Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
2.
Allergol Immunopathol (Madr) ; 50(6): 115-121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36335454

RESUMO

BACKGROUND: Psoriasis is considered as an inflammatory skin disease accompanied by dyslipidemia comorbidity. B-cell leukemia-3 (Bcl-3) belongs to IκB (inhibitor of nuclear factor kappa B [NF-κB]) family, and regulates inflammatory response through associating with NF-κB. The role of Bcl-3 in psoriasis was investigated in this study. METHODS: Apolipoprotein E (ApoE)-deficient mice were treated with imiquimod to induce psoriasis and dyslipidemia. Mice were injected intradermally in the back with lentiviral particles encoding Bcl-3 small hairpin RNA (shRNA). Hematoxylin and eosin were used to detect pathological characteristics. The blood lipid levels were determined by automatic biochemical analyzer, and inflammation was assessed by enzyme-linked-immunosorbent serologic assay and real-time quantitative reverse transcription polymerase chain reaction. RESULTS: Bcl-3 was elevated in imiquimod-induced ApoE-deficient mice. Injection with lentiviral particles encoding Bcl-3 shRNA reduced Psoriasis area and severity index (PASI) score in ApoE-deficient psoriatic mice. Knockdown of Bcl-3 also ameliorated imiquimod-induced psoriasiform skin lesions in ApoE-deficient mice. Moreover, loss of Bcl-3 enhanced expression of loricrin, an epidermal barrier protein, reduced expression of proliferating cell nuclear antigen (PCNA) and lectin-like oxidized LDL (oxLDL) receptor-1 (LOX-1) in imiquimod-induced ApoE-deficient mice. The enhanced levels of blood lipid in ApoE-deficient mice were attenuated by silencing of Bcl-3 with increase of high-density lipoprotein, and reduction of total cholesterol, triglycerides, and low-density lipoprotein cholesterol. Knockdown of Bcl-3 attenuated imiquimod-induced decrease of transforming growth factor beta (TGF-ß), and increase of Interleukin (IL)-17A, IL-23, IL-6, and tumor necrosis factor-α (TNF-α) in ApoE-deficient mice. Protein expression of phospho-Akt (p-Akt) and p-GSK3ß in ApoE-deficient psoriatic mice was decreased by silencing of Bcl-3. CONCLUSION: Loss of Bcl-3 exerted anti-inflammatory effect on psoriasis and dyslipidemia comorbidity through inactivation of Akt/GSK3ß pathway.


Assuntos
Dislipidemias , Leucemia de Células B , Psoríase , Camundongos , Animais , Imiquimode/efeitos adversos , Imiquimode/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/efeitos adversos , RNA Interferente Pequeno/metabolismo , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Comorbidade , Colesterol , Leucemia de Células B/metabolismo , Leucemia de Células B/patologia , Apolipoproteínas E/efeitos adversos , Apolipoproteínas E/metabolismo , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças , Pele/patologia
3.
Blood ; 140(17): 1858-1874, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35789258

RESUMO

The discovery of humans with monogenic disorders has a rich history of generating new insights into biology. Here we report the first human identified with complete deficiency of nuclear factor of activated T cells 1 (NFAT1). NFAT1, encoded by NFATC2, mediates calcium-calcineurin signals that drive cell activation, proliferation, and survival. The patient is homozygous for a damaging germline NFATC2 variant (c.2023_2026delTACC; p.Tyr675Thrfs∗18) and presented with joint contractures, osteochondromas, and recurrent B-cell lymphoma. Absence of NFAT1 protein in chondrocytes caused enrichment in prosurvival and inflammatory genes. Systematic single-cell-omic analyses in PBMCs revealed an environment that promotes lymphomagenesis with accumulation of naïve B cells (enriched for oncogenic signatures MYC and JAK1), exhausted CD4+ T cells, impaired T follicular helper cells, and aberrant CD8+ T cells. This work highlights the pleiotropic role of human NFAT1, will empower the diagnosis of additional patients with NFAT1 deficiency, and further defines the detrimental effects associated with long-term use of calcineurin inhibitors.


Assuntos
Contratura , Leucemia de Células B , Osteocondroma , Humanos , Calcineurina/genética , Leucemia de Células B/genética , Leucemia de Células B/metabolismo , Recidiva Local de Neoplasia , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Linfoma de Células B/genética , Linfoma de Células B/metabolismo
4.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35563312

RESUMO

Chimeric antigen receptor (CAR)-expressing T-cells are without a doubt a breakthrough therapy for hematological malignancies. Despite their success, clinical experience has revealed several challenges, which include relapse after targeting single antigens such as CD19 in the case of B-cell acute lymphoblastic leukemia (B-ALL), and the occurrence of side effects that could be severe in some cases. Therefore, it became clear that improved safety approaches, and targeting multiple antigens, should be considered to further improve CAR T-cell therapy for B-ALL. In this paper, we address both issues by investigating the use of CD10 as a therapeutic target for B-ALL with our switchable UniCAR system. The UniCAR platform is a modular platform that depends on the presence of two elements to function. These include UniCAR T-cells and the target modules (TMs), which cross-link the T-cells to their respective targets on tumor cells. The TMs function as keys that control the switchability of UniCAR T-cells. Here, we demonstrate that UniCAR T-cells, armed with anti-CD10 TM, can efficiently kill B-ALL cell lines, as well as patient-derived B-ALL blasts, thereby highlighting the exciting possibility for using CD10 as an emerging therapeutic target for B-cell malignancies.


Assuntos
Leucemia de Células B , Leucemia Linfocítica Crônica de Células B , Neprilisina , Antígenos CD19/metabolismo , Humanos , Imunoterapia Adotiva , Leucemia de Células B/metabolismo , Leucemia de Células B/terapia , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/terapia , Neprilisina/uso terapêutico , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T
5.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35163524

RESUMO

Anti-CD20 monoclonal antibodies (MAbs) have revolutionized the treatment of B-cell leukemia and lymphoma. However, many patients do not respond to such treatment due to either deficiency of the complementary immune response or resistance to apoptosis. Other currently available treatments are often inadequate or induce major side effects. Therefore, there is a constant need for improved therapies. The prostaglandin E2 receptor 4 (EP4) receptor has been identified as a promising therapeutic target for hematologic B-cell malignancies. Herein, we report that EP4 receptor agonists PgE1-OH and L-902688 have exhibited enhanced cytotoxicity when applied together with anti-CD20 MAbs rituximab, ofatumumab and obinutuzumab in vitro in Burkitt lymphoma cells Ramos, as well as in p53-deficient chronic lymphocytic leukemia (CLL) cells MEC-1. Moreover, the enhanced cytotoxic effects of EP4 receptor agonists and MAbs targeting CD20 have been identified ex vivo on primary lymphocytes B obtained from patients diagnosed with CLL. Incubation of cells with PgE1-OH and L-902688 preserved the expression of CD20 molecules, further confirming the anti-leukemic potential of EP4 receptor agonists in combination with anti-CD20 MAbs. Additionally, we demonstrated that the EP4 receptor agonist PgE-1-OH induced apoptosis and inhibited proliferation via the EP4 receptor triggering in CLL. This work has revealed very important findings leading towards the elucidation of the anticancer potential of PgE1-OH and L-902688, either alone or in combination with MAbs. This may contribute to the development of potential therapeutic alternatives for patients with B-cell malignancies.


Assuntos
Anticorpos Monoclonais/farmacologia , Antígenos CD20/imunologia , Leucemia de Células B/metabolismo , Linfoma de Células B/metabolismo , Receptores de Prostaglandina E Subtipo EP4/agonistas , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ácidos Heptanoicos/farmacologia , Humanos , Leucemia de Células B/tratamento farmacológico , Linfoma de Células B/tratamento farmacológico , Pirrolidinonas/farmacologia , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Rituximab/farmacologia , Rituximab/uso terapêutico , Tetrazóis/farmacologia
7.
EBioMedicine ; 71: 103559, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34461601

RESUMO

BACKGROUND: The most common B-cell cancers, chronic lymphocytic leukemia/lymphoma (CLL), follicular and diffuse large B-cell (FL, DLBCL) lymphomas, have distinct clinical courses, yet overlapping "cell-of-origin". Dynamic changes to the epigenome are essential regulators of B-cell differentiation. Therefore, we reasoned that these distinct cancers may be driven by shared mechanisms of disruption in transcriptional circuitry. METHODS: We compared purified malignant B-cells from 52 patients with normal B-cell subsets (germinal center centrocytes and centroblasts, naïve and memory B-cells) from 36 donor tonsils using >325 high-resolution molecular profiling assays for histone modifications, open chromatin (ChIP-, FAIRE-seq), transcriptome (RNA-seq), transcription factor (TF) binding, and genome copy number (microarrays). FINDINGS: From the resulting data, we identified gains in active chromatin in enhancers/super-enhancers that likely promote unchecked B-cell receptor signaling, including one we validated near the immunoglobulin superfamily receptors FCMR and PIGR. More striking and pervasive was the profound loss of key B-cell identity TFs, tumor suppressors and their super-enhancers, including EBF1, OCT2(POU2F2), and RUNX3. Using a novel approach to identify transcriptional feedback, we showed that these core transcriptional circuitries are self-regulating. Their selective gain and loss form a complex, iterative, and interactive process that likely curbs B-cell maturation and spurs proliferation. INTERPRETATION: Our study is the first to map the transcriptional circuitry of the most common blood cancers. We demonstrate that a critical subset of B-cell TFs and their cognate enhancers form self-regulatory transcriptional feedback loops whose disruption is a shared mechanism underlying these diverse subtypes of B-cell lymphoma. FUNDING: National Institute of Health, Siteman Cancer Center, Barnes-Jewish Hospital Foundation, Doris Duke Foundation.


Assuntos
Linfócitos B/metabolismo , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Leucemia de Células B/etiologia , Linfoma de Células B/etiologia , Transcrição Gênica , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos B/imunologia , Biomarcadores , Transformação Celular Neoplásica/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Elementos Facilitadores Genéticos , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Leucemia de Células B/diagnóstico , Leucemia de Células B/metabolismo , Linfoma de Células B/diagnóstico , Linfoma de Células B/metabolismo , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Oncogenes , Transdução de Sinais , Fatores de Transcrição/metabolismo
8.
Biochem Soc Trans ; 49(3): 1467-1478, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34196360

RESUMO

B-cells are antibody-producing cells of the adaptive immune system. Approximately 75% of all newly generated B-cells in the bone marrow are autoreactive and express potentially harmful autoantibodies. To prevent autoimmune disease, the immune system has evolved a powerful mechanism to eliminate autoreactive B-cells, termed negative B-cell selection. While designed to remove autoreactive clones during early B-cell development, our laboratory recently discovered that transformed B-cells in leukemia and lymphoma are also subject to negative selection. Indeed, besides the risk of developing autoimmune disease, B-cells are inherently prone to malignant transformation: to produce high-affinity antibodies, B-cells undergo multiple rounds of somatic immunoglobulin gene recombination and hypermutation. Reflecting high frequencies of DNA-breaks, adaptive immune protection by B-cells comes with a dramatically increased risk of development of leukemia and lymphoma. Of note, B-cells exist under conditions of chronic restriction of energy metabolism. Here we discuss how these metabolic gatekeeper functions during B-cell development provide a common mechanism for the removal of autoreactive and premalignant B-cells to safeguard against both autoimmune diseases and B-cell malignancies.


Assuntos
Imunidade Adaptativa/imunologia , Autoanticorpos/imunologia , Doenças Autoimunes/imunologia , Autoimunidade/imunologia , Linfócitos B/imunologia , Animais , Autoanticorpos/metabolismo , Doenças Autoimunes/metabolismo , Linfócitos B/metabolismo , Transformação Celular Neoplásica/imunologia , Transformação Celular Neoplásica/metabolismo , Humanos , Leucemia de Células B/imunologia , Leucemia de Células B/metabolismo , Ativação Linfocitária/imunologia
9.
Biochem Biophys Res Commun ; 565: 72-78, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34098314

RESUMO

A better understanding of cell-intrinsic factors involved in regulating stem cells and cancer cells will help advance stem cell applications and cancer cell treatment. Previously, we showed that leukocyte immunoglobulin-like receptor B2 (LILRB2) and its mouse ortholog, paired immunoglobulin-like receptor B (PIRB), promote blood stem cell and leukemia development. Another unique mouse paralog to PIRB called gp49B1 was also discovered. However, the roles of gp49B1 in hematopoietic stem cells and leukemia development are largely unknown. Here, we found that gp49B1 is expressed on LSK cells of mouse neonatal hematopoietic organs and is positively correlated with c-Kit expression. However, in noncompetitive and competitive repopulation assays, neonatal splenic gp49B1-positive and c-Kit-highly expressed LSK cells exhibited poor engraftment potential and lymphoid lineage bias. Moreover, in a mouse N-Myc-induced precursor B-acute lymphoblastic leukemia (pre-B ALL) model, we found that gp49B1 deficiency or low levels of c-Kit led to a delay in leukemia development. Together, our results suggest that gp49B1 expressed on hematopoietic progenitor cells supports hematopoietic and leukemia development.


Assuntos
Hematopoese/genética , Leucemia de Células B/genética , Glicoproteínas de Membrana/genética , Proteínas Proto-Oncogênicas c-kit/genética , Receptores Imunológicos/genética , Animais , Feminino , Leucemia de Células B/metabolismo , Leucemia de Células B/patologia , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores Imunológicos/deficiência , Receptores Imunológicos/metabolismo
10.
Leukemia ; 35(1): 75-89, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32205861

RESUMO

Chimeric antigen receptor (CAR) T-cells targeting CD19 demonstrate remarkable efficacy in treating B-lineage acute lymphoblastic leukemia (BL-ALL), yet up to 39% of treated patients relapse with CD19(-) disease. We report that CD19(-) escape is associated with downregulation, but preservation, of targetable expression of CD20 and CD22. Accordingly, we reasoned that broadening the spectrum of CD19CAR T-cells to include both CD20 and CD22 would enable them to target CD19(-) escape BL-ALL while preserving their upfront efficacy. We created a CD19/20/22-targeting CAR T-cell by coexpressing individual CAR molecules on a single T-cell using one tricistronic transgene. CD19/20/22CAR T-cells killed CD19(-) blasts from patients who relapsed after CD19CAR T-cell therapy and CRISPR/Cas9 CD19 knockout primary BL-ALL both in vitro and in an animal model, while CD19CAR T-cells were ineffective. At the subcellular level, CD19/20/22CAR T-cells formed dense immune synapses with target cells that mediated effective cytolytic complex formation, were efficient serial killers in single-cell tracking studies, and were as efficacious as CD19CAR T-cells against primary CD19(+) disease. In conclusion, independent of CD19 expression, CD19/20/22CAR T-cells could be used as salvage or front-line CAR therapy for patients with recalcitrant disease.


Assuntos
Antígenos CD19/imunologia , Imunoterapia Adotiva , Leucemia de Células B/imunologia , Leucemia de Células B/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Antígenos CD19/química , Antígenos de Neoplasias , Biomarcadores , Linhagem Celular Tumoral , Citocinas/metabolismo , Citotoxicidade Imunológica , Modelos Animais de Doenças , Expressão Gênica , Humanos , Imunoterapia Adotiva/métodos , Leucemia de Células B/genética , Leucemia de Células B/terapia , Camundongos Transgênicos , Ligação Proteica , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Relação Estrutura-Atividade , Transdução Genética , Transgenes , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Exp Oncol ; 42(4): 295-299, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33355869

RESUMO

AIM: To compare expression patterns of proteins of a family of mitochondrial ribosomal protein S18 (MRPS18) in tumor cell lines of the B-cell origin. MATERIALS AND METHODS: The study has been performed on different subsets of tonsil B-cells and tumor cell lines of the B-cell origin using quantitative polymerase chain reaction analysis, western blot analysis, immunohistochemistry, bioinformatic analysis of the publicly available data bases on expression. RESULTS: We have found that genes of the MRPS18 family (1-3) show different expression patterns in tumor cell lines of the B-cell origin. The highest levels of expression were shown for MRPS18-3, the lowest - for MRPS18-1. MRPS18-2 was expressed at the highest levels in germinal center cells, Burkitt lymphoma and Hodgkin lymphoma cell lines. At the protein levels, MRPS18-2 showed the highest expression in Burkitt lymphoma and B-cell precursor acute lymphoblastic leukemia cell lines. In lymphoblastoid cell lines, and in germinal center B-cells MRPS18-2 levels were somewhat lower, but higher than in memory and plasma B-cells. CONCLUSIONS: The differential expression pattern of the MRPS18 family proteins suggests that they play various roles in cellular processes.


Assuntos
Regulação Neoplásica da Expressão Gênica , Leucemia de Células B/genética , Linfoma/genética , Família Multigênica , Proteínas Ribossômicas/genética , Linfócitos B/metabolismo , Linfócitos B/patologia , Biomarcadores Tumorais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Leucemia de Células B/metabolismo , Leucemia de Células B/patologia , Linfoma/metabolismo , Linfoma/patologia , Proteínas Ribossômicas/metabolismo
12.
Cell Death Dis ; 11(11): 941, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139702

RESUMO

Defects in apoptosis can promote tumorigenesis and impair responses of malignant B cells to chemotherapeutics. Members of the B-cell leukemia/lymphoma-2 (BCL-2) family of proteins are key regulators of the intrinsic, mitochondrial apoptotic pathway. Overexpression of antiapoptotic BCL-2 family proteins is associated with treatment resistance and poor prognosis. Thus, inhibition of BCL-2 family proteins is a rational therapeutic option for malignancies that are dependent on antiapoptotic BCL-2 family proteins. Venetoclax (ABT-199, GDC-0199) is a highly selective BCL-2 inhibitor that represents the first approved agent of this class and is currently widely used in the treatment of chronic lymphocytic leukemia (CLL) as well as acute myeloid leukemia (AML). Despite impressive clinical activity, venetoclax monotherapy for a prolonged duration can lead to drug resistance or loss of dependence on the targeted protein. In this review, we provide an overview of the mechanism of action of BCL-2 inhibition and the role of this approach in the current treatment paradigm of B-cell malignancies. We summarize the drivers of de novo and acquired resistance to venetoclax that are closely associated with complex clonal shifts, interplay of expression and interactions of BCL-2 family members, transcriptional regulators, and metabolic modulators. We also examine how tumors initially resistant to venetoclax become responsive to it following prior therapies. Here, we summarize preclinical data providing a rationale for efficacious combination strategies of venetoclax to overcome therapeutic resistance by a targeted approach directed against alternative antiapoptotic BCL-2 family proteins (MCL-1, BCL-xL), compensatory prosurvival pathways, epigenetic modifiers, and dysregulated cellular metabolism/energetics for durable clinical remissions.


Assuntos
Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Leucemia de Células B/tratamento farmacológico , Linfoma de Células B/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Animais , Humanos , Leucemia de Células B/metabolismo , Leucemia de Células B/patologia , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Terapia de Alvo Molecular
13.
Mol Cancer Ther ; 19(12): 2432-2444, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33051362

RESUMO

The IRE-1 kinase/RNase splices the mRNA of the XBP-1 gene, resulting in the spliced XBP-1 (XBP-1s) mRNA that encodes the functional XBP-1s transcription factor that is critically important for the growth and survival of B-cell leukemia, lymphoma, and multiple myeloma (MM). Several inhibitors targeting the expression of XBP-1s have been reported; however, the cytotoxicity exerted by each inhibitor against cancer cells is highly variable. To design better therapeutic strategies for B-cell cancer, we systematically compared the ability of these compounds to inhibit the RNase activity of IRE-1 in vitro and to suppress the expression of XBP-1s in mouse and human MM cell lines. Tricyclic chromenone-based inhibitors B-I09 and D-F07, prodrugs harboring an aldehyde-masking group, emerged as the most reliable inhibitors for potent suppression of XBP-1s expression in MM cells. The cytotoxicity of B-I09 and D-F07 against MM as well as chronic lymphocytic leukemia and mantle cell lymphoma could be further enhanced by combination with inhibitors of the PI3K/AKT pathway. Because chemical modifications of the salicylaldehyde hydroxy group could be used to tune 1,3-dioxane prodrug stability, we installed reactive oxygen species-sensitive structural cage groups onto these inhibitors to achieve stimuli-responsive activities and improve tumor-targeting efficiency.


Assuntos
Antineoplásicos/farmacologia , Desenvolvimento de Medicamentos , Endorribonucleases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Antineoplásicos/química , Apoptose , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Desenvolvimento de Medicamentos/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Endorribonucleases/genética , Endorribonucleases/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/metabolismo , Leucemia de Células B/tratamento farmacológico , Leucemia de Células B/etiologia , Leucemia de Células B/metabolismo , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/etiologia , Linfoma de Células B/metabolismo , Camundongos , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
14.
Int J Mol Sci ; 21(18)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967158

RESUMO

The tumor microenvironment plays a crucial role in driving the behavior and the aggressiveness of neoplastic cells [...].


Assuntos
Leucemia de Células B , Linfoma de Células B , Microambiente Tumoral , Adulto , Humanos , Leucemia de Células B/metabolismo , Leucemia de Células B/patologia , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia
15.
Malays J Pathol ; 42(2): 237-243, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32860376

RESUMO

INTRODUCTION: Follicular lymphoma (FL) is usually a nodal lymphoma expressing CD10, rarely with leukaemic presentation (FL-LP). MATERIALS AND METHODS: We searched for FL-LP in our institution from 2000 to 2018 and characterised the neoplastic cells by flow cytometry, immunohistochemistry and fluorescence in situ hybridization. Thirteen (6.1%) of 212 FL cases were FL-LP, all de novo neoplasms. The leukaemic cells were small in 12 cases and large in one. All had concurrent FL, mostly (92%; 12/13) low-grade. The single case with large leukaemic cells had a concurrent primary splenic low-grade FL and a double-hit large B-cell lymphoma in the marrow. RESULTS: CD10 was expressed in the leukaemic cells in 38% (5/13) cases by flow cytometry and in 77% (10/13) cases in tumours (p= 0.0471). IGH/BCL2 reciprocal translocation was identified in 85% (11/13) cases. Most patients were treated with chemotherapy. In a median follow-up time of 36 months, nine patients were in complete remission. The 2- and 5-year survival rates were at 100% and 83%, respectively. In this study, we characterised a series of de novo FL-LP in Taiwan. All patients had concurrent nodal and/or tissue tumours, which might suggest that these patients seek medical help too late. CONCLUSION: The lower CD10 expression rate by flow cytometry than by immunohistochemistry might be due to different epitopes for these assays. Alternatively, loss of CD10 expression might play a role in the pathogenesis of leukaemic change. The clinical course of FL-LP could be aggressive, but a significant proportion of the patients obtained complete remission with chemotherapy.


Assuntos
Leucemia de Células B , Linfoma Folicular , Neprilisina/metabolismo , Adulto , Idoso , Feminino , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Leucemia de Células B/metabolismo , Leucemia de Células B/patologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Linfoma Folicular/metabolismo , Linfoma Folicular/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Taxa de Sobrevida
16.
Front Immunol ; 11: 1538, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793211

RESUMO

B-cell malignancies are a heterogeneous group of hematological neoplasms derived from cells at different stages of B-cell development. Recent studies revealed that dysregulated redox metabolism is one of the factors contributing to the pathogenesis and progression of B-cell malignancies. Elevated levels of oxidative stress markers usually correlate with the advanced stage of various B-cell malignancies. In the complex tumor microenvironment, reactive oxygen species affect not only malignant cells but also bystander cells, including immune cells. Importantly, malignant cells, due to genetic dysregulation, are able to adapt to the increased demands for energy and reducing equivalents via metabolic reprogramming and upregulation of antioxidants. The immune cells, however, are more sensitive to oxidative imbalance. This may cause their dysfunction, leading to immune evasion and tumor progression. On the other hand, the already imbalanced redox homeostasis renders malignant B-cells particularly sensitive to further elevation of reactive oxygen species. Indeed, targeting antioxidant systems has already presented anti-leukemic efficacy in preclinical models. Moreover, the prooxidant treatment that triggers immunogenic cell death has been utilized to generate autologous anti-leukemic vaccines. In this article, we review novel research on the dual role of the reactive oxygen species in B-cell malignancies. We highlight the mechanisms of maintaining redox homeostasis by malignant B-cells along with the antioxidant shield provided by the microenvironment. We summarize current findings regarding therapeutic targeting of redox metabolism in B-cell malignancies. We also discuss how the oxidative stress affects antitumor immune response and how excessive reactive oxygens species influence anticancer prooxidant treatments and immunotherapies.


Assuntos
Leucemia de Células B/metabolismo , Linfoma de Células B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Suscetibilidade a Doenças , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/imunologia , Humanos , Imunomodulação , Leucemia de Células B/etiologia , Leucemia de Células B/patologia , Linfoma de Células B/etiologia , Linfoma de Células B/patologia , Oxirredução , Estresse Oxidativo , Transdução de Sinais , Células Estromais/metabolismo , Microambiente Tumoral
17.
Nature ; 583(7818): 845-851, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32699415

RESUMO

Malignant transformation of cells typically involves several genetic lesions, whose combined activity gives rise to cancer1. Here we analyse 1,148 patient-derived B-cell leukaemia (B-ALL) samples, and find that individual mutations do not promote leukaemogenesis unless they converge on one single oncogenic pathway that is characteristic of the differentiation stage of transformed B cells. Mutations that are not aligned with this central oncogenic driver activate divergent pathways and subvert transformation. Oncogenic lesions in B-ALL frequently mimic signalling through cytokine receptors at the pro-B-cell stage (via activation of the signal-transduction protein STAT5)2-4 or pre-B-cell receptors in more mature cells (via activation of the protein kinase ERK)5-8. STAT5- and ERK-activating lesions are found frequently, but occur together in only around 3% of cases (P = 2.2 × 10-16). Single-cell mutation and phospho-protein analyses reveal the segregation of oncogenic STAT5 and ERK activation to competing clones. STAT5 and ERK engage opposing biochemical and transcriptional programs that are orchestrated by the transcription factors MYC and BCL6, respectively. Genetic reactivation of the divergent (suppressed) pathway comes at the expense of the principal oncogenic driver and reverses transformation. Conversely, deletion of divergent pathway components accelerates leukaemogenesis. Thus, persistence of divergent signalling pathways represents a powerful barrier to transformation, while convergence on one principal driver defines a central event in leukaemia initiation. Pharmacological reactivation of suppressed divergent circuits synergizes strongly with inhibition of the principal oncogenic driver. Hence, reactivation of divergent pathways can be leveraged as a previously unrecognized strategy to enhance treatment responses.


Assuntos
Linfócitos B/citologia , Linfócitos B/metabolismo , Transformação Celular Neoplásica , Leucemia de Células B/metabolismo , Leucemia de Células B/patologia , Transdução de Sinais , Animais , Linfócitos B/patologia , Linhagem Celular Tumoral , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Camundongos , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fator de Transcrição STAT5/metabolismo
18.
Mol Cell Biol ; 40(18)2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32631903

RESUMO

Precursor B cell acute lymphoblastic leukemia (B-ALL) is caused by genetic lesions in developing B cells that function as drivers for the accumulation of additional mutations in an evolutionary selection process. We investigated secondary drivers of leukemogenesis in a mouse model of B-ALL driven by PU.1/Spi-B deletion (Mb1-CreΔPB). Whole-exome-sequencing analysis revealed recurrent mutations in Jak3 (encoding Janus kinase 3), Jak1, and Ikzf3 (encoding Aiolos). Mutations with a high variant-allele frequency (VAF) were dominated by C→T transition mutations that were compatible with activation-induced cytidine deaminase, whereas the majority of mutations, with a low VAF, were dominated by C→A transversions associated with 8-oxoguanine DNA damage caused by reactive oxygen species (ROS). The Janus kinase (JAK) inhibitor ruxolitinib delayed leukemia onset, reduced ROS and ROS-induced gene expression signatures, and altered ROS-induced mutational signatures. These results reveal that JAK mutations can alter the course of leukemia clonal evolution through ROS-induced DNA damage.


Assuntos
Dano ao DNA , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Leucemia de Células B/metabolismo , Animais , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Janus Quinase 3/metabolismo , Leucemia de Células B/genética , Leucemia de Células B/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transativadores/genética , Transativadores/metabolismo
19.
Int J Mol Sci ; 21(6)2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32210016

RESUMO

Lineage commitment and differentiation of hematopoietic cells takes place in well-defined microenvironmental surroundings. Communication with other cell types is a vital prerequisite for the normal functions of the immune system, while disturbances in this communication support the development and progression of neoplastic disease. Integrins such as the integrin very late antigen-4 (VLA-4; CD49d/CD29) control the localization of healthy as well as malignant B cells within the tissue, and thus determine the patterns of organ infiltration. Malignant B cells retain some key characteristics of their normal counterparts, with B cell receptor (BCR) signaling and integrin-mediated adhesion being essential mediators of tumor cell homing, survival and proliferation. It is thus not surprising that targeting the BCR pathway using small molecule inhibitors has proved highly effective in the treatment of B cell malignancies. Attenuation of BCR-dependent lymphoma-microenvironment interactions was, in this regard, described as a main mechanism critically contributing to the efficacy of these agents. Here, we review the contribution of VLA-4 to normal B cell differentiation on the one hand, and to the pathophysiology of B cell malignancies on the other hand. We describe its impact as a prognostic marker, its interplay with BCR signaling and its predictive role for novel BCR-targeting therapies, in chronic lymphocytic leukemia and beyond.


Assuntos
Integrina alfa4beta1/genética , Integrina alfa4beta1/metabolismo , Leucemia de Células B/etiologia , Leucemia de Células B/metabolismo , Linfoma de Células B/etiologia , Linfoma de Células B/metabolismo , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Medula Óssea/metabolismo , Diferenciação Celular/genética , Microambiente Celular/genética , Gerenciamento Clínico , Suscetibilidade a Doenças , Regulação Neoplásica da Expressão Gênica , Hematopoese/genética , Humanos , Integrinas/genética , Integrinas/metabolismo , Leucemia de Células B/tratamento farmacológico , Leucemia de Células B/patologia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/patologia , Terapia de Alvo Molecular , Transdução de Sinais
20.
PLoS One ; 15(3): e0229170, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210425

RESUMO

Surface protein CD20 serves as the critical target of immunotherapy in various B-cell malignancies for decades, however its biological function and regulation remain largely elusive. Better understanding of CD20 function may help to design improved rational therapies to prevent development of resistance. Using CRISPR/Cas9 technique, we have abrogated CD20 expression in five different malignant B-cell lines. We show that CD20 deletion has no effect upon B-cell receptor signaling or calcium flux. Also B-cell survival and proliferation is unaffected in the absence of CD20. On the contrary, we found a strong defect in actin cytoskeleton polymerization and, consequently, defective cell adhesion and migration in response to homeostatic chemokines SDF1α, CCL19 and CCL21. Mechanistically, we could identify a reduction in chemokine-triggered PYK2 activation, a calcium-activated signaling protein involved in activation of MAP kinases and cytoskeleton regulation. These cellular defects in consequence result in a severely disturbed homing of B cells in vivo.


Assuntos
Actinas/metabolismo , Antígenos CD20/fisiologia , Linfócitos B/fisiologia , Leucemia de Células B/patologia , Linfoma de Células B/patologia , Receptores de Antígenos de Linfócitos B/metabolismo , Animais , Antígenos CD20/genética , Antígenos CD20/metabolismo , Linfócitos B/patologia , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Técnicas de Silenciamento de Genes , Humanos , Leucemia de Células B/metabolismo , Linfoma de Células B/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Polimerização , Multimerização Proteica/fisiologia , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...