Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.100
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000257

RESUMO

Lipid mediators from fatty acid oxidation have been shown to be associated with the severity of Krabbe disease (KD), a disorder linked to mutations in the galactosylceramidase (GALC) gene. This study aims to investigate the effects of n-3 polyunsaturated fatty acid (PUFA) supplementation on KD traits and fatty acid metabolism using Twitcher (Tw) animals as a natural model for KD. Wild-type (Wt), heterozygous (Ht), and affected Tw animals were treated orally with 36 mg n-3 PUFAs/kg body weight/day from 10 to 35 days of life. The end product of PUFA peroxidation (8-isoprostane), the lipid mediator involved in the resolution of inflammatory exudates (resolvin D1), and the total amount of n-3 PUFAs were analyzed in the brains of mice. In Tw mice, supplementation with n-3 PUFAs delayed the manifestation of disease symptoms (p < 0.0001), and in the bran, decreased 8-isoprostane amounts (p < 0.0001), increased resolvin D1 levels (p < 0.005) and increased quantity of total n-3 PUFAs (p < 0.05). Furthermore, total brain n-3 PUFA levels were associated with disease severity (r = -0.562, p = 0.0001), resolvin D1 (r = 0.712, p < 0.0001), and 8-isoprostane brain levels (r = -0.690, p < 0.0001). For the first time in a natural model of KD, brain levels of n-3 PUFAs are shown to determine disease severity and to be involved in the peroxidation of brain PUFAs as well as in the production of pro-resolving lipid mediators. It is also shown that dietary supplementation with n-3 PUFAs leads to a slowing of the phenotypic presentation of the disease and restoration of lipid mediator production.


Assuntos
Encéfalo , Suplementos Nutricionais , Modelos Animais de Doenças , Ácidos Graxos Ômega-3 , Leucodistrofia de Células Globoides , Animais , Camundongos , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/administração & dosagem , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Leucodistrofia de Células Globoides/dietoterapia , Leucodistrofia de Células Globoides/metabolismo , Leucodistrofia de Células Globoides/tratamento farmacológico , Leucodistrofia de Células Globoides/genética , Fenótipo , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Dinoprosta/análogos & derivados , Dinoprosta/metabolismo , Masculino
2.
Ann Clin Transl Neurol ; 11(7): 1715-1731, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38837642

RESUMO

OBJECTIVE: Krabbe disease (KD) is a multisystem neurodegenerative disorder with severe disability and premature death, mostly with an infancy/childhood onset. In rare cases of late-onset phenotypes, symptoms are often milder and difficult to diagnose. We here present a translational approach combining diagnostic and biochemical analyses of a male patient with a progressive gait disorder starting at the age of 44 years, with a final diagnosis of late-onset KD (LOKD). METHODS: Additionally to cerebral MRI, protein structural analyses of the ß-galactocerebrosidase protein (GALC) were performed. Moreover, expression, lysosomal localization, and activities of ß-glucocerebrosidase (GCase), cathepsin B (CTSB), and cathepsin D (CTSD) were analyzed in leukocytes, fibroblasts, and lysosomes of fibroblasts. RESULTS: Exome sequencing revealed biallelic likely pathogenic variants: GALC exons 11-17: 33 kb deletion; exon 4: missense variant (c.334A>G, p.Thr112Ala). We detected a reduced GALC activity in leukocytes and fibroblasts. While histological KD phenotypes were absent in fibroblasts, they showed a significantly decreased activities of GCase, CTSB, and CTSD in lysosomal fractions, while expression levels were unaffected. INTERPRETATION: The presented LOKD case underlines the age-dependent appearance of a mildly pathogenic GALC variant and its interplay with other lysosomal proteins. As GALC malfunction results in reduced ceramide levels, we assume this to be causative for the here described decrease in CTSB and CTSD activity, potentially leading to diminished GCase activity. Hence, we emphasize the importance of a functional interplay between the lysosomal enzymes GALC, CTSB, CTSD, and GCase, as well as between their substrates, and propose their conjoined contribution in KD pathology.


Assuntos
Catepsina B , Catepsina D , Galactosilceramidase , Leucodistrofia de Células Globoides , Humanos , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/patologia , Leucodistrofia de Células Globoides/diagnóstico , Masculino , Catepsina D/genética , Catepsina D/metabolismo , Galactosilceramidase/genética , Adulto , Catepsina B/genética , Catepsina B/metabolismo , Paraplegia/genética , Idade de Início , Glucosilceramidase/genética , Lisossomos , Fibroblastos/metabolismo , Fibroblastos/patologia
3.
Mol Ther ; 32(7): 2207-2222, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38734898

RESUMO

Lysosomal galactosylceramidase (GALC) is expressed in all brain cells, including oligodendrocytes (OLs), microglia, and astrocytes, although the cell-specific function of GALC is largely unknown. Mutations in GALC cause Krabbe disease (KD), a fatal neurological lysosomal disorder that usually affects infants. To study how Galc ablation in each glial cell type contributes to Krabbe pathogenesis, we used conditional Galc-floxed mice. Here, we found that OL-specific Galc conditional knockout (CKO) in mice results in a phenotype that includes wasting, psychosine accumulation, and neuroinflammation. Microglia- or astrocyte-specific Galc deletion alone in mice did not show specific phenotypes. Interestingly, mice with CKO of Galc from both OLs and microglia have a more severe neuroinflammation with an increase in globoid cell accumulation than OL-specific CKO alone. Moreover, the enhanced phenotype occurred without additional accumulation of psychosine. Further studies revealed that Galc knockout (Galc-KO) microglia cocultured with Galc-KO OLs elicits globoid cell formation and the overexpression of osteopontin and monocyte chemoattractant protein-1, both proteins that are known to recruit immune cells and promote engulfment of debris and damaged cells. We conclude that OLs are the primary cells that initiate KD with an elevated psychosine level and microglia are required for the progression of neuroinflammation in a psychosine-independent manner.


Assuntos
Modelos Animais de Doenças , Galactosilceramidase , Leucodistrofia de Células Globoides , Camundongos Knockout , Microglia , Oligodendroglia , Animais , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Leucodistrofia de Células Globoides/patologia , Microglia/metabolismo , Camundongos , Galactosilceramidase/metabolismo , Galactosilceramidase/genética , Oligodendroglia/metabolismo , Psicosina/metabolismo
4.
Mol Genet Metab ; 142(3): 108497, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763041

RESUMO

Krabbe disease (KD) is a rare inherited demyelinating disorder caused by a deficiency in the lysosomal enzyme galactosylceramide (GalCer) ß-galactosidase. Most patients with KD exhibit fatal cerebral demyelination with apoptotic oligodendrocyte (OL) death and die before the age of 2-4 years. We have previously reported that primary OLs isolated from the brains of twitcher (twi) mice, an authentic mouse model of KD, have cell-autonomous developmental defects and undergo apoptotic death accompanied by abnormal accumulation of psychosine, an endogenous cytotoxic lyso-derivative of GalCer. In this study, we aimed to investigate the effects of the preclinical promyelinating drugs clemastine and Sob-AM2 on KD OL pathologies using primary OLs isolated from the brains of twi mice. Both agents specifically prevented the apoptotic death observed in twi OLs. However, while Sob-AM2 showed higher efficacy in restoring the impaired differentiation and maturation of twi OLs, clemastine more potently reduced the endogenous psychosine levels. These results present the first preclinical in vitro data, suggesting that clemastine and Sob-AM2 can act directly and distinctly on OLs in KD and ameliorate their cellular pathologies associated with myelin degeneration.


Assuntos
Apoptose , Clemastina , Modelos Animais de Doenças , Leucodistrofia de Células Globoides , Oligodendroglia , Psicosina , Animais , Leucodistrofia de Células Globoides/patologia , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/tratamento farmacológico , Oligodendroglia/patologia , Oligodendroglia/metabolismo , Oligodendroglia/efeitos dos fármacos , Camundongos , Clemastina/farmacologia , Apoptose/efeitos dos fármacos , Psicosina/análogos & derivados , Psicosina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Encéfalo/patologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Células Cultivadas
5.
Neurocase ; 30(2): 63-67, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38762762

RESUMO

Krabbe disease (KD) is classed as the lysosomal storage disease with mutations in the galactosylceramidase (GALC) gene, and commonly showed as autosomal recessive pattern with 30-kb deletion in infantile subtype. In this case, we report a 39-years adult-onset KD (AOKD) patient with multiple sclerosis-like symptoms and neuroimaging changes. She carries the heterozygous mutations in GALC included a missense mutation of c.1901T>C from her mother, and a splicing mutation of c.908+5G>A from her father. The splicing mutations in KD are reviewed and confirmed that c.908+5G>A is a novel splicing mutation in AOKD.


Assuntos
Galactosilceramidase , Leucodistrofia de Células Globoides , Humanos , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/patologia , Adulto , Galactosilceramidase/genética , Feminino , Mutação , Mutação de Sentido Incorreto
6.
Clin Genet ; 106(2): 150-160, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38515343

RESUMO

Krabbe disease (KD) is an autosomal recessive neurodegenerative disorder caused by deficiency of the galactocerebrosidase (GALC) due to variants in the GALC gene. Here, we provide the first and the largest comprehensive analysis of clinical and genetic characteristics, and genotype-phenotype correlations of KD in Korean in comparison with other ethnic groups. From June 2010 to June 2023, 10 patients were diagnosed with KD through sequencing of GALC. Clinical features, and results of GALC sequencing, biochemical test, neuroimaging, and neurophysiologic test were obtained from medical records. An additional nine previously reported Korean KD patients were included for review. In Korean KD patients, the median age of onset was 2 years (3 months-34 years) and the most common phenotype was adult-onset (33%, 6/18) KD, followed by infantile KD (28%, 5/18). The most frequent variants were c.683_694delinsCTC (23%) and c.1901T>C (23%), while the 30-kb deletion was absent. Having two heterozygous pathogenic missense variants was associated with later-onset phenotype. Clinical features were similar to those of other ethnic groups. In Korean KD patients, the most common phenotype was the adult-onset type and the GALC variant spectrum was different from that of the Caucasian population. This study would further our understanding of KD.


Assuntos
Galactosilceramidase , Estudos de Associação Genética , Leucodistrofia de Células Globoides , Fenótipo , Humanos , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/patologia , Leucodistrofia de Células Globoides/diagnóstico , Leucodistrofia de Células Globoides/fisiopatologia , Galactosilceramidase/genética , Masculino , Feminino , República da Coreia/epidemiologia , Pré-Escolar , Adulto , Lactente , Criança , Adolescente , Adulto Jovem , Mutação/genética , Genótipo , Predisposição Genética para Doença , Idade de Início
7.
JBI Evid Synth ; 22(7): 1262-1302, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38533650

RESUMO

OBJECTIVE: This review aimed to synthesize the experiences of patients with metachromatic leukodystrophy, adrenoleukodystrophy, or Krabbe disease and the experiences of their families. INTRODUCTION: Leukodystrophies are metabolic diseases caused by genetic mutations. There are multiple forms of the disease, varying in age of onset and symptoms. The progression of leukodystrophies worsens central nervous system symptoms and significantly affects the lives of patients and their families. INCLUSION CRITERIA: Qualitative studies on the experiences of patients with leukodystrophies and their family members were included. These experiences included treatments such as enzyme replacement therapy and hematopoietic stem cell transplantation; effects of tracheostomy and gastrostomy; burdens on the family, coordinating care within the health care system, and family planning due to genetic disorders. This review considered studies in any setting. METHODS: MEDLINE (Ovid), CINAHL Plus (EBSCOhost), APA PsycINFO (EBSCOhost), Scopus, and MedNar databases were searched on November 18, 2022. Study selection, critical appraisal, data extraction, and data synthesis were conducted in accordance with the JBI methodology for systematic reviews of qualitative evidence, and synthesized findings were evaluated according to the ConQual approach. RESULTS: Eleven studies were eligible for synthesis, and 45 findings were extracted corresponding with participants' voices. Of these findings, 40 were unequivocal and 5 were credible. The diseases in the included studies were metachromatic leukodystrophy and adrenoleukodystrophy; no studies were identified for patients with Krabbe disease and their families. These findings were grouped into 11 categories and integrated into 3 synthesized findings, including i) providing care by family members and health care providers as physical symptoms progress, which relates to the effects of the characteristics of progressive leukodystrophies; ii) building medical teamwork to provide appropriate support services, comprising categories related to the challenges experienced with the health care system for patients with leukodystrophy and their families; and iii) coordinating family functions to accept and cope with the disease, which included categories related to family psychological difficulties and role divisions within the family. According to the ConQual criteria, the second synthesized finding had a low confidence level, and the first and third synthesized findings had a very low confidence level. CONCLUSIONS: The synthesized findings of this review provide evidence on the experiences of patients with metachromatic leukodystrophy or adrenoleukodystrophy and their families. These findings indicate that there are challenges in managing a patient's physical condition and coordinating the health care system and family functions. REVIEW REGISTRATION: PROSPERO CRD42022318805. SUPPLEMENTAL DIGITAL CONTENT: A Japanese-language version of the abstract of this review is available [ http://links.lww.com/SRX/A49 ].


Assuntos
Adrenoleucodistrofia , Família , Leucodistrofia de Células Globoides , Leucodistrofia Metacromática , Humanos , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/psicologia , Leucodistrofia Metacromática/terapia , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/terapia , Adrenoleucodistrofia/psicologia , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/terapia , Leucodistrofia de Células Globoides/psicologia , Família/psicologia , Pesquisa Qualitativa , Transplante de Células-Tronco Hematopoéticas/psicologia , Terapia de Reposição de Enzimas
8.
Med Sci (Basel) ; 12(1)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38390857

RESUMO

Leukodystrophies, a group of rare demyelinating disorders, mainly affect the CNS. Clinical presentation of different types of leukodystrophies can be nonspecific, and thus, imaging techniques like MRI can be used for a more definitive diagnosis. These diseases are characterized as cerebral lesions with characteristic demyelinating patterns which can be used as differentiating tools. In this review, we talk about these MRI study findings for each leukodystrophy, associated genetics, blood work that can help in differentiation, emerging diagnostics, and a follow-up imaging strategy. The leukodystrophies discussed in this paper include X-linked adrenoleukodystrophy, metachromatic leukodystrophy, Krabbe's disease, Pelizaeus-Merzbacher disease, Alexander's disease, Canavan disease, and Aicardi-Goutières Syndrome.


Assuntos
Adrenoleucodistrofia , Leucodistrofia de Células Globoides , Leucodistrofia Metacromática , Doenças Neurodegenerativas , Doença de Pelizaeus-Merzbacher , Humanos , Leucodistrofia Metacromática/diagnóstico por imagem , Leucodistrofia Metacromática/patologia , Leucodistrofia de Células Globoides/diagnóstico por imagem , Leucodistrofia de Células Globoides/patologia , Adrenoleucodistrofia/diagnóstico por imagem , Adrenoleucodistrofia/genética
9.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(2): 215-220, 2024 Feb 10.
Artigo em Chinês | MEDLINE | ID: mdl-38311562

RESUMO

OBJECTIVE: To explore the clinical features and genetic etiology of a patient with Adult-onset globoid cell leukodystrophy/Krabbe disease (KD). METHODS: A patient who was admitted to the Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology on February 15, 2022 due to exacerbation of right leg weakness for over 4 years was selected as the study subject. Clinical data and results of medical imaging and genetic analysis were analyzed. Candidate variants were verified by family analysis. RESULTS: The patient, a 36-year-old woman, had spasmodic gait as the primary presentation. Cranial magnetic resonance imaging (MRI) revealed symmetrical abnormalities in the bilateral corticospinal tracts, and the activity of ß-galactocerebrosidase (GALC) in her white blood cells was significantly decreased. The patient was found to harbor compound heterozygous variants of the GALC gene, namely c.461C>A (p.Pro154His) and c.1901T>C (p.Leu634Ser). Her mother, sister and nephew were heterozygous carriers of the c.461C>A (p.Pro154His) variant, whilst her father was heterozygous for the c.1901T>C (p.Leu634Ser) variant. CONCLUSION: The patient was ultimately diagnosed with adult-onset KD, for which the compound heterozygous variants of the GALC gene may be accountable.


Assuntos
Leucodistrofia de Células Globoides , Humanos , Adulto , Feminino , Leucodistrofia de Células Globoides/genética , Galactosilceramidase/genética , Imageamento por Ressonância Magnética , Irmãos , Mães , Mutação
10.
Biomed Pharmacother ; 173: 116351, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422660

RESUMO

Krabbe disease (KD) is a rare disorder arising from the deficiency of the lysosomal enzyme galactosylceramidase (GALC), leading to the accumulation of the cytotoxic metabolite psychosine (PSY) in the nervous system. This accumulation triggers demyelination and neurodegeneration, and despite ongoing research, the underlying pathogenic mechanisms remain incompletely understood, with no cure currently available. Previous studies from our lab revealed the involvement of autophagy dysfunctions in KD pathogenesis, showcasing p62-tagged protein aggregates in the brains of KD mice and heightened p62 levels in the KD sciatic nerve. We also demonstrated that the autophagy inducer Rapamycin (RAPA) can partially reinstate the wild type (WT) phenotype in KD primary cells by decreasing the number of p62 aggregates. In this study, we tested RAPA in the Twitcher (TWI) mouse, a spontaneous KD mouse model. We administered the drug ad libitum via drinking water (15 mg/L) starting from post-natal day (PND) 21-23. We longitudinally monitored the mouse motor performance through grip strength and rotarod tests, and a set of biochemical parameters related to the KD pathogenesis (i.e. autophagy markers expression, PSY accumulation, astrogliosis and myelination). Our findings demonstrate that RAPA significantly enhances motor functions at specific treatment time points and reduces astrogliosis in TWI brain, spinal cord, and sciatic nerves. Utilizing western blot and immunohistochemistry, we observed a decrease in p62 aggregates in TWI nervous tissues, corroborating our earlier in-vitro results. Moreover, RAPA treatment partially removes PSY in the spinal cord. In conclusion, our results advocate for considering RAPA as a supportive therapy for KD. Notably, as RAPA is already available in pharmaceutical formulations for clinical use, its potential for KD treatment can be rapidly evaluated in clinical trials.


Assuntos
Água Potável , Leucodistrofia de Células Globoides , Animais , Camundongos , Leucodistrofia de Células Globoides/tratamento farmacológico , Leucodistrofia de Células Globoides/genética , Sirolimo/farmacologia , Gliose , Modelos Animais de Doenças , Psicosina/metabolismo , Fenótipo , Autofagia
11.
Dev Growth Differ ; 66(1): 21-34, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38239149

RESUMO

Inherited leukodystrophies are genetic disorders characterized by abnormal white matter in the central nervous system. Although individually rare, there are more than 400 distinct types of leukodystrophies with a cumulative incidence of 1 in 4500 live births. The pathophysiology of most leukodystrophies is poorly understood, there are treatments for only a few, and there is significant morbidity and mortality, suggesting a critical need for improvements in this field. A variety of animal, cell, and induced pluripotent stem cell-derived models have been developed for leukodystrophies, but with significant limitations in all models. Many leukodystrophies lack animal models, and extant models often show no or mixed recapitulation of key phenotypes. Zebrafish (Danio rerio) have become increasingly used as disease models for studying leukodystrophies due to their early onset of disease phenotypes and conservation of molecular and neurobiological mechanisms. Here, we focus on reviewing new zebrafish disease models for leukodystrophy or models with recent progress. This includes discussion of leukodystrophy with vanishing white matter disease, X-linked adrenoleukodystrophy, Zellweger spectrum disorders and peroxisomal disorders, PSAP deficiency, metachromatic leukodystrophy, Krabbe disease, hypomyelinating leukodystrophy-8/4H leukodystrophy, Aicardi-Goutières syndrome, RNASET2-deficient cystic leukoencephalopathy, hereditary diffuse leukoencephalopathy with spheroids-1 (CSF1R-related leukoencephalopathy), and ultra-rare leukodystrophies. Zebrafish models offer important potentials for the leukodystrophy field, including testing of new variants in known genes; establishing causation of newly discovered genes; and early lead compound identification for therapies. There are also unrealized opportunities to use humanized zebrafish models which have been sparsely explored.


Assuntos
Adrenoleucodistrofia , Leucodistrofia de Células Globoides , Leucodistrofia Metacromática , Leucoencefalopatias , Animais , Peixe-Zebra/genética , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/terapia , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/terapia , Adrenoleucodistrofia/genética , Leucoencefalopatias/terapia
12.
Mol Ther ; 32(1): 44-58, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37952085

RESUMO

Hematopoietic stem cell transplantation (HSCT) is the only approved treatment for presymptomatic infantile globoid cell leukodystrophy (GLD [Krabbe disease]). However, correction of disease is not complete, and outcomes remain poor. Herein we evaluated HSCT, intravenous (IV) adeno-associated virus rh10 vector (AAVrh10) gene therapy, and combination HSCT + IV AAVrh10 in the canine model of GLD. While HSCT alone resulted in no increase in survival as compared with untreated GLD dogs (∼16 weeks of age), combination HSCT + IV AAVrh10 at a dose of 4E13 genome copies (gc)/kg resulted in delayed disease progression and increased survival beyond 1 year of age. A 5-fold increase in AAVrh10 dose to 2E14 gc/kg, in combination with HSCT, normalized neurological dysfunction up to 2 years of age. IV AAVrh10 alone resulted in an average survival to 41.2 weeks of age. In the peripheral nervous system, IV AAVrh10 alone or in addition to HSCT normalized nerve conduction velocity, improved ultrastructure, and normalized GALC enzyme activity and psychosine concentration. In the central nervous system, only combination therapy at the highest dose was able to restore galactosylceramidase activity and psychosine concentrations to within the normal range. These data have now guided clinical translation of systemic AAV gene therapy as an addition to HSCT (NCT04693598, NCT05739643).


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucodistrofia de Células Globoides , Cães , Animais , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/terapia , Galactosilceramidase/genética , Psicosina , Transplante de Células-Tronco Hematopoéticas/métodos , Terapia Genética/métodos , Modelos Animais de Doenças
14.
Adv Drug Deliv Rev ; 203: 115132, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37918668

RESUMO

The brain remains one of the most challenging therapeutic targets due to the low and selective permeability of the blood-brain barrier and complex architecture of the brain tissue. Nanomedicines, despite their relatively large size compared to small molecules and nucleic acids, are being heavily investigated as vehicles to delivery therapeutics into the brain. Here we elaborate on how nanomedicines may be used to treat rare neurodevelopmental disorders, using Krabbe disease (globoid cell leukodystrophy) to frame the discussion. As a monogenetic disorder and lysosomal storage disease affecting the nervous system, the lessons learned from examining nanoparticle delivery to the brain in the context of Krabbe disease can have a broader impact on the treatment of various other neurodevelopmental and neurodegenerative disorders. In this review, we introduce the epidemiology and genetic basis of Krabbe disease, discuss current in vitro and in vivo models of the disease, as well as current therapeutic approaches either approved or at different stage of clinical developments. We then elaborate on challenges in particle delivery to the brain, with a specific emphasis on methods to transport nanomedicines across the blood-brain barrier. We highlight nanoparticles for delivering therapeutics for the treatment of lysosomal storage diseases, classified by the therapeutic payload, including gene therapy, enzyme replacement therapy, and small molecule delivery. Finally, we provide some useful hints on the design of nanomedicines for the treatment of rare neurological disorders.


Assuntos
Leucodistrofia de Células Globoides , Doenças por Armazenamento dos Lisossomos , Humanos , Leucodistrofia de Células Globoides/tratamento farmacológico , Leucodistrofia de Células Globoides/genética , Galactosilceramidase/genética , Galactosilceramidase/metabolismo , Nanomedicina , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico
15.
Biomolecules ; 13(10)2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37892244

RESUMO

Krabbe disease is a rare neurodegenerative disease with an autosomal recessive character caused by a mutation in the GALC gene. The mutation leads to an accumulation of psychosine and a subsequent degeneration of oligodendrocytes and Schwann cells. Psychosine is the main biomarker of the disease. The Twitcher mouse is the most commonly used animal model to study Krabbe disease. Although there are many references to this model in the literature, the lipidomic study of nervous system tissues in the Twitcher model has received little attention. This study focuses on the comparison of the lipid profiles of four nervous system tissues (brain, cerebellum, spinal cord, and sciatic nerve) in the Twitcher mouse compared to the wild-type mouse. Altogether, approximately 230 molecular species belonging to 19 lipid classes were annotated and quantified. A comparison at the levels of class, molecular species, and lipid building blocks showed significant differences between the two groups, particularly in the sciatic nerve. The in-depth study of the lipid phenotype made it possible to hypothesize the genes and enzymes involved in the changes. The integration of metabolic data with genetic data may be useful from a systems biology perspective to gain a better understanding of the molecular basis of the disease.


Assuntos
Leucodistrofia de Células Globoides , Doenças Neurodegenerativas , Camundongos , Animais , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Psicosina/metabolismo , Modelos Animais de Doenças , Lipidômica , Doenças Neurodegenerativas/metabolismo , Encéfalo/metabolismo
16.
Org Biomol Chem ; 21(38): 7813-7820, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37724332

RESUMO

Acid ß-galactosidase (GLB1) and galactocerebrosidase (GALC) are retaining exo-ß-galactosidases involved in lysosomal glycoconjugate metabolism. Deficiency of GLB1 may result in the lysosomal storage disorders GM1 gangliosidosis, Morquio B syndrome, and galactosialidosis, and deficiency of GALC may result in Krabbe disease. Activity-based protein profiling (ABPP) is a powerful technique to assess the activity of retaining glycosidases in relation to health and disease. This work describes the use of fluorescent and biotin-carrying activity-based probes (ABPs) to assess the activity of both GLB1 and GALC in cell lysates, culture media, and tissue extracts. The reported ABPs, which complement the growing list of retaining glycosidase ABPs based on configurational isomers of cyclophellitol, should assist in fundamental and clinical research on various ß-galactosidases, whose inherited deficiencies cause debilitating lysosomal storage disorders.


Assuntos
Gangliosidose GM1 , Leucodistrofia de Células Globoides , Doenças por Armazenamento dos Lisossomos , Mucopolissacaridose IV , Humanos , beta-Galactosidase/metabolismo , Galactosilceramidase
18.
J Vet Intern Med ; 37(5): 1710-1715, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37593836

RESUMO

BACKGROUND: Globoid cell leukodystrophy (GCL) is a fatal autosomal recessive disease caused by variants in the galactosylceramidase (GALC) gene. Two dog breed-specific variants are reported. OBJECTIVES: Characterize the putatively causative GALC variant for GCL in a family of dogs and determine population allele frequency. ANIMALS: Four related mixed-breed puppies with signs of neurologic disease were evaluated. Subsequently, 33 related dogs were tested for genetic markers for parentage and the identified GALC variant. Additional GALC genotyping was performed on 278 banked samples from various breeds. METHODS: The 4 affected puppies had neurological exams and necropsies. DNA was isolated from blood samples. Variants in GALC were identified via Sanger sequencing. Parentage testing was performed using short tandem repeat markers. Prevalence of the GALC variant of interest was investigated in other breeds. RESULTS: GCL was confirmed histopathologically. A novel missense variant in GALC (NC_006590.4:g.58893972G>A) was homozygous in all affected animals (n = 4). A recessive mode of inheritance was confirmed by parentage testing as was variant linkage with the phenotype (LOD = 3.36). Among the related dogs (n = 33), 3 dogs were homozygous and 7 heterozygous. The variant allele was not detected in screening 278 dogs from 5 breeds. The novel variant is either unique to this family or has an extremely low allele frequency in the general population. CONCLUSIONS AND CLINICAL IMPORTANCE: A novel GALC variant was identified that likely explains GCL in this cohort. The identification of multiple causal variants for GCL in dogs is consistent with findings in humans.


Assuntos
Doenças do Cão , Leucodistrofia de Células Globoides , Humanos , Cães , Animais , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/veterinária , Galactosilceramidase/genética , DNA , Frequência do Gene , Homozigoto , Doenças do Cão/genética
19.
Genes (Basel) ; 14(8)2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37628569

RESUMO

Krabbe disease (KD) is a progressive and devasting neurological disorder that leads to the toxic accumulation of psychosine in the white matter of the central nervous system (CNS). The condition is inherited via biallelic, loss-of-function mutations in the galactosylceramidase (GALC) gene. To rescue GALC gene function in the CNS of the twitcher mouse model of KD, an adeno-associated virus serotype 1 vector expressing murine GALC under control of a chicken ß-actin promoter (AAV1-GALC) was administered to newborn mice by unilateral intracerebroventricular injection. AAV1-GALC treatment significantly improved body weight gain and survival of the twitcher mice (n = 8) when compared with untreated controls (n = 5). The maximum weight gain after postnatal day 10 was significantly increased from 81% to 217%. The median lifespan was extended from 43 days to 78 days (range: 74-88 days) in the AAV1-GALC-treated group. Widespread expression of GALC protein and alleviation of KD neuropathology were detected in the CNS of the treated mice when examined at the moribund stage. Functionally, elevated levels of psychosine were completely normalized in the forebrain region of the treated mice. In the posterior region, which includes the mid- and the hindbrain, psychosine was reduced by an average of 77% (range: 53-93%) compared to the controls. Notably, psychosine levels in this region were inversely correlated with body weight and lifespan of AAV1-GALC-treated mice, suggesting that the degree of viral transduction of posterior brain regions following ventricular injection determined treatment efficacy on growth and survivability, respectively. Overall, our results suggest that viral vector delivery via the cerebroventricular system can partially correct psychosine accumulation in brain that leads to slower disease progression in KD.


Assuntos
Leucodistrofia de Células Globoides , Substância Branca , Animais , Camundongos , Galactosilceramidase , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/terapia , Psicosina , Longevidade/genética , Hidrolases , Prosencéfalo , Peso Corporal
20.
J Neurochem ; 166(4): 720-746, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37337846

RESUMO

Krabbe disease is an inherited demyelinating disease caused by a genetic deficiency of the lysosomal enzyme galactosylceramide (GalCer) ß-galactosidase (GALC). The Twitcher (Twi) mouse is a naturally occurring, genetically and enzymatically authentic mouse model that mimics infantile-onset Krabbe disease. The major substrate for GALC is the myelin lipid GalCer. However, the pathogenesis of Krabbe disease has long been explained by the accumulation of psychosine, a lyso-derivative of GalCer. Two metabolic pathways have been proposed for the accumulation of psychosine: a synthetic pathway in which galactose is transferred to sphingosine and a degradation pathway in which GalCer is deacylated by acid ceramidase (ACDase). Saposin-D (Sap-D) is essential for the degradation of ceramide by ACDase in lysosome. In this study, we generated Twi mice with a Sap-D deficiency (Twi/Sap-D KO), which are genetically deficient in both GALC and Sap-D and found that very little psychosine accumulated in the CNS or PNS of the mouse. As expected, demyelination with the infiltration of multinucleated macrophages (globoid cells) characteristic of Krabbe disease was milder in Twi/Sap-D KO mice than in Twi mice both in the CNS and PNS during the early disease stage. However, at the later disease stage, qualitatively and quantitatively comparable demyelination occurred in Twi/Sap-D KO mice, particularly in the PNS, and the lifespans of Twi/Sap-D KO mice were even shorter than that of Twi mice. Bone marrow-derived macrophages from both Twi and Twi/Sap-D KO mice produced significant amounts of TNF-α upon exposure to GalCer and were transformed into globoid cells. These results indicate that psychosine in Krabbe disease is mainly produced via the deacylation of GalCer by ACDase. The demyelination observed in Twi/Sap-D KO mice may be mediated by a psychosine-independent, Sap-D-dependent mechanism. GalCer-induced activation of Sap-D-deficient macrophages/microglia may play an important role in the neuroinflammation and demyelination in Twi/Sap-D KO mice.


Assuntos
Leucodistrofia de Células Globoides , Camundongos , Animais , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/patologia , Saposinas/genética , Psicosina/metabolismo , Galactosilceramidase/genética , Galactosilceramidase/metabolismo , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...