicas/genética , Lesões Encefálicas/patologia , Receptor 1 de Quimiocina CX3C/genética , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Sulfato de Dextrana/toxicidade , Mucosa Intestinal/fisiologia , Camundongos , Camundongos Transgênicos , Monócitos/patologia , Lesões Experimentais por Radiação/genética , Lesões Experimentais por Radiação/patologia
7.
Cells ; 10(12)2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34944064

RESUMO

Stroke remains the number one cause of morbidity in the United States. Within weeks to months after an ischemic event, there is a resolution of inflammation and evidence of neurogenesis; however, years following a stroke, there is evidence of chronic inflammation in the central nervous system, possibly by the persistence of an autoimmune response to brain antigens as a result of ischemia. The mechanisms underlying the involvement of macrophage and microglial activation after stroke are widely acknowledged as having a role in ischemic stroke pathology; thus, modulating inflammation and neurological recovery is a hopeful strategy for treating the long-term outcomes after ischemic injury. Current treatments fail to provide neuroprotective or neurorestorative benefits after stroke; therefore, to ameliorate brain injury-induced deficits, therapies must alter both the initial response to injury and the subsequent inflammatory process. This review will address differences in macrophage and microglia nomenclature and summarize recent work in elucidating the mechanisms of macrophage and microglial participation in antigen presentation, neuroprotection, angiogenesis, neurogenesis, synaptic remodeling, and immune modulating strategies for treating the long-term outcomes after ischemic injury.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Inflamação/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico , Autoimunidade/genética , Autoimunidade/imunologia , Lesões Encefálicas/imunologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Isquemia Encefálica/imunologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Microglia/imunologia , Microglia/metabolismo , Microglia/patologia , Neurogênese/efeitos dos fármacos , Neurogênese/imunologia , Fármacos Neuroprotetores/uso terapêutico , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/metabolismo
8.
J Immunol Methods ; 499: 113163, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34610276

RESUMO

The inflammatory response to acute brain injuries is a key contributor to subsequent outcome. The study of local central nervous system inflammatory responses is hindered by raised intracranial pressure precluding cerebrospinal fluid sampling by lumbar puncture. External ventricular drains are sited in some acute brain injury patients to divert cerebrospinal fluid and thus reduce intracranial pressure, and represent a potential route to safely gather large volumes of cerebrospinal fluid for immunological studies. In this manuscript we show that mononuclear cells can be isolated from cerebrospinal fluid collected from external ventricular drains, and that the large volumes of cerebrospinal fluid available yield sufficient mononuclear cells to allow cryopreservation. Prolonged storage of cerebrospinal fluid in the external ventricular drain collection bag can alter the phenotype of cells recovered, but the predicted effect of this can be estimated for a given flow cytometry panel by assessing the changes in peripheral blood mononuclear cells exposed to the same conditions. The described method will allow clinical studies of acute brain injuries to investigate the immunological processes occurring within the central nervous system compartment, rather than relying on changes in the peripheral circulation.


Assuntos
Lesões Encefálicas/imunologia , Líquido Cefalorraquidiano/imunologia , Criopreservação , Pressão Intracraniana/imunologia , Leucócitos Mononucleares/imunologia , Lesões Encefálicas/sangue , Lesões Encefálicas/patologia , Humanos , Leucócitos Mononucleares/patologia
9.
Front Immunol ; 12: 741518, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675929

RESUMO

Intrauterine inflammation impacts prenatal neurodevelopment and is linked to adverse neurobehavioral outcomes ranging from cerebral palsy to autism spectrum disorder. However, the mechanism by which a prenatal exposure to intrauterine inflammation contributes to life-long neurobehavioral consequences is unknown. To address this gap in knowledge, this study investigates how inflammation transverses across multiple anatomic compartments from the maternal reproductive tract to the fetal brain and what specific cell types in the fetal brain may cause long-term neuronal injury. Utilizing a well-established mouse model, we found that mid-gestation intrauterine inflammation resulted in a lasting neutrophil influx to the decidua in the absence of maternal systemic inflammation. Fetal immunologic changes were observed at 72-hours post-intrauterine inflammation, including elevated neutrophils and macrophages in the fetal liver, and increased granulocytes and activated microglia in the fetal brain. Through unbiased clustering, a population of Gr-1+ γ/δ T cells was identified as the earliest immune cell shift in the fetal brain of fetuses exposed to intrauterine inflammation and determined to be producing high levels of IFNγ when compared to γ/δ T cells in other compartments. In a case-control study of term infants, IFNγ was found to be elevated in the cord blood of term infants exposed to intrauterine inflammation compared to those without this exposure. Collectively, these data identify a novel cellular immune mechanism for fetal brain injury in the setting of intrauterine inflammation.


Assuntos
Lesões Encefálicas/imunologia , Encéfalo/imunologia , Decídua/imunologia , Inflamação/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Linfócitos T/imunologia , Útero/imunologia , Animais , Transtorno do Espectro Autista/imunologia , Células Cultivadas , Paralisia Cerebral/imunologia , Modelos Animais de Doenças , Feminino , Feto , Humanos , Lactente , Interferon gama/metabolismo , Camundongos , Gravidez , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo
10.
J Neuroinflammation ; 18(1): 242, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34666799

RESUMO

BACKGROUND: Chorioamnionitis (CHORIO) is a principal risk factor for preterm birth and is the most common pathological abnormality found in the placentae of preterm infants. CHORIO has a multitude of effects on the maternal-placental-fetal axis including profound inflammation. Cumulatively, these changes trigger injury in the developing immune and central nervous systems, thereby increasing susceptibility to chronic sequelae later in life. Despite this and reports of neural-immune changes in children with cerebral palsy, the extent and chronicity of the peripheral immune and neuroinflammatory changes secondary to CHORIO has not been fully characterized. METHODS: We examined the persistence and time course of peripheral immune hyper-reactivity in an established and translational model of perinatal brain injury (PBI) secondary to CHORIO. Pregnant Sprague-Dawley rats underwent laparotomy on embryonic day 18 (E18, preterm equivalent). Uterine arteries were occluded for 60 min, followed by intra-amniotic injection of lipopolysaccharide (LPS). Serum and peripheral blood mononuclear cells (PBMCs) were collected at young adult (postnatal day P60) and middle-aged equivalents (P120). Serum and PBMCs secretome chemokines and cytokines were assayed using multiplex electrochemiluminescent immunoassay. Multiparameter flow cytometry was performed to interrogate immune cell populations. RESULTS: Serum levels of interleukin-1ß (IL-1ß), IL-5, IL-6, C-X-C Motif Chemokine Ligand 1 (CXCL1), tumor necrosis factor-α (TNF-α), and C-C motif chemokine ligand 2/monocyte chemoattractant protein-1 (CCL2/MCP-1) were significantly higher in CHORIO animals compared to sham controls at P60. Notably, CHORIO PBMCs were primed. Specifically, they were hyper-reactive and secreted more inflammatory mediators both at baseline and when stimulated in vitro. While serum levels of cytokines normalized by P120, PBMCs remained primed, and hyper-reactive with a robust pro-inflammatory secretome concomitant with a persistent change in multiple T cell populations in CHORIO animals. CONCLUSIONS: The data indicate that an in utero inflammatory insult leads to neural-immune changes that persist through adulthood, thereby conferring vulnerability to brain and immune system injury throughout the lifespan. This unique molecular and cellular immune signature including sustained peripheral immune hyper-reactivity (SPIHR) and immune cell priming may be a viable biomarker of altered inflammatory responses following in utero insults and advances our understanding of the neuroinflammatory cascade that leads to perinatal brain injury and later neurodevelopmental disorders, including cerebral palsy.


Assuntos
Lesões Encefálicas/metabolismo , Encéfalo/metabolismo , Corioamnionite/metabolismo , Mediadores da Inflamação/metabolismo , Leucócitos Mononucleares/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Encéfalo/imunologia , Lesões Encefálicas/imunologia , Corioamnionite/imunologia , Feminino , Mediadores da Inflamação/imunologia , Leucócitos Mononucleares/imunologia , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley
11.
Cells ; 10(9)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34572077

RESUMO

Ischemic stroke is still among the leading causes of mortality and morbidity worldwide. Despite intensive advancements in medical sciences, the clinical options to treat ischemic stroke are limited to thrombectomy and thrombolysis using tissue plasminogen activator within a narrow time window after stroke. Current state of the art knowledge reveals the critical role of local and systemic inflammation after stroke that can be triggered by interactions taking place at the brain and immune system interface. Here, we discuss different cellular and molecular mechanisms through which brain-immune interactions can take place. Moreover, we discuss the evidence how the brain influence immune system through the release of brain derived antigens, damage-associated molecular patterns (DAMPs), cytokines, chemokines, upregulated adhesion molecules, through infiltration, activation and polarization of immune cells in the CNS. Furthermore, the emerging concept of stemness-induced cellular immunity in the context of neurodevelopment and brain disease, focusing on ischemic implications, is discussed. Finally, we discuss current evidence on brain-immune system interaction through the autonomic nervous system after ischemic stroke. All of these mechanisms represent potential pharmacological targets and promising future research directions for clinically relevant discoveries.


Assuntos
Isquemia Encefálica/imunologia , Encéfalo/imunologia , Neuroimunomodulação , Acidente Vascular Cerebral/imunologia , Alarminas/metabolismo , Barreira Hematoencefálica/imunologia , Lesões Encefálicas/imunologia , Isquemia Encefálica/terapia , Quimiocinas/metabolismo , Citocinas/metabolismo , Sistemas de Liberação de Medicamentos , Humanos , Inflamação/imunologia , Sistema Nervoso/imunologia , Células-Tronco/imunologia , Acidente Vascular Cerebral/terapia
12.
Cell Host Microbe ; 29(10): 1558-1572.e6, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34480872

RESUMO

Premature infants are at substantial risk for suffering from perinatal white matter injury. Though the gut microbiota has been implicated in early-life development, a detailed understanding of the gut-microbiota-immune-brain axis in premature neonates is lacking. Here, we profiled the gut microbiota, immunological, and neurophysiological development of 60 extremely premature infants, which received standard hospital care including antibiotics and probiotics. We found that maturation of electrocortical activity is suppressed in infants with severe brain damage. This is accompanied by elevated γδ T cell levels and increased T cell secretion of vascular endothelial growth factor and reduced secretion of neuroprotectants. Notably, Klebsiella overgrowth in the gut is highly predictive for brain damage and is associated with a pro-inflammatory immunological tone. These results suggest that aberrant development of the gut-microbiota-immune-brain axis may drive or exacerbate brain injury in extremely premature neonates and represents a promising target for novel intervention strategies.


Assuntos
Lesões Encefálicas/imunologia , Lesões Encefálicas/microbiologia , Microbioma Gastrointestinal , Recém-Nascido Prematuro/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Encéfalo/crescimento & desenvolvimento , Lesões Encefálicas/fisiopatologia , Feminino , Humanos , Sistema Imunitário/crescimento & desenvolvimento , Recém-Nascido , Recém-Nascido Prematuro/imunologia , Masculino , Linfócitos T/imunologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/imunologia
13.
BMC Immunol ; 22(1): 52, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34348643

RESUMO

BACKGROUND: Current research suggests that the glial scar surrounding penetrating brain injuries is instrumental in preserving the surrounding uninjured tissue by limiting the inflammatory response to the injury site. We recently showed that tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6), a well-established anti-inflammatory molecule, is present within the glial scar. In the present study we investigated the role of TSG-6 within the glial scar using TSG-6 null and littermate control mice subjected to penetrating brain injuries. RESULTS: Our findings show that mice lacking TSG-6 present a more severe inflammatory response after injury, which was correlated with an enlarged area of astrogliosis beyond the injury site. CONCLUSION: Our data provides evidence that TSG-6 has an anti-inflammatory role within the glial scar.


Assuntos
Astrócitos/fisiologia , Lesões Encefálicas/metabolismo , Moléculas de Adesão Celular/metabolismo , Cicatriz/imunologia , Inflamação/metabolismo , Neuroglia/patologia , Animais , Lesões Encefálicas/imunologia , Moléculas de Adesão Celular/genética , Células Cultivadas , Modelos Animais de Doenças , Gliose , Glicosaminoglicanos/metabolismo , Humanos , Inflamação/imunologia , Camundongos , Camundongos Knockout , Neuroglia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
14.
Sci Rep ; 11(1): 14226, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244562

RESUMO

Aneurysmal subarachnoid hemorrhage (SAH) is associated with high morbidity and mortality. Devastating post-SAH complications, such as cerebral vasospasm (CVS), delayed cerebral ischemia or seizures to mention a few, are mainly responsible for the poor clinical outcome. Inflammation plays an indispensable role during early brain injury (EBI) and delayed brain injury (DBI) phases over which these complications arise. T helper cells are the major cytokine secreting cells of adaptive immunity that can polarize to multiple functionally unique sub-populations. Here, we investigate different CD4+ T cell subsets during EBI and DBI phases after SAH, and their dynamics during post-SAH complications. Peripheral venous blood from 15 SAH patients during EBI and DBI phases, was analyzed by multicolour flowcytometry. Different subsets of CD3+ CD4+ T cells were characterized by differential cell surface expression of CXCR3 and CCR6 into Th1, Th2, Th17, whereas Tregs were defined by CD25hiCD127lo. The analysis of activation states was done by the expression of stable activation markers CD38 and HLA-DR. Interestingly, compared to healthy controls, Tregs were significantly increased during both EBI and DBI phases. Different activation states of Tregs showed differential significant increase during EBI and DBI phases compared to controls. HLA-DR- CD38+ Tregs were significantly increased during DBI phase compared to EBI phase in SAH patients developing CVS, seizures and infections. However, HLA-DR- CD38- Tregs were significantly reduced during EBI phase in patients with cerebral ischemia (CI) compared to those without CI. HLA-DR- CD38- Th2 cells were significantly increased during EBI phase compared to controls. A significant reduction in Th17/Tregs and HLA-DR- CD38+ Th17/Tregs ratios was observed during both EBI and DBI phases compared to controls. While HLA-DR- CD38- Th17/Tregs and HLA-DR- CD38- Th1/Th2 ratios were impaired only during EBI phase compared to controls. In conclusion, CD4+ T cell subsets display dynamic and unique activation patterns after SAH and during the course of the manifestation of post-SAH complications, which may be helpful for the development of precision neurovascular care. However, to claim this, confirmatory studies with larger patient cohorts, ideally from different ethnic backgrounds, are required. Moreover, our descriptive study may be the grounds for subsequent lab endeavors to explore the underlying mechanisms of our observations.


Assuntos
Lesões Encefálicas/imunologia , Lesões Encefálicas/metabolismo , Hemorragia Subaracnóidea/fisiopatologia , Subpopulações de Linfócitos T/metabolismo , Vasoespasmo Intracraniano/fisiopatologia , Adulto , Linfócitos T CD4-Positivos/metabolismo , Feminino , Antígenos HLA-DR , Humanos , Masculino , Pessoa de Meia-Idade
15.
Front Immunol ; 12: 676621, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177918

RESUMO

Neuroinflammation is a key component of neurological disorders and is an important therapeutic target; however, immunotherapies have been largely unsuccessful. In cases where these therapies have succeeded, particularly multiple sclerosis, they have primarily focused on one aspect of the disease and leave room for improvement. More recently, the impact of the peripheral immune system is being recognized, since it has become evident that the central nervous system is not immune-privileged, as once thought. In this review, we highlight key interactions between central and peripheral immune cells in neurological disorders. While traditional approaches have examined these systems separately, the immune responses and processes in neurological disorders consist of substantial crosstalk between cells of the central and peripheral immune systems. Here, we provide an overview of major immune effector cells and the role of the blood-brain barrier in regard to neurological disorders and provide examples of this crosstalk in various disorders, including stroke and traumatic brain injury, multiple sclerosis, neurodegenerative diseases, and brain cancer. Finally, we propose targeting central-peripheral immune interactions as a potential improved therapeutic strategy to overcome failures in clinical translation.


Assuntos
Doença de Alzheimer/imunologia , Lesões Encefálicas/imunologia , Neoplasias Encefálicas/imunologia , Sistema Imunitário/imunologia , Imunidade , Esclerose Múltipla/imunologia , Neuroimunomodulação/imunologia , Doença de Parkinson/imunologia , Acidente Vascular Cerebral/imunologia , Animais , Barreira Hematoencefálica/imunologia , Sistema Nervoso Central/imunologia , Humanos , Inflamação/imunologia
16.
Microvasc Res ; 137: 104178, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34015275

RESUMO

OBJECTIVE: To examine the role of YTHDF1 knock-down macrophages on the immunity of severe sepsis rats with ECMO. METHODS: 15 SD rats were randomly allocated into 3 groups: mild sepsis (I), severe sepsis with ECMO (II), and YTHDF1 knock-down macrophages treatment groups (III). Blood biochemical indexes, different immune factors and brain changes were detected by RT-PCR, ELISA, ELISPOT and HE staining. Isolated macrophages subtypes and signal proteins were detected by flow cytometry, western blot and m6A RNA methylation test. RESULTS: The levels of HMGB1, RAGE, YTHDF1 and IL-17 in peripheral blood were significantly higher (p < 0.01), while the level of CXCL9 and TNF-α, and LPS-specific CD8+CTL function were significantly decreased in group II compared with group I (p < 0.01). The ratio of CD63+ macrophages (p < 0.05) and CD64+ macrophages (p< 0.05) decreased and the level of elastase (p < 0.01) and CCR2highCX3CR1low/CCR2lowCX3CR1high (p < 0.01) of macrophages increased in group II. The above were consistent with the severity of biochemical indicators, the increasing endothelial injury factor (Ang2/Ang1), lower endothelial protective factor (sTie2), severer brain injury in group II. After YTHDF1 knock-down macrophages treatment, the above indexes' changes were opposite when Group III versus Group II through the down-regulation of m6A RNA methylation of JAK2/STAT3 (p < 0.01) and protein expression of PJAK2/PSTAT3 (p < 0.05) in isolated macrophages. CONCLUSIONS: YTHDF1 knock-down macrophages improved the immune paralysis of macrophages, Th1/Th17 and CTL and reduced the entry of macrophages into the brain to cause endothelial damage of severe sepsis rats with ECMO through the inhibition of HMGB1/RAGE and YTHDF1, m6A RNA methylation of JAK2/STAT3 and PJAK2/PSTAT3 proteins expression in macrophages.


Assuntos
Lesões Encefálicas/prevenção & controle , Encéfalo/imunologia , Oxigenação por Membrana Extracorpórea , Macrófagos/transplante , Pneumonia/terapia , Proteínas de Ligação a RNA/fisiologia , Sepse/terapia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas/imunologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Células Cultivadas , Citocinas/sangue , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Técnicas de Silenciamento de Genes , Mediadores da Inflamação/sangue , Macrófagos/imunologia , Macrófagos/metabolismo , Fenótipo , Pneumonia/imunologia , Pneumonia/metabolismo , Pneumonia/patologia , Proteínas de Ligação a RNA/genética , Ratos Sprague-Dawley , Sepse/imunologia , Sepse/metabolismo , Sepse/patologia , Transdução de Sinais , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/imunologia , Células Th17/metabolismo
17.
Int Immunol ; 33(6): 311-325, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33851981

RESUMO

Neuro-immune interactions are essential for our body's defense and homeostasis. Anatomical and physiological analyses have shown that the nervous system comprises multiple pathways that regulate the dynamics and functions of immune cells, which are mainly mediated by the autonomic nervous system and adrenal signals. These are disturbed when the neurons and circuits are damaged by diseases of the central nervous system (CNS). Injuries caused by stroke or trauma often cause immune dysfunction by abrogation of the immune-regulating neural pathways, which leads to an increased risk of infections. Here, I review the structures and functions of the neural pathways connecting the brain and the immune system, and the neurogenic mechanisms of immune dysfunction that emerge after CNS injuries. Recent technological advances in manipulating specific neural circuits have added mechanistic aspects of neuro-immune interactions and their dysfunctions. Understanding the neural bases of immune control and their pathological processes will deepen our knowledge of homeostasis and lead to the development of strategies to cure immune deficiencies observed in various CNS disorders.


Assuntos
Lesões Encefálicas/imunologia , Lesões Encefálicas/fisiopatologia , Neuroimunomodulação/imunologia , Neuroimunomodulação/fisiologia , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/fisiopatologia , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/fisiologia , Neurônios/imunologia , Neurônios/fisiologia
18.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924540

RESUMO

Despite the prevalence of preterm brain injury, there are no established neuroprotective strategies to prevent or alleviate mild-to-moderate inflammation-related brain injury. Perinatal infection and inflammation have been shown to trigger acute neuroinflammation, including proinflammatory cytokine release and gliosis, which are associated with acute and chronic disturbances in brain cell survival and maturation. These findings suggest the hypothesis that the inhibition of peripheral immune responses following infection or nonspecific inflammation may be a therapeutic strategy to reduce the associated brain injury and neurobehavioral deficits. This review provides an overview of the neonatal immunity, neuroinflammation, and mechanisms of inflammation-related brain injury in preterm infants and explores the safety and efficacy of anti-inflammatory agents as potentially neurotherapeutics.


Assuntos
Anti-Inflamatórios/uso terapêutico , Lesões Encefálicas/tratamento farmacológico , Inflamação/tratamento farmacológico , Lesões Encefálicas/complicações , Lesões Encefálicas/imunologia , Citocinas/metabolismo , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Inflamação/complicações , Modelos Biológicos
19.
Aging (Albany NY) ; 13(8): 11752-11761, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33878031

RESUMO

Early brain injury (EBI) is a major contributor to the high mortality and morbidity after subarachnoid hemorrhage (SAH). Inflammatory responses and neuronal apoptosis are important causes of EBI. Because 5- lipoxygenase (5-LOX) is known to be involved various central nervous system diseases, we investigated the effects of 5-LOX inhibition during EBI after SAH. Zileuton and LY294002 were used to inhibit expression of 5-LOX and Akt, respectively. We found that 5-LOX expression was significantly increased in the cytoplasm of cortical neurons after SAH and was accompanied by upregulated expression of the inflammatory factors LTB4, TNF-α, IL-1ß and IL-6; upregulation of the pro-apoptotic factor Bax; downregulation of the anti-apoptotic factor Bcl-2; and an increased apoptosis rate. Gastric Zileuton administration significantly suppressed all of those effects and improved neurological function. Zileuton also upregulated activated (phosphorylated) AKT levels, and these beneficial effects of Zileuton were abolished by intracerebroventricular infusion of the PI3K inhibitor LY294002. Taken together, these findings indicate that 5-LOX mediates pro-inflammatory and pro-apoptotic effects that contribute to EBI after SAH and that those effects are suppressed by activation of PI3K/Akt signaling. This suggests targeting 5-LOX may be an effective approach to treating EBI after SAH.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Lesões Encefálicas/tratamento farmacológico , Inibidores de Lipoxigenase/administração & dosagem , Neurônios/efeitos dos fármacos , Hemorragia Subaracnóidea/tratamento farmacológico , Administração Oral , Animais , Apoptose/efeitos dos fármacos , Lesões Encefálicas/imunologia , Lesões Encefálicas/patologia , Cromonas/administração & dosagem , Modelos Animais de Doenças , Humanos , Hidroxiureia/administração & dosagem , Hidroxiureia/análogos & derivados , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/patologia , Infusões Intraventriculares , Masculino , Morfolinas/administração & dosagem , Neurônios/imunologia , Neurônios/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/imunologia , Hemorragia Subaracnóidea/patologia
20.
Exp Neurol ; 341: 113712, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33819449

RESUMO

Acute brain injury (ABI) is a broad concept mainly comprised of sudden parenchymal brain injury. Acute brain injury outcomes are dependent not only on the severity of the primary injury, but the delayed secondary injury that subsequently follows as well. These are both taken into consideration when determining the patient's prognosis. Growing clinical and experimental evidence demonstrates that "preconditioning," a prophylactic approach in which the brain is exposed to various pre-injury stressors, can induce varying degrees of "tolerance" against the impact of the ABI by modulating neuroinflammation. In this review, we will summarize the pathophysiology of ABI, and discuss the involved mechanisms of neuroinflammation in ABI, as well as existing experimental and clinical studies demonstrating the efficacy of preconditioning methods in various types of ABI by modulating neuroinflammation.


Assuntos
Lesões Encefálicas/metabolismo , Lesões Encefálicas/prevenção & controle , Encéfalo/metabolismo , Imunomodulação/fisiologia , Precondicionamento Isquêmico/métodos , Anestésicos/administração & dosagem , Animais , Encéfalo/imunologia , Lesões Encefálicas/imunologia , Exercício Físico/fisiologia , Humanos , Imunomodulação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...