Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Res ; 268: 40-50, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38246342

RESUMO

Traumatic brain injury (TBI) has a significant impact on cognitive function, affecting millions of people worldwide. Myelin loss is a prominent pathological feature of TBI, while well-functioning myelin is crucial for memory and cognition. Utilizing drug repurposing to identify effective drug candidates for TBI treatment has gained attention. Notably, recent research has highlighted the potential of clemastine, an FDA-approved allergy medication, as a promising pro-myelinating drug. Therefore, in this study, we aim to investigate whether clemastine can enhance myelination and alleviate cognitive impairment following mild TBI using a clinically relevant rat model of TBI. Mild diffuse TBI was induced using the Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA). Animals were treated with either clemastine or an equivalent volume of the vehicle from day 1 to day 14 post-injury. Following treatment, memory-related behavioral tests were conducted, and myelin pathology in the cortex and hippocampus was assessed through immunofluorescence staining and ProteinSimple® capillary-based immunoassay. Our results showed that TBI leads to significant myelin loss, axonal damage, glial activation, and a decrease in mature oligodendrocytes in both the cortex and hippocampus. The TBI animals also exhibited notable deficits in memory-related tests. In contrast, animals treated with clemastine showed an increase in mature oligodendrocytes, enhanced myelination, and improved performance in the behavioral tests. These preliminary findings support the therapeutic value of clemastine in alleviating TBI-induced cognitive impairment, with substantial clinical translational potential. Our findings also underscore the potential of remyelinating therapies for TBI.


Assuntos
Axônios , Clemastina , Disfunção Cognitiva , Modelos Animais de Doenças , Bainha de Mielina , Ratos Sprague-Dawley , Animais , Clemastina/farmacologia , Clemastina/uso terapêutico , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/patologia , Bainha de Mielina/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/patologia , Axônios/efeitos dos fármacos , Axônios/patologia , Masculino , Ratos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Difusas/efeitos dos fármacos , Lesões Encefálicas Difusas/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia
2.
Sci Rep ; 11(1): 8620, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883663

RESUMO

Traumatic brain injury (TBI) is a common phenomenon, accounting for significant cost and adverse health effects. While there is information about focal pathologies following TBI, knowledge of more diffuse processes is lacking, particularly regarding how analgesics affect this pathology. As buprenorphine is the most commonly used analgesic in experimental TBI models, this study investigated the acute effects of the opioid analgesic buprenorphine (Bup-SR-Lab) on diffuse neuronal/glial pathology, neuroinflammation, cell damage, and systemic physiology. We utilized a model of central fluid percussion injury (CFPI) in adult male rats treated with a single subcutaneous bolus of Bup-SR-Lab or saline 15 min post-injury. Microscopic assessments were performed at 1 day post-injury. Cell impermeable dextran was infused intraventricularly prior to sacrifice to assess neuronal membrane disruption. Axonal injury was assessed by investigating labeling of the anterogradely transported amyloid precursor protein. Neuroinflammation was assessed by analyzing Iba-1 + microglial and GFAP + astrocyte histological/morphological features as well as cytokine levels in both regions of interest (ROIs). Myelin pathology was assessed by evaluating the expression of myelin basic protein (MBP) and the propensity of MBP + myelin debris. Acute physiologic data showed no difference between groups except for reduction in weight loss following cFPI in Bup treated animals compared to saline. There were no discernable differences in axonal injury or membrane disruption between treatment groups. Cytokine levels were consistent between Bup and saline treated animals, however, microglia and astrocytes revealed region specific histological changes at 1d following Bup treatment. Myelin integrity and overall MBP expression showed no differences between Bup and saline treated animals, but there were significant regional differences in MBP expression between the cortex and thalamus. These data suggest effects of Bup treatment on weight following CFPI and potential regional specificity of Bup-associated microglial and astrocyte alterations, but very little change in other acute pathology at 1-day post-injury. Overall, this preliminary study indicates that use of Bup-SR-Lab in preclinical work does have effects on acute glial pathology, however, longer term studies will be needed to assess potential effects of Bup treatment on more chronic pathological progressions.


Assuntos
Astrócitos/efeitos dos fármacos , Lesões Encefálicas Difusas/efeitos dos fármacos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Buprenorfina/farmacologia , Microglia/efeitos dos fármacos , Precursor de Proteína beta-Amiloide/metabolismo , Analgésicos Opioides/farmacologia , Animais , Astrócitos/metabolismo , Lesões Encefálicas Difusas/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Citocinas/metabolismo , Masculino , Microglia/metabolismo , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Ratos , Ratos Sprague-Dawley
3.
Biosci Rep ; 38(5)2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30181379

RESUMO

We aim to investigate the function and mechanism of GanDouLing combinated with Penicillamine on cerebrovascular injury in Wilson's disease (WD). ELISA was performed to analyze the expression of vascular injury factors. Pathological changes of cerebral vessels were observed by HE stain. Immunohistochemistry assays were performed to analyze the expression of ICAM-1, VCAM-1, and GRP78. Western blotting was measured to analyze the expression of caspase-3, caspase-12, PERK, eIF2α, and CHOP. Apoptosis was detected with TUNEL assay. The expression of vascular injury factors and ICAM-1, VCAM-1 was significantly increased by WD and markedly decreased in GanDouLing-Penicillamine group. The expression of caspase-3, caspase-12, PERK, eIF2α, and CHOP were obviously expressed in Wilson group, GanDouLing-Penicillamine suppressed apoptosis and endoplasmic reticulum (ER) stress. Our findings suggested that GanDouLing-Penicillamine improved cerebrovascular injury through PERK/eIF2α/CHOP ER stress pathway in the mouse model of WD.


Assuntos
Transtornos Cerebrovasculares/tratamento farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Degeneração Hepatolenticular/tratamento farmacológico , Penicilamina/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Lesões Encefálicas Difusas/efeitos dos fármacos , Caspase 12/genética , Caspase 3/genética , Transtornos Cerebrovasculares/genética , Transtornos Cerebrovasculares/patologia , Modelos Animais de Doenças , Chaperona BiP do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/genética , Proteínas de Choque Térmico/genética , Degeneração Hepatolenticular/genética , Degeneração Hepatolenticular/patologia , Humanos , Molécula 1 de Adesão Intercelular/genética , Camundongos , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição CHOP/genética , Molécula 1 de Adesão de Célula Vascular/genética , eIF-2 Quinase/genética
4.
J Neurotrauma ; 34(2): 414-422, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27142118

RESUMO

Increasing evidence suggests that traumatic brain injury (TBI) may raise the risk of developing late-onset Parkinson's disease (PD). Recently, the peroxisome proliferation-activated receptor gamma (PPARγ) agonist pioglitazone has been demonstrated to be neuroprotective in animal models of neurodegeneration. The present study investigates the vulnerability of the nigrostriatal system after TBI, and intervention with pioglitazone treatment. Adult male Sprague-Dawley rats were subjected to sham or moderate midline fluid percussion brain injury (mFPI), followed by an intraperitoneal injection of 10 mg/kg pioglitazone or vehicle beginning 30 min after the injury and subsequently every 24 h for 5 days. Following injury, pro-inflammatory cytokines and chemokine were acutely increased in the striatum and substantia nigra within 6 h. Dopaminergic axonal damage and microglial activation were revealed using immunohistochemistry in the medial forebrain bundle at 1 day post-injury. Microglial activation identified by Iba1 and OX-6 immunostaining was persistently increased in the substantia nigra pars compacta 7 to 28 days post-injury. Further, brain injury induced significant dopaminergic neuronal loss, which was quantified by tyrosine hydroxylase immunostaining and retrograde fluorescent tracer fluorogold labeling in the nigra at 28 days. Loss of neurons was accompanied by increased extracellular dopamine (DA) turnover in the striatum, indicating enhanced dopaminergic activity in functional compensation after nigrostriatal damage. Strikingly, pioglitazone treatment greatly attenuated microglial activation and improved dopaminergic neuronal survival in the nigrostriatal system, which may promote locomotor recovery. These results suggest that interventions that attenuate secondary inflammation could be a feasible therapeutic treatment to improve outcome after TBI.


Assuntos
Lesões Encefálicas Difusas/metabolismo , Neurônios Dopaminérgicos/metabolismo , Mediadores da Inflamação/metabolismo , Neostriado/metabolismo , Substância Negra/metabolismo , Tiazolidinedionas/uso terapêutico , Animais , Lesões Encefálicas Difusas/efeitos dos fármacos , Lesões Encefálicas Difusas/patologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/antagonistas & inibidores , Masculino , Neostriado/efeitos dos fármacos , Neostriado/patologia , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Degeneração Neural/prevenção & controle , Pioglitazona , Ratos , Ratos Sprague-Dawley , Substância Negra/efeitos dos fármacos , Substância Negra/patologia , Tiazolidinedionas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...